+ All Categories
Home > Science > Hidetomo Nagai

Hidetomo Nagai

Date post: 17-Mar-2018
Category:
Upload: suurist
View: 216 times
Download: 4 times
Share this document with a friend
46
ܠύʔϚωϯτ ιϦτϯఔͱύʔϚωϯτ Ҫ ल༑ ౦ւେ ཧਓηϛφʔ@Ҵେ 2016 12 15 Ҫ ल༑ ιϦτϯఔͱύʔϚωϯτ
Transcript
  • @2016 12 15

  • 1.1.11.21.3

    2.2.12.22.3

  • ?: soliton

    !

    !

    21965 N. Zabusky M. Kruskal

    KdV (KdV: Korteweg-de Vries) 2-onsolitary wave(-on)

    : solitron

    Wikipedia

  • 191950 60

    1967

    1970

    1980

    1990...

  • ! KdV

    ut

    + 6uux

    +3ux3

    = 0, (u = u(x, t))

    ! mKdV

    ut

    + 6u2ux

    +3ux3

    = 0, (u = u(x, t))

    ! KP

    x

    (4ut 6uu

    x

    3ux3

    ) 3

    2uy2

    = 0, (u = u(x, y, t))

    !

    d2

    dt2log(1 + Vn) = Vn+1 2Vn + Vn1 (Vn = Vn(t))

    KdV KP .

  • KdV

    KdV

    ut

    + 6uux

    +3ux3

    = 0, (u = u(x, t)).

    u(x, t) = 2k 2 sech2 k(x 4k 2t + c), k , c

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/KdV1movie.AVI

  • KdV 2-

    KdV2-

    u(x, t) = 22

    x2log f(x, t)

    f(x, t) = 1+e1+e2+(

    k1 k2k1 + k2

    )2e1+2 , j(x, t) = kjxk 3j t+cj

    2-

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/KdV2movie.AVI

  • KP

    Kadomtsev-Petviashvili (KP)

    x

    (4ut 6uu

    x

    3ux3

    ) 3

    2uy2

    = 0, (u = u(x, y, t))

    2-

    u(x, y, t) = 22

    x2log (x, y, t)

    (x, y, t) = 1 + eP1x+Q1y+1t + eP2x+Q2y+2t

    +(p1 p2)(q1 q2)(p1 q2)(q1 p2)

    e(P1+P2)x+(Q1+Q2)y+(+2)t ,

    Pi = pi qi , Qi = p2i q2i, i = p3i q

    3i

    (i = 1, 2)

    pi , qi KP

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/KP2otype.AVI

  • KP

    x

    (4ut 6uu

    x

    3ux3

    ) 3

    2uy2

    = 0, (u = u(x, y, t))

    u = 2(log )xx .

    KPKP

    (4x 4xt + 3yy) 4(3x t)x + 3(xx y)(xx + y) = 0

  • (N.C.Freeman and J.J.C.Nimmo, Phys.Lett.A 95(1983)1. )

    (4x 4xt + 3yy) 4(3x t)x + 3(xx y)(xx + y) = 0

    (x, y, t) = det

    f (0)1

    f (1)1

    f (N1)1

    f (0)2

    f (1)2

    f (N1)2

    ....... . .

    ...

    f (0)N

    f (1)N

    f (N1)N

    , where f (k)i

    :=k fixk

    fi(x, y, t)

    fiy

    =2fix2,

    fit

    =3fix3

  • (1/2)

    N = 2

    (x, y, t) =f1 f1f2 f2

    = |0 1|.

    x(x, y, t) =

    x

    f1 f1f2 f2

    =f 1

    f 1

    f 2

    f 2

    +f1 f1f2 f2

    = |0 2|

    fy =

    2fx2 ,

    ft =

    3fx3

    y(x, y, t) =

    y

    f1 f 1f2 f 2

    =f 1

    f 1

    f 2

    f 2

    +f1 f 1f2 f 2

    = |2 1|+ |0 3|

    t(x, y, t) =

    t

    f1 f 1f2 f 2

    =f 1

    f 1

    f 2

    f 2

    +f1 f 1f2 f 2

    = |3 1|+ |0 4|

  • 2/2

    KP(4x 4xt + 3yy) 4(3x t)x + 3(xx y)(xx + y)

    =12(|0 1| |2 3| |0 2| |1 3|+ |0 3| |1 2|)

