+ All Categories
Home > Documents > Hidde de Jong and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

Hidde de Jong and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

Date post: 14-Jan-2016
Category:
Upload: shae
View: 26 times
Download: 0 times
Share this document with a friend
Description:
Qualitative Modeling and Simulation of Genetic Regulatory Networks using Piecewise-Linear Differential Equations. Hidde de Jong and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot 38334 Saint Ismier Cedex France Email: { Hidde.de-Jong,Delphine.Ropers} @ inrialpes.fr. - PowerPoint PPT Presentation
Popular Tags:
47
Qualitative Modeling and Simulation of Genetic Regulatory Networks using Piecewise-Linear Differential Equations Hidde de Jong and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot 38334 Saint Ismier Cedex France Email: {Hidde.de-Jong,Delphine.Ropers}@inrialpes.fr
Transcript
Page 1: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

Qualitative Modeling and Simulation of Genetic Regulatory Networks using Piecewise-Linear

Differential Equations

Hidde de Jong and Delphine Ropers

INRIA Rhône-Alpes655 avenue de l’Europe, Montbonnot

38334 Saint Ismier CedexFrance

Email: {Hidde.de-Jong,Delphine.Ropers}@inrialpes.fr

Page 2: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

2

Overview

1. Genetic regulatory networks

2. Models of genetic regulatory networks

nonlinear differential equations

linear differential equations

piecewise-linear differential equations

3. Qualitative modeling, simulation, and validation using

piecewise-linear differential equations

4. Genetic Network Analyzer (GNA)

Page 3: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

3

Escherichia coli: model organism

Enteric bacterium Escherichia coli has been most-studied organism in biology

« All cell biologists have two cells of interest: the one they are studying and

Escherichia coli »

2 μm 4300 genes107 bacteria

Schaechter and Neidhardt (1996), Escherichia coli and Salmonella, ASM Press, 4

Page 4: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

4

Bacterial cell and proteins

Proteins are building blocks of cell

Cell membrane, enzymes, gene expression, …

Page 5: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

5

Variation in protein levels

Protein levels in cell are adjusted to specific environmental conditions

Peng, Shimizu (2003), App. Microbiol. Biotechnol., 61:163-178

Ali Azam et al. (1999), J. Bacteriol., 181(20):6361-6370

2D gels

Western blots

DNA microarrays

Page 6: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

6

Synthesis and degradation of proteins

DNA

mRNA

protein

modified protein

transcription

translation

post-translational modification

effector molecule

degradation protease

RNA polymerase

ribosome

Page 7: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

7

Regulation of synthesis and degradation

RBS

mRNA

ribosome

modified protein

kinase

protease

RNA polymerasetranscription

factor

DNA

small RNA

response regulator

Page 8: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

8

Example: σS in E. coli σS (RpoS) is sigma factor in E. coli and other bacteria

Subunit of RNA polymerase which recognizes specific promoters

σS is regulated on different levels: Transcription: repression by CRP·cAMP

Translation: increase in efficiency by binding of small RNAs DsrA, RprA

Activity: increase in promoter affinity of RNAP with σS by binding of Crl

Degradation: RssB targets σS for degradation by ClpXP

Adapted from: Hengge-Aronis (2002), Microbiol. Mol. Biol. Rev., 66(3):373-395

Page 9: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

9

Genetic regulatory networks

Control of protein synthesis and degradation gives rise to genetic regulatory networks

Networks of genes, RNAs, proteins, metabolites, and their interactions

Activation Stress signal

CRP

crp

cya

CYA

fis

FIS

Supercoiling

TopA

topA

GyrAB

P1-P4P1 P2

P2P1-P’1

rrnP1 P2

P

gyrABP

tRNArRNA

GyrI

gyrIP

rpoSP1 P2nlpD

σS

RssB

rssAPA PB rssB

P5

Carbon starvation network in E. coli

Page 10: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

10

Modeling of genetic regulatory networks

Abundant knowledge on components and interactions of genetic regulatory networks

Currently no understanding of how global dynamics emerges from local interactions between components

Shift from structure to behavior of genetic regulatory networks

« functional genomics », « integrative biology », « systems biology », …

Mathematical methods supported by computer tools allow modeling and simulation of genetic regulatory networks:

precise and unambiguous description of network

understanding through computer experiments

new predictions

Page 11: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

11

Model formalisms

Many formalisms to model genetic regulatory networks

ODEs with implicit assumptions and additional simplifications: Continuous and deterministic dynamics

