+ All Categories
Home > Documents > Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379...

Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379...

Date post: 18-Mar-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
14
541 Index a Abbott i-STAT analyzer 14 acid-nitrile exchange reaction 356, 357 adaptive packed-bed microfluidic process optimization 364 adhesive bonding 127 affinity-based CTC enrichment CTC-Chip 243 CTC-iChip 244–245 CTC subpopulation sorting 247 GEDI 243–244 GO chip 246–247 HB-chip 244 HTMSU 245–246 NanoVelcro rare cell assays 246 OncoBean Chip 246 Ag@ZnO composites 459, 460 alternating current (AC) voltammetry 213 aluminophosphate material 480 amino acids 273 amperometric protocol 216–219 anisotropic microparticle formation 397 anodic bonding 119 ApoStream (ApoCell) 252 Applied Biosystems SOLiDTM system 301 aptamer 266 Archimedes number 50 ascaridole synthesis 362 atto594-labeled 20-oligmer nucleotide 289 Atwood number 51 Au core–shell composites 457, 459 Au core–shell magnetic-plasmonic composites 466 Auto ChIP platform 284 b Bernoulli’s equation 44 -galactosidase ( -gal) 289 BIA-core microfluidic platform 522 bio-MOF capsules 484 biomarker proteins 261 Biot number 54 biphasic interfacial MOF synthesis 485 blood 313 Blue Gene/L system 166 B220 marker 291 Bond number/Eötvös number 51 bonding process 117–119 Brinkman number 55 Brownian diffusion 314 c capacitive sensing 195 capillary effects 63 capillary electrochromatography (μ-CEC) 223 capillary number (Ca) 50, 377 capped gold nano-slit surface plasmonic resonance (SPR) sensor 267 carbon monoxide (CO) 367 carbon paste electrode (CPE) 218 carbon supported composite synthesis 461–463 carbonylation Sonogashira reaction 367 Microfluidics: Fundamentals, Devices and Applications, First Edition. Edited by Yujun Song, Daojian Cheng, and Liang Zhao. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.
Transcript
Page 1: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

541

Index

aAbbott i-STAT analyzer 14acid-nitrile exchange reaction 356, 357adaptive packed-bed microfluidic

process optimization 364adhesive bonding 127affinity-based CTC enrichment

CTC-Chip 243CTC-iChip 244–245CTC subpopulation sorting 247GEDI 243–244GO chip 246–247HB-chip 244HTMSU 245–246NanoVelcro rare cell assays 246OncoBean Chip 246

Ag@ZnO composites 459, 460alternating current (AC) voltammetry

213aluminophosphate material 480amino acids 273amperometric protocol 216–219anisotropic microparticle formation

397anodic bonding 119ApoStream (ApoCell) 252Applied Biosystems SOLiDTM system

301aptamer 266Archimedes number 50ascaridole synthesis 362atto594-labeled 20-oligmer nucleotide

289Atwood number 51Au core–shell composites 457, 459

Au core–shell magnetic-plasmoniccomposites 466

Auto ChIP platform 284

bBernoulli’s equation 44𝛽-galactosidase (𝛽-gal) 289BIA-core microfluidic platform 522bio-MOF capsules 484biomarker proteins 261Biot number 54biphasic interfacial MOF synthesis 485blood 313Blue Gene/L system 166B220 marker 291Bond number/Eötvös number 51bonding process 117–119Brinkman number 55Brownian diffusion 314

ccapacitive sensing 195capillary effects 63capillary electrochromatography

(μ-CEC) 223capillary number (Ca) 50, 377capped gold nano-slit surface plasmonic

resonance (SPR) sensor 267carbon monoxide (CO) 367carbon paste electrode (CPE) 218carbon supported composite synthesis

461–463carbonylation Sonogashira reaction

367

Microfluidics: Fundamentals, Devices and Applications, First Edition.Edited by Yujun Song, Daojian Cheng, and Liang Zhao.© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

