+ All Categories
Home > Documents > Johns Hopkins Engineering

Johns Hopkins Engineering

Date post: 07-Feb-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
38
Johns Hopkins Engineering Autonomous Personal Air Vehicle (APAV) 645.800 Systems Engineering Project Bryant Tong Fall 2018 Presented December 7 th , 2018, 8:30 pm Mentor: Steve Biemer 1
Transcript

Johns Hopkins EngineeringAutonomous Personal Air Vehicle (APAV)

645.800 Systems Engineering ProjectBryant Tong

Fall 2018Presented December 7th, 2018, 8:30 pm

Mentor: Steve Biemer

1

ep.jhu.edu

Outline

2

1. Biography2. Introduction & Need for System3. Requirements4. Concept of Operations (CONOPS)5. Functional Concept6. Physical Concept7. Trade Study8. Risk Management9. Test Plan10. System Specification11. Summary of Final Concept and Further Work12. Lessons Learned13. Recommendations

ep.jhu.edu

Biography

3

§ Education§ B.S. in Mechanical Engineering (May 2014) from the University of

Maryland, College Park§ M.S. in Systems Engineering (expected 2018) from Johns Hopkins

University, Engineering for Professionals§ Experience

§ Perspecta (formerly Vencore, formerly The SI Org.) – [Aug 2014 to Oct 2018]§ Systems Engineer

§ Supported systems engineering/integration lifecycle for the acquisition of a critical Command and Control software

§ Predictive Modeling Analyst§ Analyzed detailed system and operational requirements of Geospatial Intelligence (GEOINT) systems

through the use of the modeling and simulation

§ Johns Hopkins Applied Physics Lab (APL) – [Oct 2018 to Present]§ Modeling and Simulation Analyst (FPS/KVQ)

§ Support to precision strike analysis. Modeling and analysis of radar systems and Integrated Air Defense Systems

ep.jhu.edu

Introduction & Need for System

4

§ The APAV system provides an alternative method of transportation which integrates various sensor packages with high-precision navigation in order to autonomously transport passengers and cargo

§ The need:§ Average U.S. commute times can reach up to 34.7 minutes one-way§ Number of workers with commute times ≥45 min is growing at a faster rate than

those with commute times <45 min§ Longer commutes have been seen to be linked with increased rates of obesity,

high cholesterol, high blood pressure, back and neck pain, divorce, depression and death

§ A study from the United States Department of Transportation attributes 94% of serious crashes to human choices

§ The APAV offers a fully-electric solution which helps address the rising concern of global warming and carbon emissions§ Cars and trucks account for nearly one-fifth of all U.S. emissions, emitting 24 pounds of carbon dioxide

and other global warming gases per gallon of gas

ep.jhu.edu

Requirements (1 of 2)Approach

5

§ Requirements generation approach:§ Identify top-level User/Mission Needs§ Decompose User Needs into:

§ Operational Requirements (mission and scope)§ Functional Requirements (capabilities/tasks)§ Performance Requirements (quantitative ability)§ Interface Requirements (external interfaces)§ Constraint Requirements (limitations, -ilities)

§ Each requirement written to be unambiguous, verifiable, clear, and implementation-free

§ Every requirement traceable back to User Needs

§ Identified verification methods for each requirement (inspection, analysis, demonstration, test)

User Needs

Operational Requirements

Functional Requirements

Performance Requirements

Interface Requirements

*Iterative Process

Constraint Requirements

ep.jhu.edu

Requirements (2 of 2)Sources and Stakeholders

6

§ Sources for requirements generation:§ Independent research

§ Societal Needs – Capability gaps§ Existing technologies

§ User and Stakeholder Interviews/Surveys§ System Stakeholders:

§ Daily Commuters, Federal Aviation Administration (FAA), Federal Communications Commission (FCC)

Total Quantitative % Quantitative Binary QualitativeRequirements Analysis Report 123 76 62% 31 16Functional Analysis Report 145 91 63% 37 17Trade Study 149 95 64% 37 17Conceptual Design Report 155 101 65% 37 17Test Plan 155 102 66% 37 16System Specifications 216 176 81% 40 0

ep.jhu.edu

Concept of Operations (CONOPS) (1 of 3)System OV-1

7

APAV

OtherAircraftWeather

EmergencyResponse

EnvironmentalObstructions

GPS

FederalAviationAgency(FAA)