Lumping together protein synthesis and degradation in single step

Graphs

Differential equations

Stochastic master equations

precision abstraction

Boolean equations

de Jong (2002), J. Comput. Biol., 9(1): 69-105

Page 12: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

12

Cross-inhibition network

Cross-inhibition network consists of two genes, each coding for transcription regulator inhibiting expression of other gene

Cross-inhibition network is example of positive feedback, important for differentiation

Thomas and d’Ari (1990), Biological Feedback

gene b

protein B

gene a

protein A

promoter a promoter b

Page 13: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

13

Nonlinear model of cross-inhibition network

xa = concentration protein A

xb = concentration protein B

xa = a f (xb) a xa

xb = b f (xa) b xb

a, b > 0, production rate constants a, b > 0, degradation rate

constants

.

.

f (x) = , > 0 threshold

n

n + x n

x

f (x )

0

1

b

B

a

A

Page 14: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

14

Phase-plane analysis

Analysis of steady states in phase plane

Two stable and one unstable steady state. System will converge to one of two stable steady states

System displays hysteresis effect: transient perturbation may cause irreversible switch to another steady state

xb

xa

0

xb = 0 .

xa = 0 .

xa = 0 : xa = f (xb)a

a

xb = 0 : xb = f (xa)b

b

.

.

Page 15: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

15

Construction of cross inhibition network

Construction of cross inhibition network in vivo

Differential equation model of network

u = – u1 + v β

α1v = – v

1 + u α2..

Gardner et al. (2000), Nature, 403(6786): 339-342

Page 16: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

16

Experimental test of model

Experimental test of mathematical model (bistability and hysteresis)

Gardner et al. (2000), Nature, 403(6786): 339-342

Page 17: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

17

Bifurcation analysis

Analysis of bifurcations caused by changes in control parameter

Change in control parameter may cause an irreversible switch to another steady state

xb

xa

0

xb = 0 .

xa = 0 .

xb

xa

0

xb = 0 .

xa = 0 .

xb

xa

0

xb = 0 .

xa = 0 .

value of b

Page 18: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

18

Bacteriophage infection of E. coli

Response of E. coli to phage infection involves decision between alternative developmental pathways: lysis and lysogeny

Ptashne, A Genetic Switch, Cell Press,1992

Page 19: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

19

Control of phage fate decision

Cross-inhibition feedback plays key role in establishment of lysis or lysogeny, as well as in induction of lysis after DNA damage

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84

Page 20: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

20

Simple model of phage fate decision

Differential equation model of cross-inhibition feedback network involved in phage fate decision

mRNA and protein, delays, thermodynamic description of gene regulation

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84

Page 21: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

21

Analysis of phage model

Bistability (lysis and lysogeny) only occurs for certain parameter values

Switch from lysis to lysogeny involves bifurcation from one monostable regime to another, due to change in degradation constant

Santillán, Mackey (2004), Biophys. J., 86(1): 75-84

Page 22: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

22

Extended model of phage infection

Differential equation model of the extended network underlying decision between lysis and lysogeny

McAdams, Shapiro (1995), Science, 269(5524): 650-656

Page 23: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

23

Evaluation nonlinear differential equations

Pro: reasonably accurate description of underlying molecular interactions

Contra: for more complex networks, difficult to analyze mathematically, due to nonlinearities

Pro: approximate solution can be obtained through numerical simulation

Contra: simulation techniques difficult to apply in practice, due to lack of numerical values for parameters and initial conditions

Page 24: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

24

Linear model of cross-inhibition network

xa = concentration protein A

xb = concentration protein B

a, b > 0, production rate constants a, b > 0, degradation rate

constants xa = a f (xb) a xa

xb = b f (xa) b xb

.

.

f (x) = 1 x / (2 ) , > 0, x 2

x

f (x )

0 2

1

b

B

a

A

Page 25: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

25

Phase-plane analysis

Analysis of steady states in phase plane

Single unstable steady state. Linear differential equations too simple to capture dynamic

phenomena of interest: no bistability and no hysteresis

xb

xa

0

xa = 0 .

xb = 0 .

xa = 0 : xa = f (xb)a

a

xb = 0 : xb = f (xa)b

b

.

.

Page 26: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

26

Evaluation of linear differential equations

Pro: analytical solution exists, thus facilitating analysis of complex systems

Contra: too simple to capture important dynamical phenomena of regulatory network, due to neglect of nonlinear character of interactions

Page 27: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

27

Piecewise-linear model of cross-inhibition

f (x) = s(x, ) =1, x <

0, x >

x

f (x )

0

1

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-129

xa = concentration protein A

xb = concentration protein B

a, b > 0, production rate constants a, b > 0, degradation rate

constants xa = a f (xb) a xa

xb = b f (xa) b xb

.