Page 2: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

542 Index

carboxylate-based MOFs 481casein kinase I 353catalytic hydrogenation 366catechol 213catheter-based intravascular drug

deliveryparticle hemodynamics 331–332tissue heat and mass transfer

332–333CD31 protein 287CdSe/ZnS composite synthesis 456Ce-BDC MOF 487cell-based assays 11–14cell detection 269–272centrifuge number 51ceramic based microfluidic devices

519CFD-ACE+ software 162CFX Expression Language (CEL) 162CFX software 162–164Chapman–Enskog theory 30chip-based microfluidic reactor

advantages 363for organic synthesis 360–363

chip-based simple programmedmicrofluidic processes(C-SPMPs) 412, 452

chromatin immunoprecipitation (ChIP)283

circle-to-circle amplification (C2CA)281

circulating tumor cells (CTCs)CellSearch platform 238CTC-chip 243CTC-iChip 244–245CTC subpopulation sorting 247deterministic lateral displacement

250dielectrophoresis and

acoustophoresis 251–252epithelial to mesenchymal transition

241GEDI 243–244GO chip 246–247herringbone chip 244HTMSU 245–246

isolation by size of epithelial tumorcells (ISET) 238

limitations 253microfluidic devices 239microfluidic filtration 249–250microfluidic spiral separation

250–251multiorifice flow fractionation 251NanoVelcro rare cell assays 246OncoBean Chip 246polydimethylsiloxane 238screening for early cancer detection

238(SWOG) S0500 clinical trial 239synthetic DNA/RNA oligonucleotide

ligands 241vortex platform 251

closed DMF systems 179clotrimazole amorphous drug 356Co@Au nanoparticles 434, 436coaxial microfluidic reactors 487cobalt (Co) nanocrystal synthesis 422,

423coflowing microfluidics 379coiled tubing microreactor, for organic

synthesis 356–360color function volume-of-fluid

(CF-VOF) method 156compact disc (CD)-based microfluidic

device 10complex microparticle formation 380composites

description 445formation mechanism 445, 451–452preparation, see microfluidic process

composites computational fluid-particledynamics (CF-PD) 319

computational fluid dynamics (CFD)160–161

computational microfluidics 528ferrofluid dynamics 315flow through porous media 316–317fluid–particle dynamics modeling

313–315fluid–structure interaction 317–318governing equations 312

Page 3: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 543

intravascular drug delivery, seeintravascular drug delivery

model closure 312–313nonspherical particle dynamics 316pulmonary drug delivery, see

pulmonary drug deliveryturbulence modeling 313

ComsolMultiphysics 229conductivity protocol 221–223conservative level set (C-LS) method

156contact angle saturation 183continuous flow reactors 405continuous/laminar flow 421continuum method (CM) 155–158coprecipitation method 406core alloying and shell gradient doping

strategy 414core–shell magnetic nanomaterial,

synthesis of 414–415CoSm alloy nanocrystals, IRCPM

process 423Couette flow 22C-reactive protein (CRP) 218CTC-chip 243CTC-iChip 244–245cytochrome P450 gene 283

dD-amino acids 273Damköhler number (Da) 49Deborah number 52de Broglie thermal wavelength 150dense discrete phase model (DDPM)

314DEP field-flow fractionation (DEPFFF)

device 252deterministic lateral displacement

(DLD) 250dextran-coated superparamagnetic iron

oxide (SPIO) NPs 409diamond-shaped microfluidic

aggregation chamber 155dicarboxylate MIL-88B(Fe)

crystallization, segmented flowsynthesis 482

dielectric–plasmonic composites,synthesis of 457–459

dielectrophoresis (DEP) 183dielectrophoresis and acoustophoresis

251–252diethy-laminosulfur trifluorid (DAST)

360digital microfluidic (DMF) system 5

approach 213analytical models 184chemical and biological applications

199–201chip fabrication techniques

179–181controlling and addressing the signals

197–198different electrode configurations

181–183droplet metering and dispensing

techniques 188–189droplet routing algorithms 195droplet sensing techniques 195, 196effect of the gap height 189–190electrical signals 185–188electromechanical and energy

based models 183feedback control 192–195numerical models 184prospects of portability 199, 200types 177–179

digital polymerase chain reaction(digital-PCR) 296

2,3-dihydroxybenzoic acid 2192,5-dihydroxybenzoic acid 219dimensionless numbers 377dimethylitaconate hydrogenation 364dinitro-herbicide, synthesis of 362direct drug delivery 335–338, 529direct simulation Monte Carlo method

