+ All Categories
Home > Documents > From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Date post: 04-Jan-2016
Category:
Upload: elfreda-cook
View: 220 times
Download: 2 times
Share this document with a friend
Popular Tags:
61
From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma
Transcript
Page 1: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

From Dark Energy to Dark Force

Luca AmendolaINAF/Osservatorio Astronomico di

Roma

Page 2: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

• Dark energy-dark matter interactions• Non-linear observational effects of DE• Modified gravity

Outline

Page 3: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

What do we know about cosmicexpansion ?

Nucleosynthesis (z~109)

CMB (z~1000)

Standard candles (z~1)

Perturbations (z~0-1000)

DE

Page 4: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Four hypotheses Four hypotheses on dark energy on dark energy

A) Lambda

B) scalar field

C) modified gravity

D) non-linear effect

Page 5: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Scalar fieldScalar field

VV ''

pw

Vp

V

s ta te o f eq .

)(2

1

)(2

1

2

2

• It is more general• Scalars are predicted by fundamental theories

Compton wavelength = Hubble length

10

1

3 3

3 0 0 0

1 0

HM pcm

eVmV()

Observational requirements:A) Evolve slowly B) Light mass

VV '

Page 6: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

An ultra-An ultra-lightlight scalar field scalar field

DM

FIf

Abu

ndan

ce

MassL.A. & R. Barbieri 2005

Page 7: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Evolution of background

zzyxz

yyxxyy

yxyxx

energyradiationz

energypotentialy

energykineticx K

)331(2

1'

)333(2

1'

)333(2

1'

222

22

222

2

2

,2

AAeV , Potential Energy Dark

)(1 222 zyxm Flat space:

0'3

04

03

))(2

1(

3

8 22

VH

H

H

VH

radrad

mm

m

Page 8: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Tracking vs. attractors

In a phase space, tracking is a curve,attractor is a point

Ωγ

ΩK

ΩP

AV

7.022 yx

Page 9: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

The coupling

• But beside the potential there can be also a coupling…

0

0

;)(

;)(

T

T m

;)(;)(

;)(;)(

m

mm

CTT

CTT

Page 10: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Dark energy as scalar gravity

Einstein frameEinstein frame Jordan frame Jordan frame

TRR

CTT

CTT

mLRL

m

mm

m

82

1

),(

,)(;)(

,)(;)(

;;;,

,

,

;)(

;)(

)(

)(2

18

)2

1(

0

0

)()(

fL

LLT

RRL

T

T

mLRfL

R

R

R

m

m

geg f ˆ'2

Page 11: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Dark energy as scalar gravity T

(m)= CT(m)

T= -CT(m)

coupled conservation laws :

3

)'(3

mmm

m

CH

CVH

C

m

Cm

emm

ea

0

30

)(

First basic property:

C2/G = scalar-to-tensor ratio

Page 12: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

An extra gravityAn extra gravity

0)/13

41(4')2

'1(''

222

2

kkk HkmG

H

H

)3

41( 2* rmeGG

Newtonian limit: the scalar interaction generates an attractive extra-gravity

Yukawa term

Page 13: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Local tests of gravity: λ<1 a.u.

Only on baryons and on sublunar scales

Adelberger et al. 2002

)1()( / rbar eGrG

α

λ

0 0 1.0bar

Page 14: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Astrophysical tests of gravity: λ<1 Mpc

Distribution of dark matter and baryons in galaxies and clusters (rotation curves, virial theorem, X-ray clusters,…)

Gradwohl & Frieman 1992

α

λ

)1()( / rdm eGrG

5.1dm

Page 15: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Cosmological tests of gravity: λ>1/H0

gravitational growth of structures: CMB, large scale structure

)1()1()( /ij

rijij GeGrG

Page 16: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

)3

41( 2*

iGG

Since αb=βb2<0.001, baryonsbaryons must be very weaklyvery weakly

coupled

Since αc=βc2<1.5, dark matterdark matter can be strongly strongly

coupled

Page 17: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

T(cdm)= CT(cdm)

T= -CT(cdm)

T(bar)= 0

T(rad)= 0

A species-dependent interaction

Page 18: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Dark energy and the equivalence principle

cdm

baryon

cdm

G*=G(1+4β2/3)

G

G

baryon

G

Cem 0Cem 0

bm bm

Page 19: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

A 3D phase space

zzyxz

yyxxyy

zyxyxyxx

densityradiationz

energypotentialy

energykineticx K

)331(2

1'

)333(2

1'

)1()333(2

1'

222

22

222222

2

2

,2

Page 20: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Phase spaces

© A. Pasqui

Ωrad

ΩK

ΩP

Page 21: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Two qualitatively different cases:weak coupling strong coupling

Page 22: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

rad mat

field

rad mat

field

No No couplingcoupling

couplingcoupling

MDE = /9

a ~ tp

p = 6/(42+9)

= 0

a ~ tp

p = 2/3

MDE:

kinetic phase, indep. of potential!

