+ All Categories
Home > Documents > GDR MaMoVi 2017 · M´elanie PRAGUE, Daniel COMMENGES & Rodolphe THI ´EBAUT - SISTM September 27,...

GDR MaMoVi 2017 · M´elanie PRAGUE, Daniel COMMENGES & Rodolphe THI ´EBAUT - SISTM September 27,...

Date post: 16-Feb-2019
Category:
Upload: ngonguyet
View: 214 times
Download: 0 times
Share this document with a friend
26
elanie PRAGUE, Daniel COMMENGES & Rodolphe THI ´ EBAUT - SISTM September 27, 2017 GDR MaMoVi 2017 Parameter estimation in Models with Random effects based on Ordinary Differential Equations: A bayesian maximum a posteriori approach.
Transcript

Melanie PRAGUE, Daniel COMMENGES & Rodolphe THIEBAUT - SISTM September 27, 2017

GDR MaMoVi 2017Parameter estimation in Models with Random effects based on OrdinaryDifferential Equations: A bayesian maximum a posteriori approach.

M. Prague - SISTM - NLME-ODE September 27, 2017- 2

1Non Linear mixed effects ordinarydifferential equations models

Available

→ Data come from clinical trials and observational studies

→ Longitudinal data Yijk : patient i , time j and biomarker k

M. Prague - SISTM - NLME-ODE September 27, 2017- 3

Mathematical Model for mechanistic models

Compartiments Biologiques

Compartiment SignificationQ CD4 QuiescentsT CD4 ActivesT ∗ CD4 Actives InfectesV Virions

M. Prague - SISTM - NLME-ODE September 27, 2017- 4

Mathematical Model for mechanistic models

Dynamique des cellules T ∗ (CD4 infectes)

dT ∗

dt = γVT − µT∗T ∗

Parametre SignificationµT∗ Taux de deces des cellules T ∗γ Infectivite : Taux d’infection des cellules T par les virions

M. Prague - SISTM - NLME-ODE September 27, 2017- 5

Mathematical Model for mechanistic models

Target cells model

dQdt = λ− µQQ − αQ + ρT

dTdt = αQ − ρT − µT T − γVT

dT∗dt = γVT − µT∗T∗

dVdt = πT∗ − µV V

M. Prague - SISTM - NLME-ODE September 27, 2017- 6

Statistical Model for mechanistic models

Target cells model

Mixte effects models on parameters

ξi =(αi , λi , ..., γ0

i , µiV

)ξi

l = φl + z il (t)βl︸ ︷︷ ︸

Effets fixes

+ ωil (t)ui

l︸ ︷︷ ︸Effets aleatoires

ui ∼ N (0, Iq)

M. Prague - SISTM - NLME-ODE September 27, 2017- 7

Observational Model for mechanistic models

Among,

X(tij , ξi ) = (Q(tij , ξ

i ),T (tij , ξi ),T ∗(tij , ξ

i ),V (tij , ξi ))

We only observe (with measurement errors):

Viral load : Yij1 = log10(V ) + εij1

CD4 count : Yij2 = (Q + T + T ∗)0.25 + εij2

εijm ∼ N (0, σ2m)

Donc,

g1(.) = log10(.)

g2(.) = (.)0.25

M. Prague - SISTM - NLME-ODE September 27, 2017- 8

Parameters of interest

We want to estimate more than 15 parameters:

θ = {λ, µQ , α, ρ, µT , γπ, µT∗ , µV︸ ︷︷ ︸Effet fixes

, β1, . . . , βr︸ ︷︷ ︸Covariates effects

, σ1, . . . , σs︸ ︷︷ ︸Random effects

, Σ1, . . . ,Σk︸ ︷︷ ︸Measurement errors

}

→ There are sometimes problems of identifiability 1

→ This approach is unbiased more efficient than marginal structural modelsin presence of dynamic treatment regimens 2

1[1] Guedj et al. (2010), Bull. Math. Biol.2[2] Prague et al. (2016), Biometrics.

M. Prague - SISTM - NLME-ODE September 27, 2017- 9

M. Prague - SISTM - Estimation September 27, 2017- 10

2Bayesian penalised likelihoodestimation

Existing methods

Method Ref. SoftwareNon parametric Functional analysis [Ramsay et al. 2012] -Non Bayesian parametric FOCE [Pinheiro et Bates 1995] RBayesian SAEM [Kuhn et al. 2005 MONOLIX

Lavielle et al. 2007]Bayesian MCMC [Lunn et al 2000 WinBUGS

Huang et al. 2011]Bayesian penalized likelihood [Guedj et al 2007; NIMROD3

Prague et al. 2013]

3[3] Prague et al. (2013), Comp. Meth. and Prog. in Biomed.

M. Prague - SISTM - Estimation September 27, 2017- 11

Penalization for the log-likelihood

It is possible to have an approximate idea of the value of biological parametersand treatment effects, for example from previous in vitro experiment or analysisof studies.

