+ All Categories
Home > Documents > IsoldeShellModelCourseforNonPractitioners: Lecture5 ... ·...

IsoldeShellModelCourseforNonPractitioners: Lecture5 ... ·...

Date post: 04-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
33
Isolde Shell Model Course for Non Practitioners: Lecture 5: Lanczos Strength Functions E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves and K. Sieja Isolde Shell Model Course for Non Practitioners ISOLDE/CERN, October 14 th -18 th , 2013
Transcript
Page 1: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Isolde Shell Model Course for Non Practitioners:Lecture 5: Lanczos Strength Functions

E. Caurier, G. Martínez-Pinedo,F. Nowacki, A. Poves and K. Sieja

Isolde Shell Model Course for Non PractitionersISOLDE/CERN, October 14th-18th, 2013

Page 2: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Slater determinant representation

We represent a Slater determinant by a machine word, where each stateis a bit (0 empty 1 occupied)

1/2 3/2 1/2- 1/2 -1/2 -3/2 1/2 3/2 1/2- 1/2 -1/2 -3/2

0 0 1 1 1 1 1 1 1 10 0

12 11 10 9 8 7 6 5 4 3 2 1

Mn

i=

Mp

0p1/2 0p3/2 0p1/2 0p3/2

≡ a†10a†9a†8a†7 b†4b†3b†2b†1|0〉

After diagonalization the eigenstates are a linear combination of Slaterdeterminants (basis states)

|Ψα〉 =∑

i

cαi |i〉

Page 3: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Computation of transition operators

We want to compute the transition matrix elements for a one-bodyoperator, O, between many body wave functions |Ψi〉 and |Ψ f 〉 obtainedfrom a shell-model diagonalization:

〈Ψ f |O|Ψi〉

One-body operator:

O =

A∑k=1

Ok ⇒ O =∑α,β

〈α|O|β〉a†αaβ

We need to compute:the value of our one body operator between single particle wavefunctions 〈α|O|β〉the one body density matrix elements 〈Ψ f |a†αaβ|Ψi〉

Page 4: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Computation of transition operators

For the evaluation of 〈α|O|β〉 one needs to know the single particlewave functions, usually harmonic oscillator.

〈α|O|β〉 =

∫d3rφ∗α(r)O(r, s, t)φβ(r)

For the one body density matrix elements (same procedure as forthe hamiltonian):

a†5a2|001011〉 = |011001〉

We can use this procedure to compute:

Electric transitions:∑

k ekrLk Yk

LMβ decay:

Fermi decay:∑

k tk±

Gamow-Teller decay:∑

k σk tk±

Page 5: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Fermi Transitions

B(F) =1

2Ji + 1

∑Mi,M f

|〈J f M f ; T f Tz f |

A∑k=1

tk±|JiMi; TiTzi〉|

2

B(F) = [Ti(Ti + 1) − Tzi(Tzi ± 1)]δJi,J f δTi,T f δTz f ,Tzi±1

Energetics:

EIAS = Qβ + sign(Tzi)[EC(Z + 1) − EC(Z) − (mn − mH)]∆EC = EC(Z + 1) − EC(Z) = 1.4136(1)Z/A1/3 − 0.91338(11) MeV

Selection rule:∆J = 0 ∆T = 0 πi = π f

Sum rule (sum over all the final states, S =∑

f |〈 f |O|i〉|2 = 〈i|O†O|i〉):

S (F) = S −(F) − S +(F) = 2Tzi = (N − Z)

For a neutron S −(F) = 1, S +(F) = 0.

Page 6: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Gamow-Teller Transitions

B(GT ) =g2

A

2Ji + 1

∑Mi,M f ,q

|〈J f M f ; T f Tz f |

A∑k=1

σkq tk±|JiMi; TiTzi〉|

2

σ±1 = ∓1√

2(σ1 ± iσ2), σ0 = σ3

B(GT ) =g2

A

2Ji + 1|〈J f ; T f Tz f ||

A∑k=1

σk tk±||Ji; TiTzi〉|

2

gA = −1.2701 ± 0.0025

Selection rule:

∆J = 0, 1 (no Ji = 0→ J f = 0) ∆T = 0, 1 πi = π f

Ikeda sum rule:

S (GT ) = S −(GT ) − S +(GT ) = 3g2A(N − Z)

For a neutron, S −(GT ) = 3g2A, S +(GT ) = 0.

Page 7: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Decay rate

β decay half-life calculation

Determine initial state |Ψi〉.

Determine all posible final states |Ψ f 〉.

