+ All Categories
Home > Documents > Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop,...

Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok, C.-E. Wulz SLHC Workshop,...

Date post: 24-Dec-2015
Category:
Upload: samuel-clement-atkins
View: 218 times
Download: 0 times
Share this document with a friend
16
Global Trigger Upgrades for SLHC Vienna, Global Trigger Group A.Taurok , C.-E. Wulz SLHC Workshop, FNAL, 19 Nov. 2008
Transcript

Global Trigger Upgrades for SLHC

Vienna, Global Trigger GroupA.Taurok, C.-E. Wulz

SLHC Workshop, FNAL, 19 Nov. 2008

19 Nov. 2008 A. Taurok, C.-E. Wulz 2

Global Trigger Concept for LHC and SLHC

• Synchronize all Trigger Objects to arrive at the same time at the logic chip.– 2008 Version: Muons: done by GMT; Calo_objects: done by PSB; TechTrig: done by PSB

– SLHC Version: Muons: done by GMT; Calo_objects: done by GCT; TechTrig: done by SYNC chip

Tracker: done by Tracker_Trigger

• Send all Trigger Objects into one chip to make any correlation between them. • Use a FPGA to change trigger conditions as required by physics

– New trigger setup: configure FPGA with new trigger conditions– New parameter values for same setup:

• 2008 Version: Load new ET and pT thresholds by software• SLHC Version: Load all values by software ( Upgrade Version)

• Calculate physics trigger algorithms in parallel (FPGA branch)– 2008 Version: 128 Algorithms limited by board layout, connectors and chip size– SLHC Version: Extend to ‘nn’ Algorithms ‘Algo’ signals inside chip

Chip size will be the only restriction

• Final OR mask for all Algorithm bits; Prescaler & Counter for each Algorithm– SLHC: some other requirement ??

• SLHC Version: – Array of DSPs for complex physics triggers

• C++ code trigger program with constant latency(!)

– 1 optical link for each trigger object of 64 bits/40MHz

19 Nov. 2008 A. Taurok, C.-E. Wulz 3

CA

EN

VM

E

CO

NT

RO

LL

ER

FR

EE

VM

E

FR

EE

VM

E

L1A

_OU

TL

1A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

L1A

_OU

T

TC

S

PS

B

PS

B

PS

B

PS

B

PS

B

PS

B

PS

B

FD

L

GT

L

spar

e

TIM

GT

FE

GM

T

PC

: R

UN

Co

ntr

ol

Det

ecto

r s

ub

syst

ems

aTT

S D

AQ

AP

V-E

MU

LA

TO

RS

STA

TU

S SI

GN

AL

S

TE

CH

NIC

AL

T

RIG

GE

R S

IGN

AL

S

4IE

G, 4

EG

, 4JE

T,

4fJE

T

4TA

U-J

ET

, ET

*, J

etN

r,

TO

TE

M

CL

K, O

RB

IT

TT

C -

GP

S-T

IME

S-lin

ks:

DA

Q, E

VM

(ET

*=to

tal E

T, H

T, M

ET

)

8 R

PC

muo

ns4

DT

muo

ns4

CSC

muo

ns

MIP

/QU

IET

bit

s

LEVEL 1 GLOBAL TRIGGER 9U-VME CRATE Version 2008

128

Alg

o

Backplane

19 Nov. 2008 A. Taurok, C.-E. Wulz 4

CMS Level1 Global Trigger scheme

FDL

GTL

GTL

128 Algo

GMT

PSBGCT

Syncdelay

Syncdelay

REC

COND ALGO

PSBSyncdelay

Technical Triggers

FDL chip

GTL

COND chip

GMTOptical links

GCT

Syncdelay

Syncdelay

SYNCSyncdelay

‘Conditions’

COND chip

nn Algo

(and,or,

not)

FPGA:Standard Conditions

- FPGA: DSPs (XC5V100T)