(DSMC) 151–153direct tumor-targeting methodology

332discrete element method (DEM) 314dissipative particle dynamics (DPD)

153–155macroscopic hydrodynamic equations

154

Page 4: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

544 Index

d-leucine (d-Leu) 273, 275d-methionine (d-Met) 273, 275DNA assays 6–9dried blood spot analysis 201dripping 378DropBot 195droplet and ionic liquid assisted

microfluidic (DIM) synthesismethod 480

droplet based microreactors, magneticiron oxide based nanomaterialsynthesis 408

droplet metering and dispensingtechniques 188–189

droplet routing algorithms 195droplet sensing techniques 195, 196drug–aerosol dynamics 322–323dry etching method 117dry powder inhaler (DPI) 319

eEckert number 55E. coli lac-Z gene expression pattern

289Ekman number 52electrical signals, DMF

effect of changing frequency187–188

types of signals 185–186electrochemical analysis

amperometric protocol 216–219conductivity protocol 221–223microjet electrode 224–225multiplexed microchannels 225numerical models 226–229potentiometric protocol 219–220rotating microdroplet 223–224voltammetric analysis 212–215

electrode design 181electrokinetic methods

electroosmosis flows 76external-operated electric field 79Helmholtz–Smoluchowski formula

79induced-charge electrokinetic (ICEK)

flows 80

solid–fluid interface 77, 79time scale 80water and aqueous electrolytic

solution 78electromechanical and energy-based

models 183electrowetting manipulation 11electrowetting-on-dielectric (EWOD)

principle 5enhanced condensational growth (ECG)

aerosol delivery method 326enhanced deeper lung delivery of drug

aerosols via condensationalgrowth 326

Entamoeba histolytica antigenEHI_115350 262

enzyme immunoassays 214enzyme-linked immunosorbent assay

(ELISA) platform 261epidermal growth factor receptor

(EGFR) 286Euler–Euler approach 314Euler–Lagrange approach 314Euler number 52

ffabrication process techniques

3D printing technology 114semiconductor integrated circuits

(IC)/MEMS fabrication 113FactChecker CTC capture system

(Circulogix) 249Faradaic and non-Faradaic current

212(FDA)-approved clinical microdialysis

probes 272ferrofluid dynamics 315FeSn NPs 429Fick’s laws 29field-programmable gate array (FPGA)

193flash vacuum pyrolysis (FVP) protocols

357flow regime, in microfluidics

coflowing microfluidics 379dimensionless numbers 377

Page 5: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 545

flow-focusing microfluidics378–379

T-junction microfluidics 377–378flow through porous media 316–317FLOW-3D software 165–166, 184flow-focusing microfluidics 378FLOW-VU 164fluctuation–dissipation theorem 154Fluidigm dynamic arrays 300, 301fluid particles (FP) 153fluid–particle dynamics modeling

313–315fluid–structure interaction

317–318fluorescent enzymatic assay 11formyl-tetrahydrofolatesynthetase

(FTHFS) 296Fourier number 55Fourier transform (FT) algorithm

213front-tracking (FT) method 156Froude number 50

gGalileo number 52γ-Fe2O3 composites 453, 454gas–liquid reaction 365gas separation testing 497Gauss divergence theorem 156gene expression analysis

individual cell levels 280merits 305microfluidic circuits 280nucleic acid analysis 281–283protein level analysis 283–288single cell, see single cell gene

expression analysissmall cell populations 280

gene shearing technology 522Gene-Z 281Geometrically enhanced differential

immunocapture (GEDI)243–244

GO chip 246–247gold nanocrystals

shape anisotropy 426

sharp-edged 427optical absorbance spectra 427

Graetz number 52graft polymers

biofunctional coatings 140grafting-to technique 142SI-ATRP 137–142surface photo-grafting

polymerization 135–137graphene-polyaniline (G-PANI)

nanocomposite solution 218Grashof number (Gr) 52green fluorescent protein (GFP) reporter