Compute 〈Ψ f |O|Ψi〉

λ f =ln 2t1/2

=ln 2K

f (Q f )[B f (F) + B f (GT )]

Determine total decay rate:

λ =ln 2T1/2

=∑

f

λ f

Page 8: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Example of beta-decay: ft-value

64 30Zn00+

991.542+

1799.412+ 1910.300+

2609.450+3005.722+ 3186.801+ 3261.971 3321.8(1) 3365.961+ 3425.161+ 3795.261+

4454.21+ 4608.4(1) 4712.4(1) ~0.017

4712

<0.17

2913

0.15 210

3~0.

030460

90.1

0 3616.5

0.74 445

4.30.0

43346

2.40.2

8 2654.4

0.17 254

4.21.2

2 3795.1

0.64 280

3.71.5

9 1995.8

0.11 118

6.04.0

6 3425.0

50.5

9 2433.7

1.05 162

5.70

0.18 151

5.2419

.513.

1 3365.8

67.0

0 2374.3

52.0

8 1566.5

01.8

7 1455.8

1.25 756

.520.0

78332

20.1

3 1411.3

0.12 326

12.0

9 2270.3

90.3

0 1462

<0.13

1352

0.15 318

79.2

4 2195.2

11.8 138

7.34

5.57 127

6.54 D

3005.5

E2201

4.3M1

(+E2)

1206.2

M1+E

2261

0 E01.6

5 1617.8

E2809

1910 E0

8.08 918

.76E2

0.216

110.9

3.59 179

9.61 E2

13.65

807.86

E2+M

1

43991

.52E2

stable

1.80 ps

2.0 ps 0.95 ns

0.20 ps

0.057 ps 0.042 ps 0.4 ps 0.023 ps 0.031 ps

3.2 fs

64 31Ga ≈

33.7% 6.5

<0.6% >7.5

<0.25% >7.5

26.8% 5.22.64% 6.10.21% 7.225.3% 5.15.9% 5.73.59% 5.6

1.24% 5.5~0.13% ~6.3~0.3% ~5.8

0+ 02.630 m

QEC=7165

1521

f t1/2 =K

B(F) + B(GT ), K = 6147.0 ± 2.4 s

f (Q) phase space function.

B(F) Fermi matrix element.

B(GT ) Gamow-Teller matrix element.

Page 9: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Summary

5

10

15

0

E (

MeV

)

(Z−1,A)

+GT

0

5

10

15

20

E (

MeV

)

(Z−1,A)

(Z,A)

GT−

F

Electron capture

Beta decay

In neutron rich nuclei GT+ strength represent a small part of Ikeda sumrule (S − = 3(N − Z) + S + so S − S +). Its value is rather sensitive tomany body correlations.

For neutron rich nuclei GT− constitutes most of the Ikeda sum rule. Mostof the strength is located in a resonance with a width of several MeV andat energy: EGT − EIAS = 7.0 − 28.9(N − Z)/A MeV.

Fermi transitions only contribute to the β− direction. All the strength(N − Z) is located at the IAS state at an energy with respect of the parentstate: QIAS = ∆EC − (mn − mp)

Page 10: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Strength Function

Let Ω be an operator acting on some initial state |Ψi〉, we obtain thestate |Ω〉 = Ω|Ψi〉 whose norm is the sum rule of the operator Ω in theinitial state:

S = 〈Ω|Ω〉 = 〈Ψi|Ω†Ω|Ψi〉

Depending on the nature of the operator Ω, the state |Ω〉 belongs to thesame nucleus (if Ω is a e.m. transition operator) or to another(Gamow-Teller, nucleon transfer: a†, a, double-beta, . . . )

If the operator Ω does not commute with H, |Ω〉 is not an eigenvector ofthe system, but it can be developped in energy eigenstates, (|Eα〉):

|Ω〉 =∑α

〈Eα|Ω|Ψi〉|Eα〉, and S = 〈Ψi|Ω†Ω|Ψi〉 =

∑α

|〈Eα|Ω|Ψi〉|2

We can denote S (Eα) = |〈Eα|Ω|Ψi〉|2, the strength function (or

structure function).

Page 11: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Lanczos Strength Function

If we carry on the Lanczos procedure using |Σ〉 = Ω|Ψi〉/√

S as initialpivot.then H is again diagonalized to obtain the eigenvalues |Ei〉

U is the unitary matrix that diagonalizes H after N Lanczos iterations andgives the expression of the eigenvectors in terms of the Lanczos vectors:

U =

|E1〉 |E2〉 |E3〉 ... |EN〉

|Σ〉

|2〉|3〉::|N〉

S (Eα) = S |U(1, α)|2 = S |〈Eα|Σ〉|

2 = |〈Eα|Ω|Ψi〉|2

How good is the Strength function obtained after N iterations comparedwith the exact one?

Page 12: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Moments of a distribution

Any distribution can be characterized by the moments of thedistribution.