Normal approximation of the posterior of previous analysis can be used as newprior for analysis as in a sequential bayesian meta-analysis4:

J(θ) =9∑

j=1

{φj − E0(φj )

}2√var0(φj )

+

nTRT∑j=1

{βj − E0(βj )

}2√var0(βj )

4[4] Prague et al. (2016) Journal de la statistique francaise

M. Prague - SISTM - Estimation September 27, 2017- 12

Penalized likelihood computation (1)

→ Individual likelihood (censorship δij = IYij1<ζ)

LFi |ui =∏j,1

{1

σ1√

(2π)exp

[−1

2

(Yij1 − g1(X(tij , ξ

i ))

σ1

)2]}1−δij

∗{

Φ

(ζ − g1(X(tij , ξ

i )

σ1

)}δij

∏j,2

1σ2√

(2π)exp

[−1

2

(Yij2 − g2(X(tij , ξ

i ))

σ2

)2]

→ Φ Repartition function of a Normal law.→ ODE Solver (dlsode Fortran) - [Radhakrishnan et Hindmarsh (1993)]

M. Prague - SISTM - Estimation September 27, 2017- 13

Penalized likelihood computation (2)

- Observed individual likelihood

LOi =

∫Rq

LFi |ui (u)φ(u)du,

with φ ∼ N (0, Iq)

→ Numerical integration: Adaptive Gaussian QuadratureNumerical integration:[Genz et Keister (1996)]

- Penalized log-Likelihood

LPO =

∑i≤n

log (LOi )− J(θ)

→ Parallel computing: Each computation LOi are independent.

M. Prague - SISTM - Estimation September 27, 2017- 14

Robust-Variance Scoring (RVS)

We use a Newton-Raphson-like algorithm to maximize the penalized likelihood.

Score computation (Gradients approximation)

UO(θk ) =n∑

i=1

(∂LPOi

∂θ|θk

)

→ ODE solver (dlsode Fortran)→ Sensitivity Equation of ODE systems→ Adaptive Gaussian Quadrature→ Parallel computing

M. Prague - SISTM - Estimation September 27, 2017- 15

Robust-Variance Scoring (RVS)

Computation of G (Approximation of the Hessian H)

H(θk ) ≈ G(θk ) =∑i≤n

(UOi (θk )U ′Oi (θk )

)− ν

n U(θk )U ′(θk ) +∂2J(θ)

∂θ2

→ Switch to a Marquardt-Levenberg algorithm [Marquardt, JSIAM, 1963]when the RVS algorithm does not provide maximization for multipleiterations.

M. Prague - SISTM - Estimation September 27, 2017- 16

Convergence criteria

Stabilization of parameters estimates :

|θ(k+1) − θk | < η1

Stabilization of log-likelihood :

|LPO(θ(k+1))− LP

O(θk )| < η2

Relative Distance to Maximum (main) :

RDM(θk ) =U(θk )G−1(θk )U ′(θk )

m < η3

M. Prague - SISTM - Estimation September 27, 2017- 17

M. Prague - SISTM - Illustration September 27, 2017- 18

4Some Illustration

Example in pharmacokineticsPharmacokinetics model 1 compartment:

Pharmacokinetics model 2 compartments:

Label NameGI Gastro-intestinal tractCP Plasma compartmentGT Tissue compartment

M. Prague - SISTM - Illustration September 27, 2017- 19

Simulations

- FOCE is not stable and less accurate (Laplace integration)- MCMC is more computationally demanding than NIMROD- NIMROD gives more efficient results than MCMC- NIMROD sometimes achieve estimation where MCMC fails

Failure Time Empirical Overall Overall(%) (s) SE Abs. Bias RMSE

FOCE 52 0.5 0.183 0.202 0.281MCMC 0 233 0.174 0.060 0.195

NIMROD 0 109 0.060 0.060 0.092

M. Prague - SISTM - Illustration September 27, 2017- 20

Properties of RDM

0 5 10 15 20 25 30

Number of iterations

●●

● ● ● ●●

● ● ● ● ● ● ● ● ●

● ●

●●

●●

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

RD

M

0 5 10 15 20 25 30

Log−

likel

ihoo

d

−1000

−900

−800

−700

−600

−500

−400

−300

−200−150

M. Prague - SISTM - Illustration September 27, 2017- 21

Real Data: The PUZZLE study [Raguin et al. 2004]I Explain the 600 mg Amprenavir (APV) concentrations in blood (ACP ) in

39 HIV infected patientsI Longitudinal data {0, 1/2, 1 1/2, 2, 3, 4, 6, 8, 10} hours

M. Prague - SISTM - Illustration September 27, 2017- 22

M. Prague - SISTM - Conclusion September 27, 2017- 23

5Conclusion

Existing and perspectives

- www.isped.u-bordeaux2.fr/NIMROD/documentation.aspx

- Increase the dimension of the mechanistic models: Limited number ofinter-individual variability (random effects).

- Investigate alternative algorithms: Explore Kalman filters.

M. Prague - SISTM - Conclusion September 27, 2017- 24

References

1. Guedj, J., Thiebaut, R., and Commenges, D. (2010). Practicalidentifiability of HIV dynamics models. Bulletin of mathematical biology,69(8), 2493-2513.

2. Prague, M., Commenges, D., Gran, J. M., Ledergerber, B., Young, J.,Furrer, H., and Thiebaut, R. (2016). Dynamic models for estimating theeffect of HAART on CD4 in observational studies: Application to theAquitaine Cohort and the Swiss HIV Cohort Study. Biometrics, 73(1),294-304.

3. Prague M., Commenges D., Guedj J., Drylewicz J., Thiebaut R. (2013)NIMROD: A Program for Inference via Normal Approximation of thePosterior in Models with Random effects based on Ordinary DifferentialEquations. Computer methods and Programs in Biomedecine 111(2)447-458

4. Prague M. (2016) Dynamical modeling for Optimization of treatment inHIV infected patients. Invited paper in Statistical French Society journal.157(2), 19-38

M. Prague - SISTM - Conclusion September 27, 2017- 25

MERCI

SISTMInria, Bordeaux, Sud-ouest, France

[email protected]


Recommended