Totem, Castor, ZDC, …

TrackerTrigger

Syncdelay

Prescalers&

Trigger Counters

FinalOR

FinalOR

COND ALGO

LHC

SLHC

Tracker ‘Conditions’ Prescalers&

Trigger Counters

Totem, Castor, ZDC, …

19 Nov. 2008 A. Taurok, C.-E. Wulz 5

Input to Global Trigger

•Global Calorimeter Trigger (GCT): possible reduction of trigger data•4 eg, 4 ieg 4 eg with ISOLATION bit•4 central jets, 4 forward jets 4…6 jets•4 tau jets•total_ET, HT apply set of thresholds in GCT

and send resulting bits to FDL chip

•missing_ET

•jet numbers•More than 4 objects per type: 5 or 6 (?) Simulation for SLHC

•Global Muon Trigger (GMT):•4 muons pmip, iso, charge, quality

•Tracker Trigger:•Tracks/jets with and COND chips•‘Conditions’ calculated in Tracker Trigger FDL chip

19 Nov. 2008 A. Taurok, C.-E. Wulz 6

Correlation TEMPLATE

Missing Energy TEMPLATE

Predefined VHDL code

Single particle TEMPLATE

ParametersET thresholds 1,2

window 1,2

Missing Energy threshold

Correlation

ieg1

ieg2

ieg3

ieg4

Find 2 out of 4 particles fulfilling all conditions

IEG condition: ieg2wsc

Combinatorial logic: Algorithm = ieg2wsc and MET

Missing ET condition: MET

ALGO bit (i) Final_OR

Single particle thr2,

window2Single particle thr2,

window2Single particle thr2,

window2Single particle thr2,

window2

Single particle thr1,

window1Single particle thr1,

window1Single particle thr1,

window1Single particle thr1,

window1

ieg1

ieg4

ieg2ieg3

ieg1

ieg4

ieg2ieg3

CMS Global Trigger standard Algorithm in FPGA: example

Mask, Veto_mask

prescalers

Standard CONDITION chip

FDL chip

19 Nov. 2008 A. Taurok, C.-E. Wulz 7

CONDITION chip with DSP array, RISCs

DSPCondition program

Trigger objects(GCT, GMT, TrackerTr…) Parameters

Condition bit

Parallel or tree structures

DSP DSP DSP

DSP

DSPDSPDSP

Trigger objects Trigger objects

Latency Latency

Algorithm logic in FDL chip Algorithm logic in FDL chip

Constraints:• # of Conditions # of DSPs• # of instructions latency limit• Keep pipeline structure

Latency = # of instructions

Hardwired logic*

*) if DSPs are implemented in FPGA

XC5VFX100T: 256 DSP48E(550MHz), 4 Ethernet MAC,3 PCIexpress end points, 16 GTX RocketIO (6.5Gb/s)680 IO (1.25Gb/s LVDS)

Condition bitCondition bit

OR

19 Nov. 2008 A. Taurok, C.-E. Wulz 8

Global Trigger board for SLHC (‘Single board’ option)

2 sets of opt. rcvers

RX:Serial parallel

COND_logicor

DSP array

Ethernet IPL1A_daq + Serial TX

LVDS

FDL chip

nn Algo

(and,or,

not)

FinalOR

COND chip

SYNC Chip

DAQ chip

L1A_daq + Serial TX

GCT: 5 ...GMT: 2Tracker: ~2 ..

Parallel data

LVDS

Ethernet IP

ControlCPU

ControlCPU

Ethernet IP

Ethernet IP

Trigger Counters

Pre

scal

ers

Spy_mem‘s &Ringbuffers

Spy_mem‘s &Ringbuffers

Event builder CMS - DAQ

LVDS LVDS Condition bits

Ethernet IO

Synccircuits

Condition bits

CLK, BCRES, ...

LVDSTIMINGcircuits

LVDS

CLK, BCRES, ..

19 Nov. 2008 A. Taurok, C.-E. Wulz 9

Option with Custom MTCA backplaneGT logic with AMC single width module from Imperial College & LosAlamos Lab.