E = 〈Σ|H|Σ〉 =1S

∑α

Eα|〈Eα|Ω|Ψ〉|2

mn = 〈Σ|(H − E)n|Σ〉 =1S

∑α

(Eα − E)n|〈Eα|Ω|Ψ〉|2

Gaussian distribution characterized by twomoments (E, σ2 = m2)

g(E) =1

σ√

2πexp−

(E − E)2

2σ2

E

g(E

)

Page 13: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Moments of a distribution

In general we only need a finite number of momenta. We can define abasis of |α〉 states.

mn = 〈Ω|(H − E)n|Ω〉 =

N∑α

(Eα − E)n|〈α|Ω|Ψ〉|2 (∀n ≤ M)

Eα ≈ 〈α|H|α〉

With N states we can reproduce 2N moments of the distribution.

Page 14: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Lanczos Strengh Function

Lanczos method provides a natural way of determining the basis |α〉.

Initial vector |1〉 =|Ω〉√〈Ω|Ω〉

.

E12|2〉 = (H − E11)|1〉E23|3〉 = (H − E22)|2〉 − E12|1〉. . .ENN+1|N + 1〉 = (H − ENN)|N〉

−EN−1N |N − 1〉where

ENN = 〈N|H|N〉, ENN+1 = EN+1N

Each Lanczos iteration givesinformation about two new momentsof the distribution.

E11 = 〈1|H|1〉 = E

E212 = 〈1|(H − E11)2|1〉 = m2

E22 =m3

m2+ E

E223 =

m4

m2−

m23

m22

− m2

Diagonalizing Lanczos matrix after N iterations gives an approximation tothe distribution with the same lowest 2N − 1 moments.

Page 15: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 16: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 17: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 18: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 19: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 20: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 21: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 22: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 23: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 24: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution Strength Distribution

GT− Strength on 48Ca

Page 25: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution of Strength Distribution

Page 26: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution of Strength Distribution

GT− Strength on 48Ca

Page 27: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Evolution of Strength Distribution

GT− Strength on 48Ca

Page 28: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

48Ca(p,n)48Sc Strength Function

Page 29: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Quenching GTmatrix elements from beta decay

Gamow-Teller matrix elements measured on beta decay of A = 41–52nuclei:

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

R(GT) Th.

R(G

T)

Exp

.

0.770.74

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

T(GT) Th.T

(GT

) E

xp.

0.770.74

GMP et al, PRC 53, R2602 (1996)

Page 30: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Comparison with measured GT+ strength

Nucleus Uncorrelated Correlated Expt.(IPM) Unquenched Q = 0.74

48Ti 4.16 1.21 0.66 1.19 ± 20 (0.427 ± 0.108)51V 5.15 2.42 1.33 1.2 ± 0.154Fe 10.19 5.98 3.27 3.3 ± 0.555Mn 7.96 3.64 1.99 1.7 ± 0.256Fe 9.44 4.38 2.40 2.8 ± 0.358Ni 11.9 7.24 3.97 3.8 ± 0.459Co 8.52 3.98 2.18 1.9 ± 0.162Ni 7.83 3.65 2.00 2.5 ± 0.120Ne 5.0 0.55 0.30 0.35 ± 0.2

Page 31: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Where is the remaining strength?

If we write:|i〉 = α|0~ω〉 +

∑n,0

βn|n~ω〉,

| f 〉 = α′|0~ω〉 +∑n,0

β′n|n~ω〉

then

〈 f |O|i〉2 =

αα′〈0~ω|O|0~ω〉 +∑n,0

βnβ′n〈n~ω|O|n~ω〉

2

Projection of the physical wave function in the 0~ω space is Q ≈ α2

(α ≈ α′)

transition quenched by Q2.

Page 32: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Quenching Spin Operators (M1)

(P. von Neumann-Cosel et al.)

Page 33: IsoldeShellModelCourseforNonPractitioners: Lecture5 ... · IsoldeShellModelCourseforNonPractitioners: Lecture5: LanczosStrengthFunctions E. Caurier, G. Martínez-Pinedo, F. Nowacki,

Where is the remaining strength?

no-core shell-model calculations for 12C indicate that the strength maybe located at very high excitation energies.

0 50 100 150 200E (MeV)

0

0.02

0.04

0.06

0.08

GT

Str

engt

h

0

0.02

0.04

0.06

0.08

GT

Str

engt

h

4~ω

6~ω

/10

/10

67% in 0~ω states

78% in 0~ω states

0 50 100 150 200E (MeV)

0

0.1

0.2B

(M1)

(µ N2 )

0

0.1

0.2

0.3

B(M

1) (

µ N2 )

4~ω

6~ω

/10

/10

64% in 0~ω states

75% in 0~ω states


Recommended