+ All Categories
Home > Documents > Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe...

Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe...

Date post: 30-Dec-2015
Category:
Upload: joan-fitzgerald
View: 217 times
Download: 1 times
Share this document with a friend
40
Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et Molécules Université de Lille 1 ; Villeneuve d’Ascq ; France lot of work done in the former group of ilbert Grynberg at ENS.
Transcript
Page 1: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Groupe de Physique des Atomes Refroidis

Daniel HennequinOlivier Houde

Optical lattices

Philippe Verkerk

Laboratoire de Physique des Lasers, Atomes et MoléculesUniversité de Lille 1 ; Villeneuve d’Ascq ; France

A lot of work done in the former group of Gilbert Grynberg at ENS.

Page 2: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Reactive Force (dipole force)

Intensity

= L - 0

Standing wave

> 0 : « blue » detuning

I, U

z

U : optical potential (light shifts)

Optical Lattices

Page 3: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Outlook

I. Dissipative optical lattices1D2D3Dmore D

II. Non dissipative optical lattices

III. Instabilities in a MOT

Page 4: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

1D Dissipative Optical Lattice

The original one : Sisyphus cooling

J=1/2

J=3/21/3

1

- +z

E y

Ex

-1.4

-1.2

-1.0

-0.8

-0.6

-2 -1 0 1 2

= L -

Page 5: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Sisyphus Cooling

-1.4

-1.2

-1.0

-0.8

-0.6

-2 -1 0 1 2

Page 6: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Quantum Picture

-1.4

-1.2

-1.0

-0.8

-0.6

-2 -1 0 1 2

= 2 √ E Uvib R 0 Pump-Probe spectroscopy

Y. Castin & J. DalibardEuroPhys. Lett.

14, 761 (1991)

Page 7: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Two-photon transition

Seems very difficult, but if , it is equivalent to a 1-photon transition, with : a frequency = L - p

an effective Rabi frequencyeff = p /

Two-level system :

|g>

|e>

0 Lv

|n>

|n+1>

Lorentzian

n n+1

(-v)2+n n+12

eg

(L-0)2+eg2

Page 8: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Raman transitions

Position √ I / Compatible withv

Width : << ’= s’/2≈ 500 kHz/2 ≈ 50 kHz

Atomic observables not destroyed by spontaneous emission.

Lamb-Dicke effect : Raman coherences survive. n n+1 = ( n n + n+1 n+1 )/2 n n = (2n+1) ’

where = 2 ER / h v = 2 R/v

Page 9: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Lamb Dicke EffectTo evaluate the decay rate of the population of state |n>we have to consider the recoil due to spontaneous emission.

The atom, close to R=0, absorbs a photon kL and emits a photon ksp

The spatial part of the coupling is : exp i(kL-ksp)R

We have to evaluate < n | exp i(kL-ksp)R | n’ >Assume k.R = k Z is small, and expand the exp

exp i( k Z ) = 1 + i k Z + …Z = ( a + a†) ( h / 2m v )1/2

First order couples | n > only to | n+1 > and | n-1>Probability to go from | n > to | n+1 > : (n+1) R/v

Probability to go from | n > to | n -1 > : n R/v

Probability to leave | n > : (2n+1) R/v

Average on ksp < | kL-ksp |2 > = 2 kL2

Page 10: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Discussion

The atom scatters a lot of photons.But the momentum of a photon is small compared tothe width of the momentum distribution of the atomic state.

The momentum distribution is not changedso much in a single event.The overlap of the modified distributionwith the original one is large :

1 - (2n+1) R/v

We are far in the Lamb-Dicke regime as : R/2 = 2 kHz and v/2 ≈ 100 kHz

Page 11: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Spectral analysis of the fluorescence

Spontaneous Raman transitions

Spontaneousred photon

The temperature can be deduced fromthe ratio of the 2 side-bands.But one has to be careful, because of theoptical thickness of the medium :the spontaneous photon acts as a probe for stimulated Raman transitions.