SenseandAvoid

SenseandAvoid

EphemerisandAlmanacData

Communications(e.g.Commanding,Status,EmergencyNotification)

Communications(e.g.Coordination)

Communications(e.g.Commanding,Status,EmergencyNotification)

Communications(e.g.Commanding,Status,EmergencyNotification)

EmergencyAssistance(e.g.LandingPads,Blockades)

NationalWeatherService(NWS)

ConditionsandForecasts

SenseandAdjust

ep.jhu.edu

Concept of Operations (CONOPS) (2 of 3)Scenario: Baseline

8

Passenger(s)

EnterandActivate

GPS NWS Environment (e.g.weather,birds, trees)

EmergencyResponse FAAOther

VehiclesAPAV

EnterDestination

BuckleSafetyStraps

PerformPre-takeoffSystemChecks NotifyUserforTakeoff

TakeoffandReachCruisingAltitude

EphemerisandAlmanacData

ConditionsandForecast

EphemerisandAlmanacData

ConditionsandForecast

Sense,Avoid,andAdjust

Sense,Avoid,andAdjust

AdjustClimateControlConfigureEntertainmentSystem

EngageLandingProcedures

PowerDownExitandArriveatDestination

Sense,Avoid,andAdjustEphemerisandAlmanacData

Sense,Avoid,andAdjust

ep.jhu.edu

Concept of Operations (CONOPS) (3 of 3)Scenario: System Failure – Manual Operations

9

Passenger(s)

ComponentFailureDetected

GPS NWS Environment (e.g.weather,birds, trees)

EmergencyResponse FAAOther

VehiclesAPAV

AnomalyAlert

AnomalyAlert

Dispatchnecessaryunitsforassistance

AcknowledgeAlert

AnomalyAlert

LocateandMonitor

EphemerisandAlmanacData

LocateandMonitor

EstablishCommunications

EstablishCommunications

EngagePilotingSystem

NavigatetoLandingArea

Guidance

Guidance

ConditionsandForecast

EngageLandingGearLandVehicle

RunDiagnostics

ep.jhu.edu

Functional Concept (1 of 6)System Context Diagram

10

AutonomousPersonalAirVehicle(APAV)

Passenger(s)Cargo

EnergySources

Adversaries/Threats

FederalAviationAgencyEmergency Guidance/Commanding

ExternalNotifications/AlertsStandardsandRegulations

OtherAirborneVehicles

EmergencyResponse

GPS

PhysicalattacksCyberattacksElectronicAttacks(e.g.jamming)

Power

Weight Transportation WeightPowerOn

DestinationAddressCl imateAdjustments

SeatAdjustmentsDisplaySelection

FrequencyAdjustmentsVolumeAdjustments

VoiceCommunicationsManualFlightCommands

EnvironmentExhaustEmissionsSensorEmissionsHeatWeight

Weather(rain,wind,temperature,snow,humidity,fog)AltitudeDust/SandParticlesObstructionsWildlife

TimeandPositionData

NationalWeatherService

CurrentWeatherForecasts

WeatherAlerts/Warnings

Maintenance

SensorEmissionsPositionDataEmergency Notifications/AlertsSystemStatusVoiceCommunications

PositionDataEmergency Notifications/AlertsSystemStatusVoiceCommunications

PositionDataEmergency Notifications/AlertsSystemStatusVoiceCommunications

ExternalPositionDataExternalNotifications/AlertsEmergency Guidance/Commanding

Emergency Guidance/CommandingExternalNotifications/AlertsEmergency Aid/Supplies

FederalCommunicationsCommission

FrequencyEmissionStandardandRegulations

RadioServicesBroadcasts

Emergency Notifications/AlertsSystemStatusGuidance/CommandingVoiceCommunicationsWeatherDataandForecastsRadioBroadcastsHeating/CoolingWeightSupportSafetyFeatures