.

b

B

a

A

Page 28: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

28

PL models and gene regulatory logic

Step function expressions correspond to Boolean functions used to express gene regulatory logic

ba

A

B

xa a s-(xb , b ) – a xa.

xb b s-(xa , a) – b xb .

Thomas and d’Ari (1990), Biological Feedback

condition gene a: (xb < b )condition gene b: (xa < a )

xa a s-(xa , a2) s-(xb , b ) – a xa .

xb b s-(xa , a1) – b xb .

b

B

a

A

condition gene a: (xa < a2) (xb < b )condition gene b: (xa < a1)

Page 29: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

29

Phase-plane analysis Analysis of dynamics of PL models in phase space

xb

xa

0 b

a

xa a – a xa .

xb b – b xb .

κa/γa

κb/γb

M1

xa a s-(xb , b ) – a xa.

xb b s-(xa , a) – b xb .

M1:

xb

xa

0 b

a

κb/γb

M3

xa – a xa .xb b – b xb ...M3:

Page 30: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

30

Phase-plane analysis Analysis of dynamics of PL models in phase space

Extension of PL differential equations to differential inclusions using Filippov approach

xb

xa

0 b

a

κa/γa

κb/γb

xa a s-(xb , b ) – a xa.

xb b s-(xa , a) – b xb .

M2

Gouzé, Sari (2002), Dyn. Syst., 17(4):299-316

xb

xa

0 b

a

κb/γb

M5

κa/γa

Page 31: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

31

Phase-plane analysis

Global phase-plane analysis by combining analyses in local regions of phase plane

Piecewise-linear model good approximation of nonlinear model, retaining properties of bistability and hysteresis

xb

xa

0

xb = 0 .

xa = 0 .

b

a

xb

xa

0

xb = 0 .

xa = 0 .

Page 32: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

32

Hyperrectangular phase space partition: unique derivative sign pattern in regions

Qualitative abstraction yields state transition graph

Shift from continuous to discrete picture of network dynamics

Qualitative analysis using PL models

xb

xa

0 b

a

D1 D2

D3

D4

D5

D11 D12

D13

D14

D15

D16

D19

D23

D18

D21

D24

D25

D10

D6 D7 D8

D9

D17

D20

D22

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D8

D9

D17

D20

D23

D18

D21

D24

.

.xa > 0xb > 0D1:

.

.xa > 0xb < 0D17:

.

.xa = 0xb = 0D19:

de Jong, Gouzé et al. (2004), Bull. Math. Biol., 66(2):301-340

Page 33: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

33

Qualitative analysis using PL models

Paths in state transition graph represent possible qualitative behaviors

.

.xa > 0xb > 0D1:

.

.xa > 0xb < 0D17:

.

.xa = 0xb = 0D19:

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D8

D9

D17

D20

D23

D18

D21

D24

D1 D11 D17 D19

a

κa/γa

D1 D11 D17 D19

b

κb/γb

Page 34: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

34

State transition graph invariant for parameter constraints

Qualitative analysis using PL models

D1 D3

D11 D12 0 < a < a/a

0 < b < b/b

xb

xa

0 b

a

κa/γa

κb/γb

D1

D11 D12

D3

Page 35: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

35

State transition graph invariant for parameter constraints

Qualitative analysis using PL models

D1 D3

D11 D12 0 < a < a/a

0 < b < b/b

xb

xa

0 b

a

κa/γa

κb/γb

D1

D11 D12

D3

Page 36: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

36

State transition graph invariant for parameter constraints

Qualitative analysis using PL models

D1 D3

D11 D12 0 < a < a/a

0 < b < b/b

xa

0

a

κa/γa

κb/γb

D1

D11 D12

D3

xb0 b

a

κa/γa

κb/γb

D1

D11

D1

D11

0 < b/b < b

0 < a < a/a

Page 37: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

37

Predictions well adapted to comparison with available experimental data: changes of derivative sign patterns

Model validation: comparison of derivative sign patterns in observed and predicted behaviors

Need for automated and efficient tools for model validation

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D9

D17

D20

D23

D18

D21

D24

Validation of qualitative models

Concistency?

0

xb

time

time0

xa

xa > 0.xb > 0.

xb > 0.xa < 0.

D8

Page 38: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

38

Predictions well adapted to comparison with available experimental data: changes of derivative sign patterns

Model validation: comparison of derivative sign patterns in observed and predicted behaviors

Need for automated and efficient tools for model validation

Validation of qualitative models

Concistency?