    =12(

    f1 f 1f2 f 2

    f 1

    f 1

    f 2

    f 2

    f1 f 1f2 f 2

    f 1

    f 1

    f 2

    f 2

    +f1 f 1f2 f 2

    f 1

    f 1

    f 2

    f 2

    )

    Plucker 0(x, y, t) KP

    (One of ) the Plucker relations is expressed by

    |a1 a2 aN2 b1 b2||a1 a2 aN2 b3 b4||a1 a2 aN2 b1 b3||a1 a2 aN2 b2 b4|+|a1 a2 aN2 b1 b4||a1 a2 aN2 b2 b3| = 0,

    where ai , bi are arbitrary Nth column vectors.

  • KP

    ex1) N = 2

    fi(x, y, t) = exp(pix + p2i y + p3it) + exp(qix + q2i y + q

    3it)

    1

    ex2) N = 3, M = 6

    fi(x, y, t) =M

    j=1

    cijej , j = pjx + p2j y + p3jt

    2 (Y. Kodama, J. Phys. A:Math. Theor. 43 (2010)434004)

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/KP2otype.AVIfile:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/KP3.AVI

  • 1-2

    (R. Hirota, Nonlinear Partial Difference Equations. I, II, III, IV, V, JPSJ (1977)).KdV (in bilinear form)

    3f2xx fx ft 4fx f3x + fftx + ff4x = 0 (f = f(x, t))

    KdV (in bilinear form)

    fm+1n+1

    fm1n = (1 )fmn+1fmn + f

    m1n+1

    fm+1n (fmn = f(m, n))

    m, n

  • KdV

    KdV

    fm+1n+1

    fm1n = (1 )fmn+1fmn + f

    m1n+1

    fm+1n

    2-fmn = 1 + e

    1 + e2 + a12e1+2 ,

    i = pim qin + ci

    qi = log( + epi

    1 + epi

    ), a12 =

    ( ep1 ep21 + ep1+p2

    )2

    pi , ciKdV 2-

    umn = fmn+1f

    m+1n /f

    mn /f

    m+1n+1

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/dKdV1movie.AVI

  • KP

    KP

    (4x 4xt + 3yy) 4(3x t)x + 3(xx y)(xx + y) = 0

    KP

    a1(a2 a3)(l + 1,m, n)(l,m + 1, n + 1)+a2(a3 a1)(l,m + 1, n)(l + 1,m, n + 1)+a3(a1 a2)(l,m, n + 1)(l + 1,m + 1, n) = 0

    a1, a2, a3

  • KP

    KP KP ()

    (l,m, n) = det

    1(0) 1(1) 1(N 1)2(0) 2(1) 2(N 1)...

    .... . .

    ...N(0) N(1) N(N 1)

    i(s) = i(l,m, n, s) s i(s)

    i(l + 1,m, n, s) = i(l,m, n, s) + a1i(l,m, n, s + 1)i(l,m + 1, n, s) = i(l,m, n, s) + a2i(l,m, n, s + 1)i(l,m, n + 1, s) = i(l,m, n, s) + a3i(l,m, n, s + 1)

  • 1-3

    1990 .

    (T. Tokihiro et al. Phys. Rev. Lett. 76 (1996))

    !!!!!!!!!!!!!!!!!

    !

    !

    !

    !

    !

    !

    !!!

    !

    !

    !

    !

    !

    !

    !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

    !40 !20 0 20 40 n1.2

    1.4

    1.6

    1.8

    2.0u

    ultradiscretization

    ! !

    ! ! !

    ! ! ! !

    !

    ! ! ! ! ! ! ! ! ! ! !

    !10 !5 5 10 n!0.5

    0.51.01.52.0U

  • 2

    xn+1 =a + xn

    xn1(x0, x1, a > 0)

    (

    (1)xn = eXn/ , a = eA/

    (2) lim+0 log

    Xn+1 = lim+0

    log(eA/ + eXn/

    ) Xn1

    lim+0

    log(eA/ + eB/

    )= max(A ,B)

    Xn+1 = max(A , Xn) Xn1.

  • xn+1 =a + xn

    xn1 Xn+1 = max(A , Xn) Xn1.

    + max not well-defined +

  • xn+1 =a + xn

    xn1 Xn+1 = max(A , Xn) Xn1.