ReplacementComponentsSystemAdjustments

SystemQueriesDiagnosticsTests

FailedComponentsSystemHealthandStatusDiagnosticReport

ep.jhu.edu

Functional Concept (2 of 6)Functional Hierarchy

11

0.0Transport

Passenger(s)andCargo

1.0PerformLaunch

Operations

2.0ConductFlight

Operations

3.0PerformLanding

Operations

4.0MonitorSystem

HealthandStatus

5.0ExecuteEmergencyOperations

6.0CommunicatewithExternal

Entities

7.0ExecutePassengerCommands

8.0PerformMaintenanceOperations

1.1DetermineLocation

1.2ConfigureforTakeoff

1.3PerformLaunchSystem

Checks

1.4DetermineFlightPlan

1.5ExecuteLaunchingSequence

2.1DetermineLocation

2.2DetectSurroundings

2.3DetermineManeuver

Path

2.4PerformManeuvers

2.5ExecuteManual

Commands

3.1DetermineLocation

3.2ConfigureforLanding

3.3PerformLanding

SystemChecks

3.4ExecuteLandingSequence

3.5ConfigureforTaxiandParking

4.1MeasureSystemStatus

4.2DetermineSystemHealthandStatus

4.3DetectThreats

4.4CounterIntrusions

4.5ReportSystemStatus

5.1EvaluateTypeof

Emergency

5.2GenerateSelf-

Correction/ReconfigurationCommands

5.3GenerateEmergencyCommands

5.4DeploySafetyFeatures

6.1AcquireRFSignals

6.2ConvertAcquiredSignals

6.3OutputCommunications

6.4ConvertInputDatato

Signals

6.5TransmitRFSignals

7.1PowerOnVehicle

7.2AdjustPassengerSeat

Position

7.3AdjustIn-Cabin

Temperature

7.4DisplaySystemStatus

7.5ProcessDestinationAddress

8.1PerformSystemQueries

8.2RunDiagnosticsTesting

8.3ReleaseParts

8.4ReceiveReplacement

Parts

2.6EvaluateCurrentFlight

Status

3.6NavigatetoParkingArea

3.7EngageParking

Mechanisms

3.8PowerDown

7.6PoweronEntertainmentReceivers

7.7AdjustSystemOutput

Volumes

7.8TuneCommunicationsFrequencies

4.6SupplyPower

4.7MaintainInternal

Temperatures

7.9AdjustIn-CabinLighting

ep.jhu.edu

Functional Concept (3 of 6)Top-Level Functional Block Diagram (FBD)

12

Cargo

EnergySource

FederalAviationAgency

Emergency Guidance/CommandingEmergency Notifications/AlertsStandardsandRegulations

OtherAirborneVehicles

EmergencyResponse GPSWeight

Transportation

Environment

Heating/CoolingWeightSupport

TimeandPositionData

NationalWeatherService

CurrentWeatherDataForecastDataWeatherAlerts/Warnings

Maintenance

Replacement ComponentsSystemAdjustmentsSystemQueriesDiagnosticsTests

FailedComponentsSystemHealthandStatus

DiagnosticReport

PositionDataEmergency Notifications/AlertsSystemStatusVoiceCommunications

PositionDataEmergency Notifications/Alerts

SystemStatusVoiceCommunications

PositionDataEmergency Notifications/AlertsSystemStatusVoiceCommunications

ExternalPositionDataEmergency Notifications/Alerts

Emergency Guidance/Commanding

Emergency Guidance/CommandingEmergency Notifications/Alerts

Emergency Aid/Supplies

2.0ConductFlight

Operations

3.0PerformLanding

Operations

4.0MonitorSystem

HealthandStatus

5.0ExecuteEmergencyOperations

6.0CommunicatewithExternal

Entities

7.0ExecutePassengerCommands

8.0PerformMaintenanceOperations

PowerOnDestinationAddressClimateAdjustmentsSeatAdjustmentsDisplaySelectionFrequencyAdjustmentsVolumeAdjustments

Passenger(s)

Emergency Notifications/AlertsSystemStatusVoiceCommunicationsWeatherDataandForecastsRadioBroadcastsEmergency Guidance/Commanding

DisplayQueriesFrequencyAdjustmentsVolumeAdjustmentsPoweronEntertainment Receivers

1.0PerformLaunch

Operations

ValidatedDestinationInput

FlightPlanLaunchStatus

FlightPlanFlightStatus

Emergency Notifications/AlertsSystemHealthandStatus

Emergency Detection

ExhaustEmissionsSensorEmissionsHeat

ExhaustEmissionsSensorEmissions

HeatWeight

ExhaustEmissionsSensorEmissionsHeatWeight

EnvironmentWeather(rain,wind,temperature,

snow,humidity,fog)Altitude

Dust/SandParticlesObstructions

Wildlife

Weather(rain,wind,temperature,snow,humidity,fog)