GCT 2 copies of7 quadruplets à 64 bits 12/16

12/16

FPGA72x72

SWITCH

20

20

16

16

12/16

12/16

FPGA72x72

SWITCH

20

20

16

16

CONDITION CHIP 1+2

ALGO + FinOR (FDL)

12/16

12/16

FPGA72x72

SWITCH

20

20

16

16

7

TrackerTrigger2 copies of≤5 links à 64 bits

5

AMC single width (h=73.8 mm, l=181.5 mm)

128 Technical Trigger bitsfrom Conversion crate

2

12/16

12/16

FPGA72x72

SWITCH

20

20

16

164

Central Trigger Control

8FinalOR

32x 8 (L1A, 5Bgo…)

1

Custom Backplane

L1A..directly or via Big_Conversion boards to TTC system

Readout Board as double width AMC withSLINK mezzanine board

Readout data

PartitionSTATUS from2 Big_Conversion boards

2

CMS_DAQ

512 Condition bits

8

3.2 Gbps optical links

3.2 Gbps backplane links

NOT shown/defined:•Global Muon Trigger•Readout board with SLINK•LVDS/Serial Conversion crate

1Readout Board

1Readout Board

1Readout Board

19 Nov. 2008 A. Taurok, C.-E. Wulz 10

MTCA options: 40 MHz LVDS to Serial Conversion AMC modules (Vienna)

Serial link(1.6 Gbps required)

FPGA

8 RJ45 (59.2 x 25.5 mm)

SMALL_CONVERSION card single width, full size (w=73.8 mm, l=181.5 mm, h=28.95 mm)

32 bits

CONVERSION card double width,full size (w=148.8 mm, l=181.5 mm, h=28.95 mm)

FPGA

64 bits/40MHz

Serial link(3.2 Gbps required)

INPUT MODEOUTPUT MODE

INPUT MODE

Serial link(1.6 Gbps required)

FPGA

32 bits

OUTPUT MODE

Global Trigger: 128 Technical Trigger bits 4 SMALL_CONVERSION boards (INPUT mode)

Central Trigger Control: 40x4 STATUS bits 5 SMALL_CONVERSION boards (INPUT mode) 8x4 EMULATOR CONTROL signals 1 SMALL_CONVERSION boards (OUTPUT mode)32x8 L1A+BGo signals 8 SMALL_CONVERSION boards (OUTPUT mode)

Global Trigger: 128 Technical Trigger bits 2 CONVERSION boards (INPUT mode)

Central Trigger Control: 32x4 STATUS bits 2 CONVERSION boards (INPUT mode) 8x4x2 EMULATOR CTRL+STATUS 1 CONVERSION boards (I/O mode)32x8 L1A+BGo signals 4 CONVERSION boards (OUTPUT mode)

Many boards!! No front panel serial links

9 boards Serial links (3.2 Gbps) on front panel

FPGA

I/O MODE

64 bits/40MHz

Serial link(3.2 Gbps required)

Synchronization, Monitoring

FPGA

64 bits/40MHz

Serial link(3.2 Gbps required)

Monitoring

LC duplex

19 Nov. 2008 A. Taurok, C.-E. Wulz 11

Option with Standard MTCA backplane: Crate examples

Single width shelf

Example: Single width shelf (Schroff/Pentair)

Mechanical problems Ruggedized crates from other suppliers: vibration, shock isolation

Example: single width Cube (Elma)

Example: Double width shelf (Schroff/Pentair)

19 Nov. 2008 A. Taurok, C.-E. Wulz 12

Option with Standard MTCA backplane: Example of standard MCH (MTCA carrier hub) module

Tundra TSi578 (Tundra Web page)RapidIO 1.25, 2.5, and 3.125 Gbits/s per port

NAT-MCH (www.nateurope.com)Central management and data switching entityFast Ethernet CPU managementGiga-Ethernet uplink to backplaneCPU: carrier-,shelf-, system managerFabric D-G: Serial Rapid I/O (PICMG AMC.4)Fabric A: Gigabit EthernetFabric B: Serial Attached SCSIClock mezzanine

NAT-MCN Clock mezzanine

19 Nov. 2008 A. Taurok, C.-E. Wulz 13

Double width TCA board for GT

3.2 Gbps

Port4(8)

Port5(9)

Port6(10)

Port7(11)

Port0,1

double width,full size (w=148.8 mm, l=181.5 mm, h=28.95 mm)