    + max not well-defined +

  • !

    !

    lim+0

    log(eA/ + eB/

    )= max(A ,B)

    lim+0

    log(eA/eB/

    )=

    A (A > B)(A B)

  • KdV

    KdV

    fm+1n+1

    fm1n = (1 )fmn+1fmn + f

    m1n+1

    fm+1n

    fmn = eFmn / , = e2/

    KdV (bilinear form)

    ultradiscretization Fm+1n+1

    + Fm1n = max(Fmn+1 + F

    mn , F

    m1n+1

    + Fm+1n 2)

  • KdV

    2-fmn = 1 + e

    1 + e2 + a12e1+2

    i(m, n) = pim qin + ci

    qi = log( + epi

    1 + epi

    ), a12 =

    ( ep1 ep21 + ep1+p2

    )2

    pi = ePi/ , qi = eQi/ , ci = eCi/ , = e2/

    2-

    Fmn = max(0, S1, S2, S1 + S2 A12),

    Si(m, n) = Pim Qin + Ci

    Qi =12(|Pi + 1| |Pi 1|), A12 = |P1 + P2| |P1 P2|

    KdV

  • KdV 2-

    Fmn = max(0, 3m n,m n + 1, 4m 2n 1),Umn =F

    mn+1 + F

    m+1n Fmn F

    m+1n+1

    file:///Users/naoya/Desktop/MyWork/%E6%95%B0%E7%90%86%E4%BA%BA%E3%82%BB%E3%83%9F%E3%83%8A%E3%83%BC/20161215_%E9%95%B7%E4%BA%95%E3%81%95%E3%82%93/%E3%82%B9%E3%83%A9%E3%82%A4%E3%83%88%E3%82%99/./movie/uKdV1movie.AVI

  • !

    !

    !

    !

    ! max!

    !

  • !

    ! Plucker

    2

    det[a bc d

    ]= adbc.

    3

  • !

    !

    !

    !

    !

    !

  • !

    !

    !

    !

    !

    !

  • UP

    2.1. (UP)

    N A = [aij]1i,jN A(UP) . (D. Takahashi, R. Hirota, Ultradiscrete Soliton Solution ofPermanent Type, J. Phys. Soc. Japan, 76 (2007) 104007104012)

    up[A] maxSN

    1iNaii

    maxSN N = (1, 2, . . . , N).

    cf)det[A]

    SN

    1iNsgn()aii

    perm[A]

    SN

    1iNaii

  • UP

    UP

    ! UP2 2 matrix

    up[a11 a12a21 a22

    ]= max (a11 + a22, a12 + a21)

    3 3 matrix

    up

    a11 a12 a13a21 a22 a23a31 a32 a33

    = max(a11 + a22 + a33, a11 + a23 + a32, a12 + a21 + a33,

    a12 + a23 + a31, a13 + a21 + a32, a13 + a22 + a31)

  • UP

    UP

    c det

    a11 a12 a13a21 a22 a33a31 a32 a33

    = det

    ca11 a12 a13ca21 a22 a33ca31 a32 a33

    (c : const.)

    det

    a11 + b1 a12 a13a21 + b2 a22 a33a31 + b3 a32 a33

    = det

    a11 a12 a13a21 a22 a33a31 a32 a33

    + det

    b1 a12 a13b2 a22 a33b3 a32 a33

    ***************************************************************************

    UP

    c + up

    a11 a12 a13a21 a22 a33a31 a32 a33

    = up

    c + a11 a12 a13c + a21 a22 a33c + a31 a32 a33

    up

    max(a11, b1) a12 a13max(a21, b2) a22 a33max(a31, b3) a32 a33

    = max

    up

    a11 a12 a13a21 a22 a33a31 a32 a33

    , up

    b1 a12 a13b2 a22 a33b3 a32 a33

  • UP

    UP det

    det[a11 + a12 a12 + a13a21 + a22 a22 + a23

    ]

    = det[a11 a12a21 a22

    ]+ det

    [a11 a13a21 a23

    ]+ det

    [a12 a13a22 a23

    ]

    ***************************************************************************

    up[max(a11, a12) max(a12, a13)max(a21, a22) max(a22, a23)

    ]

    = maxup

    [a11 a12a21 a22

    ], up

    [a11 a13a21 a23

    ], up

    [a12 a12a22 a22

    ], up

    [a12 a13a22 a23

    ]

    UP

  • UP

    UP

    ! KdV(D. Takahashi, R. Hirota, Ultradiscrete Soliton Solution of Permanent Type, J. Phys. Soc. Japan,76 (2007) 104007104012)

    !