AltitudeDust/SandParticles

ObstructionsWildlife

Weather(rain,wind,temperature, snow,humidity,fog)AltitudeDust/SandParticlesObstructionsWildlife

Passenger(s)SafetyFeatures

Emergency CommandingSelf-CorrectionCommands

Functions1.0,2.0,3.0

Power

Adversaries/Threats

PhysicalattacksCyberattacksElectronicAttacks(e.g. jamming)

RadioServices

Broadcasts

FederalCommunicationsCommission

FrequencyEmissionStandardsandRegulations

Function4.0

PositionDataSystemMeasurementsSensorMeasurements

WeatherDataForecastDataEmergencyNotifications/AlertsExternalPositionDataEmergencyGuidance/Commanding

Functions1.0,2.0,3.0 WeatherData

ForecastDataEmergencyNotifications/Alerts

VoiceCommunications

Functions1.0,2.0,3.0

ManualFlightCommands

OtherAirborneVehicles

Functions1.0,2.0,3.0

SensorEmissions

SystemHealthandStatus

SystemHealthandStatusDiagnosticResults

SystemQueriesDiagnosticsTest

AllFunctions(except4.0)

SystemAdjustmentsReplacement ComponentsReconfigurationSignals

Functions3.0-7.0

OffSignal

ep.jhu.edu

Functional Concept (4 of 6)Top-Level N2 Diagram

13

Phys icalattacks,Cyberattacks,ElectronicAttacks(e.g.jamming),Power,Time andPos i tionData,Weather(rain,wind,temperature,snow,humidity,fog),AltitudeDust/SandParticles,Obstructions,Wildlife, ManualFl ightCommands

Phys icalattacks,Cyberattacks,ElectronicAttacks(e.g.jamming),Power,Time andPos i tionData,Weather(rain,wind,temperature,snow,humidity,fog),AltitudeDust/SandParticles,Obstructions,Wildlife, ManualFl ightCommands

Phys icalattacks,Cyberattacks,ElectronicAttacks(e.g.jamming),Power,TimeandPos i tionData,Weather(rain,wind,temperature,snow,humidity,fog),AltitudeDust/SandParticles,Obstructions,Wildlife,ManualFl ightCommands

Physicalattacks,Cyberattacks,ElectronicAttacks(e.g. jamming),Power

Physicalattacks,Cyberattacks,ElectronicAttacks(e.g. jamming),Power

Phys icalattacks,Cyberattacks,ElectronicAttacks(e.g.jamming),Power, FrequencyEmissionStandardsandRegulations,Broadcasts,CurrentWeatherData,ForecastData,WeatherAlerts/Warnings, EmergencyGuidance/Commanding,EmergencyNoti f/Alerts,StandardsandRegulations,ExternalPositionData,EmergencyAid/Supplies,VoiceCommunications,

PowerOnDestinationAddressClimateAdjustmentsSeatAdjustmentsDisplaySelectionFrequencyAdjustmentsVolumeAdjustments

Replacement ComponentsSystemAdjustmentsSystemQueriesDiagnosticsTests

1.0PerformLaunchOperations

FlightPlanLaunch Status

PositionDataSystemMeasurementsSensorMeasurements

ExhaustEmissionsSensorEmissionsHeatWeight

2.0Conduct FlightOperations

FlightPlanFlightStatus

PositionDataSystemMeasurementsSensorMeasurements

ExhaustEmissionsSensorEmissionsHeat

3.0PerformLandingOperations

PositionDataSystemMeasurementsSensorMeasurements

ExhaustEmissionsSensorEmissionsHeatWeight

SystemHealthandStatus SystemHealthandStatus SystemHealthandStatus4.0Monitor SystemHealthandStatus

Emergency Detection Emergency Notif/AlertsSystemHealthandStatus

SystemHealthandStatusDiagnosticResults

Countermeasures

EmergencyCommandingSel f-CorrectionCommands

EmergencyCommandingSel f-CorrectionCommands

EmergencyCommandingSel f-CorrectionCommands 5.0ExecuteEmergency

Operations

SafetyFeatures

WeatherDataForecastDataEmergency Notif/AlertsExternalPositionDataEmergencyGuidance/Commanding