284Gr-1 marker 291

hHagen number 53Hagen–Poiseuille relationship 45Hall effect 38haplotyping 293herringbone (HB)-chip 244high resolution pumping technology

521high throughput ChIP (HTChIP) device

284high-throughput microsampling unit

(HTMSU) 245–246high-T/p aminolysis reactions, for

medicine synthesis 361hollow gold nanoparticles (HGNPs)

436hollow polycrystalline MOF sphere

fabrication 486hot embossing 124human embryonic stem cells (hESCs)

286human leukocyte antigen (HLA)

296hydrodynamic voltammetry

measurements 212hydrophilic pore network models

(PNMs) 166hydrophobic organic drug fenofibrate

356hyperthermia 333

Page 6: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

546 Index

iIL-8 263Illumina HiSeq series 301IMMP approach, see interfacial

microfluidic membraneprocessing (IMMP), approach

immunoassays 9–11immunocytochemistry 286induced-charge electrokinetic (ICEK)

flows 80inhalers and drug–aerosol transport

319–322injection molding process 122–124inner MOF growth, advantages of 506inorganic alumina 501inorganic versus polymeric supports

intensification 501–504in situ rapid cooling and passivating

microfluidic (IRCPM)cobalt nanoparticle synthesis 412process 423

integrated microfluidic systems 449interface reconstruction volume-of-fluid

(IR-VOF) method 156interfacial microfluidic membrane

processing (IMMP)approach 489durability and stability of membrane

492MOF hollow fiber supported

membranes 489operating scheme 491

integrated tubular microfluidic reactor,experimental setup 415

interleukin-6 (IL-6) 11intravascular drug delivery

direct 335–338magnetic 333–335nanoparticle-based targeted drug

delivery 329–330ion-selective electrodes (ISEs) 220ion-sensing electrochemical

paper-based analytical devices(EPADs) 220

IonTorrentTM system 301, 303Ip-Do assay 292, 293

IRCPM, see in situ rapid cooling andpassivating microfluidic(IRCPM), process

isolation by size of epithelial tumor cells(ISET) 238

jJakob number 55Janus nanocomposite 469

kkinematic viscosity 23Knudsen number (Kn) 48

llab-on-a-chip (LC) 19

microfluidic reactors 360, 361silicon-based microfluidic reactors

362Laplace number 53Laplace’s law 42–44large amplitude AC voltammetry

approach 213Large-scale Atomic/Molecular

Massively Parallel Simulator(LAMMPS) 162

large-scale Scalable Parallel Short-rangeMolecular (SPASM) dynamicssoftware 166

laser ablation 124–125laser bonding 126–127laser heating 88lattice Boltzmann method (LBM)

158–160level set (LS) method 13Lewis number 55lipid-polymer composites 466, 468liquid-phase high-T/p continuous-flow

pyrolysis 357liquid–solid interface 63liquid–solid wetting 64liquids and gases, concepts of

mean free path (𝜆) 21–22viscosity (𝜇) fluids

Couette flow 22

Page 7: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 547

eddy viscosity 29in industries/engineering 23kinetic theory of gases 24laminar shear of fluid 23macroscale Couette flow device

23mass and heat transport analysis

22Newtonian fluid 27Newton’s law of viscosity 27non-Newtonian fluids 27parallel flow 23round-shaped microfluidic

channels 23shear strain rate and shear stress

28Sutherland’s constant, reference

values and 𝜉 values 25viscoelastic fluids 27viscosity of slurry 28zero viscosity 22

loop-mediated isothermal amplification(LAMP) method 281

lotus effect 64lysosomal-associated membrane protein

1 (LAMP1) 288lysosomal storage disorders (LSDs)

287

mMach number (Ma) 50Mac-1 marker 291magnetic drug delivery 333–335magnetic fields 81magnetic iron oxide-based nanomaterial

synthesiscontinuous flow synthesis 411coprecipitation method 406–411droplet-based microreactors 408electron microdiffraction pattern