Page 12: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Recoil Induced Resonance

Centered in =0Still narrower Strange shape

Nothing to dowith the lattice !

Page 13: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Raman trans. in momentum space

E=px2/2m

px

Free atoms ; momentum kick : px = h k

Initial state : px, Ei=px2/2m

Final state : px+px, Ef=(px +px )2/2m

Absorption : [(px+px) - (px)]

(- Ef + Ei)2 + 2

Assuming px « <px>, and small enough

ddpx px = m / k

Page 14: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Classical picture

Pump-probe interference pattern :very shallow potential moving at vx = / k

Atoms slow down while climbing hills, and accelerate coming down.As the potential is very shallow, only atoms with a velocityclose to vx = / k can feel the potential.If vx > 0, you have more atoms with v < vx than atoms with v > vx

The density grating is following the interference pattern.

For zero frequency components, the pump and the probe inducea density grating. The pump diffracts on that grating, and thediffracted wave interferes with the probe gain or attenuation

The signal for is given by d (the small param. is the potential depth). dpx px = m / k

Page 15: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

From 1D to 2D

1D : a pair of contra-propagating waves2D : two pairs of contra-propagating wavesBad Idea !

Phase dependent potential 2 orthogonal standing-waves

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

In phase In quadrature

Page 16: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Better idea

Use just 3 waveswith 120°

Linear polarization out of plane

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

-2

-1

0

1

2

-2 -1 0 1 2

Linear polarization in the plane

mg=1/2 mg=-1/2

Page 17: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

A few words about crystallography

Etot = Ej exp-i kj.r = exp-i k1.r Ej exp-i(kj - k1).r

For any translation R such that (kj - k1).R = 2pj the field is unchanged.R : vectors of the lattice (position space){kj - k1}j>1 : basis of the reciprocal lattice (Brillouin zone).

If they are (d-1) independent vectors.In the case of 2 orthogonal standing waves,(k2 - k1)= (k3 - k1) + (k4 - k1) because k2 = - k1 and k3 = - k4

The problem of phase dependence is also related to that.

With 3 beams in 2D, one can cancel the phases by an appropriate choice of the origins in space and in time.

Page 18: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

3Dz

E y Ex

Page 19: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

And then…

1D : 2 beams2D : 3 beams3D : 4 beams4D : 5 beams…

Where is thefourth dimension ?

Consider a 3D restriction of a 4D periodic optical potential

Page 20: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

1D cut of a 2D potential

1

1

3

3

2

2

A 2D square lattice, but the atom can move only along a line.Depending on the slope of the line, one has different potentials.

Page 21: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Periodic, super-periodic &quasi-periodic potential

1

3

2

The slope is a simple rational number :Periodic potential

The slope is a large integer :Super-periodic

The slope is not a rational number :Quasi-periodic.

Page 22: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Lissajous1.0

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5-1.0-1.0

-0.5

0.0

0.5

1.0

1.00.50.0-0.5-1.0

-1.0

-0.5

0.0

0.5

1.0

1.00.50.0-0.5-1.0

r=fy/fx=1.5 r=25

r=√ 2

Page 23: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

The angle is small ≈ 10-2 rad

Super-lattices

Page 24: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Fluorescence imagesWith the extra beam Without

Page 25: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Shadow image

Page 26: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Periodic, super-periodic &quasi-periodic potential

1

3

2

The slope is a simple rational number :Periodic potential

The slope is a large integer :Super-periodic

The slope is not a rational number :Quasi-periodic.

In a quasi-periodic potential, the invariance by translation is lost.But a long range order remains.

Page 27: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Long range order2.0

1.5

1.0

0.5

0.0

302520151050s

50

40

30

20

10

0

14121086420Hz

FFT

Similar patterns can be found in several places,but they differ slightly.