WeatherDataForecastDataEmergency Notif/AlertsExternalPositionDataEmergencyGuidance/Commanding

WeatherDataForecastDataEmergency Notif/AlertsExternalPositionDataEmergencyGuidance/Commanding

WeatherDataForecastDataEmergencyNotif/Alerts 6.0Communicatewith

ExternalEntities

EmergencyNotifi/AlertsSystemStatusVoiceCommunicationsWeatherDataandForecastsRadioBroadcastsPosition DataEmergencyGuidance/Commanding

Val idatedDestinationInput DisplayQueriesFrequencyAdjustmentsVolumeAdjustmentsPoweronEntertainmentReceivers

7.0Execute PassengerCommands

Heating/CoolingWeightSupportPower

SystemAdjustmentsReplacementComponentsReconfigurationSignals

SystemAdjustmentsReplacementComponentsReconfigurationSignals

SystemAdjustmentsReplacementComponentsReconfigurationSignals

SystemQueriesDiagnosticsTest

SystemAdjustmentsReplacementComponentsReconfigurationSignals

SystemAdjustmentsReplacementComponentsReconfigurationSignals

SystemAdjustmentsReplacementComponentsReconfigurationSignals

8.0PerformMaintenanceOperations

FailedComponentsSystemHealthandStatusDiagnosticReport

ep.jhu.edu

Functional Concept (5 of 6)Level 1 Function - 1.0. Perform Launch Operations FBD

14

1.1DetermineLocation

Environment

2.0ConductFlight

Operations

7.0ExecutePassengerCommands

ValidatedDestinationInput

FlightPlan

ExhaustEmissionsSensorEmissionsHeatWeight

Weather(rain,wind,temperature,snow,humidity,fog)AltitudeDust/SandParticlesObstructionsWildlife

1.2ConfigureforTakeoff

1.3PerformLaunchSystem

Checks

1.4.DetermineFlightPlan

1.5ExecuteLaunchingSequence

PositionData

GPS TimeandPositionData

FlightPlan

ConfigurationStatusFlightPlan

FlightPlanFlightStatus

6.0CommunicatewithExternal

Entities

WeatherDataForecastData

Emergency Notifications/AlertsExternalPositionData

Emergency Guidance/Commanding

1.0– PerformLaunchOperations

OtherAirborneVehicles

SensorEmissions4.0MonitorSystem

HealthandStatus

SystemHealthandStatusSystem

MeasurementsSensor

Measurements

4.0MonitorSystem

HealthandStatus

PositionData

EnergySource

Power

WeatherDataForecastData

Emergency Notifications/AlertsExternalPositionData

5.0ExecuteEmergencyOperations

Emergency CommandingSelf-CorrectionCommands

Passenger(s)ManualFlightCommands

LaunchStatus

Adversaries/Threats

PhysicalattacksCyberattacksElectronicAttacks(e.g. jamming)

8.0PerformMaintenanceOperations

SystemAdjustmentsReplacement ComponentsReconfigurationSignals

ep.jhu.edu

Functional Concept (6 of 6)Traceability

15

§ Traceability was maintained throughout functional analysis

Req_ID Subsystem/Category Description

Type(Binary,

Quantitative,orQualitative)

Verification_Method(I,A,T,or

D)

LinkedFunctions

SA.001 SenseandAvoid

Thesenseandavoidsubsystemshalllocatestationaryobjectswithadetectionrangeofatleast1mile.

Quantitative D Launch:[FUNC_1.5.1.1]DetectSurroundings[FUNC_1.5.2.1]DetermineManeuverPathFlight:[FUNC_2.2]DetectSurroundings[FUNC_2.2.6]DetermineManeuverPathLanding:[FUNC_3.3.5.1]EvaluateGroundSpace[FUNC_3.3.5.2]DetermineLocationwithSufficientSpace

PR.003 Propulsion Thepropulsionsubsystemshallhaveapower-to-weightratioofatleast4kW/kgpermotor.