408fast solvent extraction 408laminar flow technique 408polyol process 411transmission electron microscopy

408

magnetic nanomaterials 412, 414Marangoni effect 87Marangoni number 55mass conservation principle 44Maxwell–Stefan diffusion model 34Meldrum’s acid 357membrane protein 264–266mesofluidics 487metal/metal alloy materials 464–466metal-organic framework (MOF) 407,

480automated microfluidic control 486based membrane synthesis 504

IMMP approach 489inorganic versus polymeric

supports: intensification501–504

support influence 504–505description 480inner MOF growth, advantages of

506interfacial synthesis 485HF support intrinsic porosity

505post-synthetic modifications 488surface functionalities and/or

hetero-structure shells 484metallic nanocrystals, microfluidic

processcomposition controlled synthesis

434–437crystal structure controlled synthesis

422–426multi-hierarchical structure

formation 434–437size and shape controlled synthesis

426–434metallic nanomaterial 419

continuous/laminar flow 421segmented flow 421

metallic NPs 412, 414metallization 117, 128methylation, of 1-pentanol 364metoprolol 361microjet electrode 224–225micro milling 125

Page 8: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

548 Index

microelectromechanical systems(MEMS)

microfabrication 117technology 1

microfluidic(s) 405biomedical and chemical applications

1bulk micromachining processes and

substrate bonding techniques 1cell-based assays 11–14complex microfluidic systems

digital microfluidics 5electrolytic droplets 4

construction materials considerations94–95

DNA assays 6–9electrokinetic methods 76–81fabricating microfluidic devices 2fabrication, see fabrication process

techniquesheat (thermal) capacity

Brillouin scattering experiments36

Dulong–Petit law 35electron transportation/phonon

(lattice vibrations) status 36hydrogen-containing polar

molecules 36in metals 36quantum theory 35and temperature 35thermal conductivity 36, 39, 41thermal diffusivity 41thermodynamic energy state 34

immunoassays 9–11lab-on-a-chip (LC) 19liquids and gases, concepts of

individual molecular collisions 21mean free path (𝜆) 21–22viscosity (𝜇) fluids 22–29

magnetic fields 81mass and heat transfer principles

conservation of energy equation62

conservation of mass equation60–61

conservation of momentumequation 61–62

diffusion laws 56–59dimensionless numbers 47–56energy conservation (Bernoulli’s

Equation) 44–45laminar flow, in circular tube

46–47mass conservation principle

(Continuity Equation) 44Pascal’s and Laplace’s law 42–44Poiseuille’s Law 45–46

mass diffusivity (D)binary gas system 32biomass in water 33diffusion coefficient 30Fick’s laws 29gas-gas diffusivity 31of solvents 32value of constrictivity 30

MEMS technology 1mesoscopic features 20micro total-analysis systems (μ-TAS)

19mixing fluids 20numerical simulation 528optofluidic process

deformation of interface 87laser heating 88laser intensity 87light-driven manipulation, of liquid

89light-induced Marangoni effect

89light momentum 84linear liquid crystal polymer

(LLCP) 89liquid-crystal polymer

microstructures 93liquid jets 87Marangoni effect 87optical manipulation devices 83radiation pressure 87thermocapillary forcing 88TMA 91, 92

PDMS 2quantum dynamical principles 20

Page 9: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 549

surface and interfacebubble formation 66–68capillary effects 70–71Cassie–Baxter model 64droplet formation 71–74effect of surfactants 68–69energy 62features 69–70solid/liquid and liquid/liquid

interaction 63types 63

surface micromachining processes 1microfluidic approach

hydrodynamic parameters, control of380–393

phase separation 393–396spreading coefficient 397–398

microfluidic-based protein quantitation261

microfluidic cell culture system 12microfluidic cell-patterning assay 292microfluidic circuits 280microfluidic components 3–4microfluidic devices

advantages 523biomedical engineering 521bonding/sealing methods 519challenges 525chemical analysis 521design 274, 518–521flow types 518metallic nanomaterials 438potable in situ chemical detectors