Yes

0

xb

time

time0

xa

xa > 0.xb > 0.

xb > 0.xa < 0.

.

.xa > 0xb > 0D1:

.

.xa > 0xb < 0D17:

.

.xa = 0xb = 0D19:

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D8

D9

D17

D20

D23

D18

D21

D24

Page 39: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

39

Model-checking approach

Dynamic properties of system can be expressed in temporal logic (CTL)

Model checking is automated technique for verifying that state transition graph satisfies temporal-logic statements

Computer tools are available to perform efficient and reliable model checking (NuSMV, CADP, …)

There Exists a Future state where xa > 0 and xb > 0 and starting from that state,

there Exists a Future state where xa < 0 and xb > 0

. .

. .

EF(xa > 0 xb > 0 EF(xa < 0 xb > 0) ). . . . 0

xb

time

time0

xa

xa > 0.xb > 0.

xb > 0.xa < 0.

Page 40: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

40

Validation using model checking

Compute state transition graph using qualitative simulation

Use of model checkers to verify whether experimental data and predictions are consistent

Concistency?0

xb

time

time0

xa

xa > 0.xb > 0.

xb > 0.xa < 0.

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D9

D17

D20

D23

D18

D21

D24

D8

Page 41: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

41

Validation using model checking

Compute state transition graph using qualitative simulation

Use of model checkers to verify whether experimental data and predictions are consistent

Yes

Concistency?

Model corroborated

EF(xa > 0 xb > 0 EF(xa < 0 xb > 0) ). . . .

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D8

D9

D17

D20

D23

D18

D21

D24

D19

D1

D11

D17

Page 42: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

42

Analysis of attractors of PL systems

Search of steady states of PL systems in phase space

xb

xa

0 b

a

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D9

D17

D20

D23

D18

D21

D24

D8

Page 43: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

43

Analysis of stability of steady states, using local properties of state transition graph

Definition of stability of equilibrium points on surfaces of discontinuity

Analysis of attractors of PL systems

Search of steady states of PL systems in phase space

Casey et al. (2006), J. Math Biol., 52(1):27-56

xb

xa

0 b

a

D6

D22

D19

D10

D16

D1 D2 D3 D4 D5

D15

D25

D11 D12 D13 D14

D7

D8

D9

D17

D20

D23

D18

D21

D24

Page 44: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

44

Genetic Network Analyzer (GNA)

http://www-helix.inrialpes.fr/gna

Qualitative simulation method implemented in Java: Genetic Network Analyzer (GNA)

de Jong et al. (2003), Bioinformatics, 19(3):336-344

Distribution by Genostar SA

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28

Page 45: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

45

Applications of GNA Qualitative simulation method used to analyze various

bacterial regulatory networks: initiation of sporulation in Bacillus subtilis

quorum sensing in Pseudomonas aeruginosa

carbon starvation response in Escherichia coli

onset of virulence in Erwinia chrysanthemi

de Jong, Geiselmann et al. (2004), Bull. Math. Biol., 66(2):261-300

Viretta and Fussenegger, Biotechnol. Prog., 2004, 20(3):670-678

Ropers et al., Biosystems, 2006, 84(2):124-152

Sepulchre et al., J. Theor. Biol., 2006, in press

Page 46: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

46

Evaluation of PL differential equations

Pro: captures important dynamical phenomena of network, by suitable approximation of nonlinearities

Pro: qualitative analysis of dynamics possible, due to favorable mathematical properties

Contra: restricted class of models, not directly applicable to type of functions found in, for example, metabolism

Page 47: Hidde de Jong  and Delphine Ropers INRIA Rhône-Alpes 655 avenue de l’Europe, Montbonnot

47

Contributors and sponsorsGrégory Batt, Boston University, USA

Hidde de Jong, INRIA Rhône-Alpes, France

Hans Geiselmann, Université Joseph Fourier, Grenoble, France

Jean-Luc Gouzé, INRIA Sophia-Antipolis, France

Radu Mateescu, INRIA Rhône-Alpes, France

Michel Page, INRIA Rhône-Alpes/Université Pierre Mendès France, Grenoble, France

Corinne Pinel, Université Joseph Fourier, Grenoble, France

Delphine Ropers, INRIA Rhône-Alpes, France

Tewfik Sari, Université de Haute Alsace, Mulhouse, France

Dominique Schneider, Université Joseph Fourier, Grenoble, France

Ministère de la Recherche,

IMPBIO program European Commission,

FP6, NEST program INRIA, ARC program Agence Nationale de la

Recherche, BioSys program


Recommended