    (H. Nagai, A new expression of a soliton solution to the ultradiscrete Toda equation, J. Phys. A:Math. Theor. 41 (2008) 235204(12pp))

    ! KP(H. Nagai and D. Takahashi, Ultradiscrete Plucker Relation Specialized for Soliton Solutions, J.Phys. A: Math. Theor. 44 (2011) 095202(18pp))

    ! hungry-Lotka Volterra(S. Nakamura, Ultradiscrete soliton equations derived from ultradiscrete permanent formulae, J.Phys. A: Math. Theor. 44 (2011) 295201(14pp))

  • UP

    KP UP

    KP

    T(l,m + 1, n) + T(l + 1,m, n + 1)= max(T(l + 1,m, n) + T(l,m + 1, n + 1) A1 + A2,

    T(l,m, n + 1) + T(l + 1,m + 1, n)) (A1 A2)

    UP (H.Nagai, arXiv:nlin:1611.09081)

    T(l,m, n) = up

    1(0) 1(1) 1(N 1)2(0) 2(1) 2(N 1)...

    .... . .

    ...N(0) N(1) N(N 1)

    i(s) = i(l,m, n, s) s l, m, n3

  • UP

    UP i(s)1 A1 A2 A3

    i(l + 1,m, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A1)i(l,m + 1, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A2)i(l,m, n + 1; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A3)

    2 j, i1, i2

    i1(s + j) + i2(s + j)

    max(i1(s + j 1) + i2(s + j + 1), i2(s + j 1) + i1(s + j + 1)

    )

    3 (1(s), 2(s), . . . , N(s))T = (s) ,0 k1 < k2 < k3 N + 1

    up[(0) (k2) (N)] + up[(0) (k1) (k3) (N + 1)]

    = max(

    up[(0) (k3) (N)] + up[(0) (k1) (k2) (N + 1)]

    up[(0) (k1) (N)] + up[(0) (k2) (k3) (N + 1)])

  • UP

    KP

    (x, y, t) = det

    f1 f 1 f(N1)1

    .

    .

    ....

    . . ....

    fN f N f(N1)N

    fj = fj(x, y, t)fjy =

    2 fjx2,

    fjt =

    3 fjx3.

    KP

    112

    (4x 4x3x + 32xx) 13(xt xt ) +

    14(yy 2y) = 0

    Plucker n = 3

    |a1 . . . aN2 b1 b2| |a1 . . . aN2 b3 b4||a1 . . . aN2 b1 b3| |a1 . . . aN2 b2 b4|+|a1 . . . aN2 b1 b4| |a1 . . . aN2 b2 b3| = 0

  • UP

    KP

    (l,m, n) = det

    1(0) 1(1) 1(N 1)...

    .

    .

    .. . .

    .

    .

    .N(0) N(1) N(N 1)

    j(s) = j(s; l,m, n)

    .

    KP

    a1(a2 a3)(l + 1,m, n)(l,m + 1, n + 1)+a2(a3 a1)(l,m + 1, n)(l + 1,m, n + 1)+a3(a1 a2)(l,m, n + 1)(l + 1,m + 1, n) = 0

    Plucker n = 3

    |a1 . . . aN2 b1 b2| |a1 . . . aN2 b3 b4||a1 . . . aN2 b1 b3| |a1 . . . aN2 b2 b4|+|a1 . . . aN2 b1 b4| |a1 . . . aN2 b2 b3| = 0

  • UP

    KPKP UP

    T(l,m, n) = up

    1(0) 1(1) 1(N 1)...

    .

    .

    .. . .

    .

    .