521power-driving systems 518reduced dimension 526scaling and assembly 520surface properties 520

microfluidic devices fabricationhigh density micro pillar array 114material property 114nanomaterials, bulk modification of

polymers 142–143polymer fabrication process

adhesive bonding 127hot embossing 124

injection molding process122–124

laser ablation 124–125laser bonding 126–127metallization 128micro milling 125mold fabrication 122PDMS casting 122polymer patterning 119–125surface treatment 1293D printing 128–129thermal bonding 125ultrasonic bonding 127

silicon and glass fabrication processbonding process 117–119etching 117metallization 117photolithography 117

surface modificationgrafting polymers 135–142plasma treatment 132–134surfactant 134–135

microfluidic filtration 249–250microfluidic immunoassays 9microfluidic methods 292–301microfluidic MOF hollow fiber

supported membranesadvantages 489, 490interfacial microfluidic membrane

processing 489microfluidic nebulator, for organic

synthesis 355–356microfluidic oil-segmented droplet

confined MOF synthesis 481,482

microfluidic paper-based analyticaldevice (μPAD) 272

microfluidic processadvantages 420composite synthesis

pros and cons 449advantages 447

Janus nanocomposite synthesis 469lipid-polymer composite 466, 468metal and nonmetal inorganics

carbon-supported composite461–463

Page 10: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

550 Index

microfluidic process (contd.)dielectric–plasmonic composites

457–459plasmonic–semiconductor

composite 459–461metallic nanocrystals

composition controlled synthesis434–437

crystal structure controlledsynthesis 422–426

multi-hierarchical structureformation 434–437

size and shape controlled synthesis426–434

metal/metal alloy materials464–466

MOF 470–471MOF-based membranes synthesis, see

MOF-based membrane synthesisnonmetal inorganics

oxide coated multifunctionalcomposite 453–455

semiconductor-semiconductorcomposite synthesis 455–457

polymers/metal composite synthesis464, 465

spatiotemporal kinetic parameters420

microfluidic reactorsadvantage 362applicability 354description 351fine chemical and medicine synthesis

353flow chemistry 352high heat-exchanging efficiency 352hydrodynamic flow 353mass transfer 351mixing times 351

microfluidic scalability 293microfluidic spiral separation 250–251micro total analysis systems (μ-TAS)

19microtubing-based simple programmed

microfluidic processes(MT-SPMPs) 412, 452

microtubule-associated protein 1 lightchain 3 (LC3) 288

MOF, see metal-organic framework(MOF)

MOF-supported polymeric HFmembranes 505

mold fabrication 122molecular dynamics (MD) 148–149momentum diffusivity 23Morton number 51moving mesh (MM) method 156

computational fluid dynamics (CFD)160–161

continuum method (CM) 155–158direct simulation Monte Carlo

(DSMC) method 151–153dissipative particle dynamics (DPD)

153–155lattice Boltzmann method (LBM)

158–160multidrug efflux pump protein P-gp

292multifunctional microparticles, design

of, see microfluidic approachmultifunctional nanoparticles

327–328multiorifice flow fractionation (MOFF)

251multiphase flow microfluidic systems

448, 449multiphase microfluidic reactors 405multiplexed microchannels 225multipurpose batch/semi-batch reactors

351multistage multiorifice flow

fractionation (MS-MOFF) 251

nnanoliter microfluidic approach 484nanoparticle-based targeted drug

delivery 329–330NanoVelcro Rare Cell Assays 246nanoyeast single-chain variable

fragments (NYscFv) 262nebulizers 319, 321Newtonian fluid 23

Page 11: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 551

next-generation sequencingtechnologies 301–305

NH2-MIL-88B(Fe)particle size distributions 483PSD dependence with temperature

484TEM images 483

nicking enzyme assisted signalamplification assay 266

96-channel microfluidic array 289nitriles, preparation of 356N,N,N ′,N ′ tetramethyl-1,4-phenylene

diamine 213noble-metal nanocrystals 431nonaffinity-based CTC enrichment

deterministic lateral displacement250

dielectrophoresis andacoustophoresis 251–252

microfluidic filtration 249–250microfluidic spiral separation

250–251multiorifice flow fractionation 251vortex platform 251

nonspherical particle dynamics 316nucleic acid analysis 267–269,

281–283numerical simulation

CFD-ACE+ software 162CFX software 163–164FLOW-3D software 164–166LAMMPS 162large-scale Scalable Parallel