MDE:

toda

y

Weak coupling: density trends

Page 23: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

The equation of state w=p/depends on during MDE and on during tracking:

we = 4 past value (decelerated)w = present value (accelerated)

Deceleration and accelerationAssume

V =

toda

y

rad mat

field

Dominated bykinetic energy

β

Dominated bypotential energy

α

Page 24: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

cl)

WMAP and the coupling

Planck:

Scalar force 100 times weaker than gravity

Page 25: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

strong coupling

Page 26: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Dark energy

•Acceleration has to begin at z<1 •Perturbations stop growing in an accelerated universe•The present value of Ωm depends on the initial conditions

Strongly coupled dark energy

•Acceleration begins at z > 1•Perturbations grow fast in an accelerated universe•The present value of Ωm does not depend on the initial conditions

Page 27: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

A Strong coupling and the coincidence problem…

< 1

> 1to

day

2

2

)(4

1 84

M

0M

Weak:

Strong: AeV

Page 28: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

High redshift supernovae at z > 1

L.A., M. Gasperini & F. Piazza: 2002 MNRAS,2004 JCAP

Page 29: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Dream of a global attractor

zzyxz

yyxxyy

zyxyxyxx

densityradiationz

energypotentialy

energykineticx K

)331(2

1'

)333(2

1'

)1()333(2

1'

222

22

222222

2

2

,2

7.022 yx

Page 30: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Stationary models

couplingsl

ope

bar

stationary

3

)/(33

2

2

)(4

1844

a

w

aa

b

eff

M

large βany μ baryon baryon

epoch !epoch !

baryonbaryon

densitydensity

is theis the

controllingcontrolling

factorfactor

Page 31: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Does it work ?

Page 32: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.
Page 33: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

constraints from SN,constraints on omegaconstraints from ISW

Does it work ? No !No !

naak 22 4

L. A. & D. Tocchini-Valentini 2002

Page 34: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Second try

X

X

matter

Xpw

Xpp

X

geLUXpR

L

,

,

;;

21

2

2/

),(),(2

Generalized coupled scalar field Lagrangian

Under which condition one gets a stationary attractor Ω, w constant?

Page 35: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Theorem

)( XeXgp

A stationary attractor is obtained if and only if

Piazza & Tsujikawa 2004L.A., M. Quartin, I. Waga, S. Tsujikawa 2006

For instance :

dark energy with exp. pot.

tachyon field

dilatonic ghost condensate

eVXp 0 Y

Vg 01

2/10 )21( XeeVp

Y

Yg

21

eXXp 2 Yg 1

XeY

Page 36: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Perturbations on Stationary attractors

0)3

41(

2

3')'

'2(''

,

2

X

m pH

H

New perturbation equation in the Newtonian limit

which can be written using only the observable quantities w,Ω

0)6

1)(1(2

3')91(

2

1''

2

eff

effeff w

ww

L.A., S. Tsujikawa, M. Sami, 20051

2

Page 37: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Analytical solution

)4(2

12

211

m

am

Therefore we have an analytical solution for the growth oflinear perturbations on any stationary attractor:

In ordinary scalar field cosmology, m lies between 0 and 1. Now itcan be larger than 1, negative or complex !

Two interesting regions: phantom (p;X<0) and non-phantom (p;X>0)

Page 38: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Phantom damping

contour plot of Re(m)

Theorem 1: a phantom fieldon a stationary attractor alwaysproduces a damping of the perturbations: Re(m)<0.

0)3

41(

2

3')'

'2(''

,

2

X

m pH

H

Page 39: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Does it work?

Theorem 2: the gravitational potential is constant (i.e. no ISW) for

2.1,2.07.0

For

3/)342(

s

s

w

w

22 4 ak

Poisson equation

Still quite off the SN constraints !!

Page 40: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

A No-Go theorem

• Take a general p(X,U)• Require a sequence of decel. matter era followed by acceleration

Theorem: no function p(X,U) expandable in a finite polynomial can achievea standard sequence matter+scaling acceleration !

END OF THE SCALING DREAM ???

L.A., M. Quartin, I. Waga, S. Tsujikawa 2006

Page 41: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Background expansion

Linear perturbations

What’s next ?