Larger patternslarger distances

U(x,y)=cos2x+cos2yy = x

V(x)=cos2x+cos2(x)2 frequencies

{

Page 28: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Toy model for solid state physics

Quasi-crystals with five-fold symmetry have been found in 1984.An alloy formed with Al, Pd and Mn, which are 3 metals (with a good conductivity), is almost an insulator (8 orders of magnitude).

What is the role of the quasi-periodicity ?

The conductivity is related to the mobility of the electrons in the potential of the ionic lattice.Ionic potential Optical potential Electrons Atoms

Study the diffusion of atoms in a quasi-periodic potential !

} {

Page 29: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Optical lattice with 5-fold symmetry

A 5-fold symmetry is incompatiblewith a translational invariance.i.e. you cannot cover the planewith pentagones.Penrose tilling.

Page 30: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

It works !One can measure :

the temperaturethe life timethe vibration freq.…

Page 31: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

20

80

40

0

210-1-2mm

τ=7ms

Δτ = 1100 ms

Z

Y

Spatial diffusion : method1. Load the atoms from the MOT in the lattice2. Wait τ3. Take an image

Page 32: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Spatial diffusion :results0.5

0.4

0.3

0.2

<2 >

(m

m2 )

0.70.60.50.40.30.20.10.0

time (sec)

= direction périodique= plan quasipériodique

0.30

0.25

0.20

0.15

0.10

0.05

0.00

D (

mm

2 /sec

)

120100806040

'0 / r

= -15, = -20 (direction périodique)= -15, = -20 (plan quasipériodique)

Anisotropy in the diffusionby a factor of 2.

Page 33: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Far detuned lattices

Red detuning : it works nicely !but the atoms see a lot of light.

Blue detuning : the atoms are in the dark !for the same depth, less scattered photons

Be careful in the design : the standard 4 beams configurationwill not trap atoms. The total field is 0 along lines.

3D trap with two beams.

Page 34: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

1D array of ring-shaped traps.2 contrapropagating beams with different transverse shapes,and blue detuning :

r0

I Hollow beam

Gaussian beam

r0 : possible destructive interference

r0

U

z

U/2

r0

Page 35: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

A conical lens

r

Intensité Expérience

Simulation

Page 36: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

The hollow beam

CC

D

LensMask

Telescope

Fluorescence of the hot atoms with the hollow

beam at resonance

Ring diameter : 200 µmRing width : 10 µm

Page 37: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

The preliminary results

Image of the atoms that remain in the lattice 80 ms after the end of the molasses. = 2 20 GHz.

Fraction (%) of the atoms that remain in the lattice vs time.

Page 38: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

Instabilities in a MOT

I

I

1

3

2

miroir

miroir

miroir

cellule de césium

MOT with retroreflected beams

When the laser approches the resonance, some instabilities appear both on the shape and the position of the cloud.

I will not consider here the instabilities and other rotating MOTs due to a misalignment of the beams

Page 39: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

The shadow effectThe beams are retro-reflected. The cloud of cold atoms absorbs part of the power.The backward beam is weaker than the forward one.The cloud is then pushed away from the center.We measure the displacement with a segmented photodiode.

We can consider a 1D system with only global variables : the number of atoms in the cloud, N the motion of its center of mass, z and v.

The repulsion due to multiple scattering has not to be takeninto account, because it is an internal force.

Assuming that the efficiency of the trapping process depends on the position of the center of mass, we obtain a set of three non-linear coupled equations. Numerical solutions.

Page 40: Groupe de Physique des Atomes Refroidis Daniel Hennequin Olivier Houde Optical lattices Philippe Verkerk Laboratoire de Physique des Lasers, Atomes et.

The results

00

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

ZN

t (s)

-1.0

-0.8

-0.6

-0.4

-0.2

% p

os. x

2000150010005000ms

40x106

35

30

25

# atomes

Theory

Experiment


Recommended