Short-range Molecular dynamicssoftware 166

models, MD 148–150Nusselt number 56, 526

ooff-the-shelf Arduino microcontrollers

199Ohnesorge number 53OncoBean Chip 246one silicon based lab-on-chip

microfluidic reactor, metoprololpreparation 361

open DMF systems 177oral squamous cell carcinomas (OSCC)

286organic synthesis

chip-based microfluidic reactor for360

coiled tubing micro-reactor for 356microfluidic nebulator for 355–356packed-bed micro-reactors for

363–356ring-shape (tube-in-tube)

microfluidic reactor for365–368

oriented attachment (OA) process 423orthoester formation 363oxide coated multifunctional composite

synthesis 453–455ozonolysis 367

ppacked-bed micro-reactors, for organic

synthesis 363–365parallel microchip capillary zone

electrophoresis (μ-CZE) 223particle absorption and translocation

328particle hemodynamics 331–332parylene 117parylene C deposited with chemical

vapor deposition system 179Pascal’s law 42–44Pd nanocrystals 431Péclet number (Pe) 49, 479permeation tests 496petal effect 64phase-field (PF) method 156pH-sensitive single-walled carbon

nanotube (SWCNT) material219

photolithography 117, 179physical coating systems 520plasma treatment 520plasmonic–semiconductor composite

synthesis 459–461platelet factor-4 (PF-4) 263Poiseuille’s law 45–46

Page 12: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

552 Index

polyadenosine (5′-AAAAAAAAAA-3′)268

polycytosine (5′-CCCCCCCCCC-3′)268

polydimethylsiloxane (PDMS) 2, 238,407

casting 122microchannel 214sealing 492substrates 175

polymer fabrication processadhesive bonding 127hot embossing 124injection molding process 122–124laser ablation 124–125laser bonding 126–127metallization 128micro milling 125mold fabrication 122PDMS casting 122polymer patterning 119–125surface treatment 1293D printing 128–129thermal bonding 125ultrasonic bonding 127

polymeric hollow fibers 501polymeric microparticles

emulsion polymerization 375functions 375

polymer patterning 119–125polymers/metal composite synthesis

464, 465polymethylmethacrylate (PMMA) chip

221polyol process 411polysulfone (PSf) hollow fiber, MOF

layers in 493porous coordination polymers (PCPs)

480porous crystalline aluminosilicates, see

zeolitesportable microplasma generation device

(MGD) 272potentiometric protocol 219–220Prandtl number (Pr) 48precursor droplet size 485

pressurized metered-doseinhaler(pMDIs) 319

printed circuit board (PCB) layers 197prostate specific antigen (PSA) 263prostate specific membrane antigen

(PSMA) 263protein analysis

membrane protein 264–266secreted proteins 261–264

protein interleukin 6 (IL-6) 263protein level analysis 283–288pseudorabies virus (PRV) gene 281PSf HF membranes 505

permeance rates of 497Pt nanoparticles 433Pt–Pd core-shell heterostructure

synthesis 465pulmonary drug delivery

drug–aerosol dynamics 322–323enhanced deeper lung delivery of

drug-aerosols via condensationalgrowth 326

inhalers and drug–aerosol transport319–322

multifunctional nanoparticles327–328

particle absorption and translocation328

shape engineering 326–327smart inhaler system methodology

325pulsed mixing method 429pure polymeric membranes 488

qQuantum theory 20, 35quorum sensing (QS) 290

rracemic sertraline imine hydrogenation

365rapid prototyping techniques 180Rayleigh number 56Rayleigh–Plateau instability 379rechargeable 3.7 V lithium ion batteries