    .N(0) N(1) N(N 1)

    KP

    T(l,m + 1, n) + T(l + 1,m, n + 1)

    = max(T(l + 1,m, n) + T(l,m + 1, n + 1) A1 + A2,

    T(l,m, n + 1) + T(l + 1,m + 1, n))

    (A1 > A2)

    3

    up[(0) (k2) (N)] + up[(0) (k1) (k3) (N + 1)]

    = max(

    up[(0) (k3) (N)] + up[(0) (k1) (k2) (N + 1)]

    up[(0) (k1) (N)] + up[(0) (k2) (k3) (N + 1)])

  • UP

    1, 2

    i(s) 1 i N

    i(l + 1,m, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A1)i(l,m + 1, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A2)i(l,m, n + 1; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A3)

    T(l + 1,m, n) 2N

    ex) N = 2

    T(l + 1,m, n) = up[1(l + 1; 0) 1(l + 1; 1)2(l + 1; 0) 2(l + 1; 1)

    ]

    = max(up

    [1(0) 1(1)2(0) 2(1)

    ], up

    [1(1) 1(1)2(1) 2(1)

    ] A1,

    up[1(0) 1(2)2(0) 2(2)

    ] A1, up

    [1(1) 1(2)2(1) 2(2)

    ] 2A1

    )

  • UP

    2

    i(s) 1 i1, i2 N 2i1(s + j) + i2(s + j)

    max(i1(s + j 1) + i2(s + j + 1), i2(s + j 1) + i1(s + j + 1)

    )

    up[1(s + 1) 1(s + 1)2(s + 1) 2(s + 1)

    ] up

    [1(s) 1(s + 2)2(s) 2(s + 2)

    ]

    UP

    ex) N = 2

    T(l + 1,m, n, s)

    = max(up

    [1(0) 1(1)2(0) 2(1)

    ], up

    [1(0) 1(2)2(0) 2(2)

    ] A1, up

    [1(1) 1(2)2(1) 2(2)

    ] 2A1

    )

  • UP

    UP i(s)1 A1 A2 A3

    i(l + 1,m, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A1)i(l,m + 1, n; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A2)i(l,m, n + 1; s) = max(i(l,m, n; s), i(l,m, n; s + 1) A3)

    2 j, i1, i2

    i1(s + j) + i2(s + j)

    max(i1(s + j 1) + i2(s + j + 1), i2(s + j 1) + i1(s + j + 1)

    )

    3 (1(s), 2(s), . . . , N(s))T = (s) ,0 k1 < k2 < k3 N + 1

    up[(0) (k2) (N)] + up[(0) (k1) (k3) (N + 1)]

    = max(

    up[(0) (k3) (N)] + up[(0) (k1) (k2) (N + 1)]

    up[(0) (k1) (N)] + up[(0) (k2) (k3) (N + 1)])

  • UP

    1 Theorem

    The UP solution to the uKP equation is given by

    T(l,m, n) = up

    1(0) 1(1) 1(N 1)2(0) 2(1) 2(N 1)...

    .... . .

    ...N(0) N(1) N(N 1)

    i(l,m, n, s)

    = max(Pis + max(0, Pi A1)l + max(0, Pi A2)m + max(0, Pi A3)n + Ci ,

    Pis + max(0,Pi A1)l + max(0,Pi A2)m + max(0,Pi A3)n + C i)

    where Pi , Ci and C i are arbitrary parameters.(H.Nagai and D.Takahashi,J.Phys.A Math. Theor. 44(2011))

  • UP

    2

    Theorem

    The UP solution to the uKP equation is given by

    T(l,m, n) = up

    1(0) 1(1) 1(N 1)2(0) 2(1) 2(N 1)...

    .... . .

    ...N(0) N(1) N(N 1)

    i(l,m, n, s) = max(Ci1 + P1s + max(0, P1 A1)l + max(0, P1 A2)m + max(0, P1 A3)n,Ci2 + P2s + max(0, P2 A1)l + max(0, P2 A2)m + max(0, P2 A3)n,Ci3 + P3s + max(0, P3 A1)l + max(0, P3 A2)m + max(0, P3 A3)n

    )

    where Cij and Pj are arbitrary parameters. (H.Nagai, arXiv:nlin:1611.09081)

  • UP

    KP KPUP

    !

    ! max-plus

  • UP

    ! 31-32!

    ! 2012,(http://gcoe-mi.jp/english/temp/publish/132702cf8b5f107c34bcc3c5077464ff.pdf)

    !

    !

    ! B. Grammaticos, Y. Kosmann-Schwarzbach, and T. Tamizhmani(Eds.), Discrete Integrable Systems, Lecture Notes in Physics,Springer

    ! Peter Butkovic, Max-linear Systems: Theory and Algorithms,Springer

    wigUgU

    Up[}lg`UPUp[}lg


Recommended