148.8 mm

181.5 mm

MTP 12 REC

MTP 4 REC, 4 TX

MTP 12 REC

MTP 12 REC~18x40mm

FPGA~35x35mm

FPGA

FPGA

CTRLFPGA

3.2 Gbps

3.2 Gbps

3.2 Gbps

BLUE LINES:•‘nn’ Serial links between FPGA<1 Gbps ~ 16 bits à 40 MHz

•~32 parallel LVDS 40/80 MHz

1 Gbps

CLOCKJTAGPOWER

MTP 4 REC, 4 TX

Port links between BoardsSpeed depends on MCHUB

RJ45

RJ45 Optional Ethernet

19 Nov. 2008 A. Taurok, C.-E. Wulz 14

Option with Standard MTCA backplane:GMT+GT crate with double width AMC modules (Vienna)

GCT 2 copies of7 quadruplets á 64 bits 12

12

COND1FPGA

Port4(8)

7

TrackerTrigger2 copies of~2 links á 64 bits

2

double width AMC boards(h=148.8 mm, l=181.5 mm)

128 Technical Trigger bitsparallel LVDS

2

Standard Backplane

COND2FPGAspare

FDLFPGA

ALGO(GTL) + FinOR (FDL)

Port5(9)

Port6(10)

Port7(11)CTRLFPGA

port0,18FinalOR

Central Trigger Control

3.2 Gbps

12

12

12

IN+LFFFPGA

Port4(8)

IN+LFBFPGA

AUFPGA

GMT Global Muon Trigger

Port5(9)

Port6(10)

Port7(11)SRT+CTRL

port0,1

12

8r8tx

GCT 504 M+Q bits

CSC+fRPC 8 muons

4

4DT+bRPC 8 muons

8

MCH1 fat pipe(Readout)

MCH2 fat pipe(Trigger data)

4+4+2

4

to GTL4 muons

MTP connector:12 fibers rec/tr18 mm x 40 mm

2 CONVERSION cards

1

1

8r8tx

2

1

1

CMS_DAQ

Readoutboard

Readout board

SLINK

Readout Board

19 Nov. 2008 A. Taurok, C.-E. Wulz 15

Option with Standard MTCA backplane:Central Trigger Control Crate

double width AMC boards(h=148.8 mm, l=181.5 mm)

Central Trigger Control32x 8 (L1A, 5Bgo…)

Standard Backplane

Readout Board withSLINK mezzanine boardto be defined.

12

12

xxxFPGA

Port4(8)

TCSFPGA

xxxFPGA

Central Trigger Control & Readout

Port5(9)

Port6(10)

Port7(11)TCSM+CTRL

port0,1

12

8r8tx

MCH1 fat pipe(Monitoring)

MCH2 fat pipe(Control data)

4+4+2

8FinalOR

32x 8 (L1A, 5Bgo…)

EMULATORs 8x 4 bits status bits 8x 4 bits control signals

PartitionSTATUS Parallel LVDS

21

CONVERSION cardinput mode

4

CONVERSION cardoutput mode

CONVERSION cardI/O mode

L1A, BGo… to TTC

32 x 8 signals

1

1

2

Readoutboard

Control data:Bgo, L1A, Resync, Bcres…

19 Nov. 2008 A. Taurok, C.-E. Wulz 16

Optical connectors

MTP connector: 18 mm x 40(space on board); 11.2 mm from board edge to front side, h= 11mm without heatsink

SFP+ connector: transcvr, w=13,7, L=56.5, h=8.6mmLC connector: w=4.52 mm, h=5.7Duplex LC: 6.25mm middle-middle~14 mm

Panduit MTP module: FC9-24-10Y or FCXO-…24 single mode fibers9/125, 2mtp to 12 duplex LC, w = 88.9 mm. L=144.2, h=35.3

Avago optical transcvr: duplex LC with 6.25mm middle-middle; w= 14.9 or 13.6; h= 12.4mm

double width AMC boards(h=148.8 mm, l=181.5 mm)

Conversion board:AFBR-57R5AEZ 4.25 Gbps, 850nm VCSEL,

SFP duplex LC (Lucent)

FPGA 35x35mm

20x20mm


Recommended