199

Page 13: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

Index 553

Reynolds number (Re) 48, 377, 479,504

Richardson number 53Richtmyer–Meshkov instability 151Righi–Leduc effect 38ring-shape (tube-in-tube) microfluidic

reactor, for organic synthesis365–368

Roche/454 FLX 301Roche 454 pyrosequencing 301rolling circle amplification (RCA) 281Rossby number 51rotating Froude number 53rotating microdroplet 223–224Ru nanoparticles 433

sSandwich heterogeneous immunoassays

11scalable continuous MOF fabrication

486Schmidt number (Sc) 48secreted proteins 261–264secreted proteins 264segmented flow 421

synthesis, for dicarboxylateMIL-88B(Fe) crystallization482

semi batch reactors 351semiconductor-semiconductor

composite synthesis 455shape engineering 326–327Sherwood number 53silica tubular supports 501silicon and glass fabrication process

bonding process 117etching 117metallization 117

silicon-based microfluidic reactor layout360

Si/SiO2 wafer fabrication 519simple microparticle formation 380simple reduction/thermal

decomposition process 411single cell gene expression analysis

flow cytometry 288

fluorescence activated cell sorting288

flurescent in situ hybrization 288imaging 289–292microfluidic methods 292–301next generation sequencing technique

288next-generation of sequencing

technologies 301–305single phase continuous flow 405single-phase flow microfluidic system

448, 449SiO2-TiO2 composite synthesis 454sixteen-channel microchip

electrophoresis 223size dependent thermal conductivity

527slicon and glass fabrication process,

photolithography 117smart inhaler system methodology 325solvothermal method 505solvothermal synthesis 504spin coating 179spreading coefficient 397–398squeezing 378Stanton number 56Stefan number 56Stokes number 53Strouhal number (for oscillatory flow)

54surface grafting methods 520surface treatment 129surface-initiated atom transfer radical

polymerization (SI-ATRP)137–142

SWOG 0500 clinical trial 239

tTaylor–Aris’s dispersion effect 405Taylor number 54terminal phosphate-labeled fluorogenic

nucleotides (TPLFNs) 303tetrahydrocarbazole synthesis 3603D coaxial flow microreactor 4073D printing, 128–129 520thermal bonding 125

Page 14: Index [application.wiley-vch.de] · Index 545 flow-focusingmicrofluidics 378–379 T-junctionmicrofluidics 377–378 flowthroughporousmedia 316–317 FLOW-3Dsoftware 165–166,184

554 Index

time-dependent Schrödinger equation(TDSE) 150

tissue heat and mass transfer332–333

T-junction microfluidics 377TM7 16S rRNA genes 2922,4,6-trinitrotoluene (TNT) 213tubular microactuators (TMA) 92tumour-necrosis factor (TNF-𝛼) 291turbulence modeling 313

uUiO-66 nanoparticles 487ultrafine PtSn nanoparticle formation

461, 462ultrasonic bonding 127UV lithography process 122

vvascular endothelial growth factor

(VEGF) 263vascular endothelial growth factor A

(VEGFA) 286voltammetric analysis 212–215volume-of-fluid method (VOF) 160volume-of-fluid technique 184vortex platform 251vortex shedding 151

wWeber number (We) 49, 377wet chemistry method 451wet etching method 117

wetting 63whole-genome amplification (WGA)

269Wiedemann–Franz law 36Womersley number 55

xxCELLigence system 522

yyellow fluorescent protein (YFP) 289

zzeolites 479–480zeolitic imidazolate frameworks (ZIF)

480synthesis procedures 494

zero viscosity 22ZIF-7 layers

EDX mapping 496liquid-phase epitaxial step-synthesis

495ZIF-8 coating, on polymeric substrate

500ZIF-8 layers 489, 491, 492

EDX mapping 496solid precipitation 495

ZIF-8 supported membrane, microscopycharacterization of 495

ZIF-93 membranes 499zinc oxide nanoparticles covered by

polyvinyl alcohol(ZnONPs-PVA) 264


Recommended