Page 42: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Non-linearity

1) N-Body simulations2) Higher-order perturbation theory

Page 43: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Interactions• Two effects: DM mass is varying, G is different for baryons and DM

22 r

Gm

r

eGmH vv b

Cc

bb

mb mc

22

*

)2(r

Gm

r

emGvHv b

Cc

cc

Page 44: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

N-body recipe

• Flag particles either as CDM (Flag particles either as CDM (cc) or baryons () or baryons (bb) in ) in proportions according to present valueproportions according to present value

• Give identical initial conditionsGive identical initial conditions• Evolve them according the their Newtonian equation: Evolve them according the their Newtonian equation:

at each step we calculate two gravitational potentials at each step we calculate two gravitational potentials and evolve the and evolve the cc particle mass particle mass

• Reach a predetermined varianceReach a predetermined variance• Evaluate clustering separately for Evaluate clustering separately for cc and and bb particles particles• Modified Adaptive Refinement Tree code (Kravtsov et Modified Adaptive Refinement Tree code (Kravtsov et

al. 1997, Mainini et al, Maccio’ et al. 2003)al. 1997, Mainini et al, Maccio’ et al. 2003)

Collab. with S. Bonometto, A. Maccio’, C. Quercellini, R. MaininiPRD69, 2004

Page 45: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

N-body simulations

© A. Maccio’

Λ β=0.15 β=0.25

Page 46: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

N-body simulations

© A. Maccio’

β=0.15 β=0.25

Page 47: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

N-body simulations: halo profiles

β dependent behaviour towards the halo center.

Higher β: smaller rc

2

1

)(:

cc

c

cr

r

r

r

r

rNFW

Page 48: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

A scalar gravity friction

22

*

)2(r

Gm

r

emGvHv b

Cc

cc

• The extra friction term drives the halo steepeningThe extra friction term drives the halo steepening• How to invert its effect ? How to invert its effect ? • Which cosmology ?Which cosmology ?

Page 49: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Linear Newtonian perturbations

2

3)/'1('

0'

vHHv

v

022

3

3

S

A field initially Gaussian remains Gaussian:the skewness S3 is zero

Non-linearity:Non-linearity:Higher order perturbation theoryHigher order perturbation theory

Page 50: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Non-linear Newtonian perturbations

7

3 422

3

3

S

A field initially Gaussian develops a non-Gaussianity:the skewness S3 is a constant value

2

3)()/'1('

0)1('

vvvHHv

v

Independent of Ω, of eq. of state, etc.: S3 is a probeof gravitational instability, not of cosmology

(Peebles 1981)

Page 51: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Non-linear scalar-Newtonian perturbations

)6.01(7

3 4 2

22

3

3

S

the skewness S3 is a constant

2

3)()

'1(' :B a ry o n s

)3

41(

2

3)()'2

'1(' :C D M

0)1('

2

vvvH

Hv

vvvH

Hv

v

therefore S3 is also a probeof dark energy interaction

(L.A. & C. Quercellini, PRL 2004)

Page 52: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Skewness as a test of DE coupling

Sloan DSS:Predicted error on S3 less

than 10%

7/3 43S

Page 53: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Modified 3D gravityModified 3D gravity

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

μνστμνmatter R,RR,φ,f+L+Rgxd 4

)1)(12(3

)2(21

4

nn

nw

L+R+Rgxd

asympt

mattern

Simplest case:

Higher order gravity !

Turner, Carroll, Capozziello, Odintsov…

L.A., S. Capozziello, F. Occhionero, 1992

Page 54: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Modified N-dim gravityModified N-dim gravity

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

ymatter,R,Fdx=+L+Rggdyxd mattern

n 4

4444 ...

matterL+Rφfgxd 4

Simplest case:

Page 55: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Aspects of the same Aspects of the same physicsphysics

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

matterL+Rφ,fgxd 4

Extra-dim. Degrees of freedom

Higher order gravity

Coupled scalar field

Scalar-tensor gravity

Page 56: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

The simplest caseThe simplest case

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

matterL+

R

μ+Rgxd 4

is equivalent to coupled dark energy

RφL+R'+Lg'xd matter,Rφ4

But with strong coupling !

2/1=β

2

33

2

3)'(3

mmm

m

H

VH

Page 57: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

R+1/R modelR+1/R model

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

rad mat

field

rad mat

fieldMDE

toda

y

9/1=Ωφ

2/1=β

a= t 1/2

Page 58: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

R+RR+Rnn model model

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

2/1=β

9/1=Ωφ

L.A., S. Tsujikawa, D. Polarski 2006

a=t 1 /2

Page 59: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Distance to last scatteringDistance to last scatteringin R+Rin R+Rnn model model

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

2/1=β

9/1=Ωφ

decz

zH

dz=zr

)(

a=t 1 /2

Page 60: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

General f(R, Ricci, General f(R, Ricci, Riemann)Riemann)

A) Lambda

B) scalar field

C) modified gravity

D) non linear effect

mμνστμνστ

nμνμν RRβ+RRα+Rgxd 4

a=t 1 /2

we find again the same past behavior:

so probably most of these models are ruled out.

Page 61: From Dark Energy to Dark Force Luca Amendola INAF/Osservatorio Astronomico di Roma.

Anti-gravity has many side-effects…


Recommended