Quantitative T [FUNC_1.5]ExecuteLaunchingSequence[FUNC_2.4]PerformManuevers[FUNC_3.4]ExecuteLandingSequence[FUNC_3.6]NavigatetoParkingArea

Function_ID Level Function_Name Linking_Req_ID0.0 0 TransportPassenger(s)andCargo1.0 1 PerformLaunchOperations

1.1 2 DetermineLocation[REQ_I.001]Thesystemshalldetermineitslocationwithanaccuracylessthanorequalto0.5metersbasedonsignalsreceivedbyGPS

1.1.1 3 AcquireGPSSignals

[REQ_O.016]ThesystemshallenablecommunicationswithintheUHF(300MHz- 3GHz)frequencyband[REQ_I.001]Thesystemshalldetermineitslocationwithanaccuracylessthanorequalto0.5metersbasedonsignalsreceivedbyGPS[REQ_I.025]Thesystemshallreceivetimingandlocationdatainnearreal-timefromGPSwithintheUHFband(300MHz- 3GHz)

1.1.2 3 ReceiveTimingandLocationData

[REQ_I.001]Thesystemshalldetermineitslocationwithanaccuracylessthanorequalto0.5metersbasedonsignalsreceivedbyGPS[REQ_I.025]Thesystemshallreceivetimingandlocationdatainnearreal-timefromGPSwithintheUHFband(300MHz- 3GHz)

Requirements to Functions Traceability

Functions to Requirements Traceability

ep.jhu.edu

Physical Concept (1 of 5)Top-Level Physical Block Diagram (PBD)

16

2.0PropulsionSubsystem

4.0VehicleStructureSubsystem

6.0Communications

Subsystem

3.0CentralControl

Subsystem

1.0SenseandAvoid

Subsystem

7.0PowerManagementSubsystem

ExternalEntity

RepeatedExternalEntity

InternalEntity

Legend

5.0UserControl

Subsystem

FAA

OtherAirborneVehicles

TwistedPairCables

RFSignals

Environment Atmosphere

ElectricalCables

Passenger(s)UserConsole(DisplayInterface,Switches,Knobs),Comm.Console,FlightControllers

GPSRFSignals,VisibleWaves

Maintenance

TestConsole,TwistedPairCables

TwistedPairCables,Electrical

Cables

CoaxialCables

TwistedPairCables

OtherAirborneVehicles

EmergencyResponse

NationalWeatherService

FederalAviationAgency

RFSignals

RFSignals

RFSignals

RFSignals

Adversaries/Threats

RFSignals

EmergencyResponse

Adversaries/Threats

DirectPhysicalContact

DirectPhysicalContact

Passenger(s)

Cargo

Seating,SafetyFeatures,Convection,LightWaves

Storage

ElectricalCables,TwistedPairCables

AllSubsystems

Housing,Fasteners(bolts,screws),

Environment DirectPhysicalContact

EnvironmentAtmosphere

TwistedPairCables

ElectricalWiring

EnergySources

ChargingCableRadioServices

RFSignals

Maintenance

UserConsole(DisplayInterface,Switches,Knobs),Comm.Console,FlightControllers

DirectPhysicalContact

AutonomousPersonalAirVehicle(APAV)RFSignals

Subsystem5.0

TwistedPairCables

ep.jhu.edu

Physical Concept (2 of 5)Top-Level N2 Diagram

17

RFSignals(positionandweatherdata)VisibleWaves

LocationandTimingDataMaintenanceQueriesMaintenanceTests

Environment(heat,rain,snow,winds,dust,sand,humidity,etc.)PassengerWeightCargoWeightAdversarialAttacks

UserInputCommands(DestinationAddressClimateAdjustmentsSeatAdjustmentsDisplaySelectionFrequencyAdjustmentsVolumeAdjustments)UserFlightCommandsUserVoiceCommunications

RFSignals(BroadcastData,Weather/ForecastData,ExternalEmergency Notif/Alerts,ExternalGuidance/Commanding,ExternalPositionData,ExternalVoiceCommunications)

ElectricalPower/Charge

1.0SenseandAvoidSubsystem

ExternalaircraftpositiondataWeatherdataEO/IRsensordetectionsSenseandavoidcomponentmeasurements

Weight RFSignals(positiondata)

2.0PropulsionSubsystem

Propulsionsubsystemsensormeasurements

Weight HeatThrust

PointingCommandsPower/FrequencyAdjustments

FlightCommands(poweroutput,speed) 3.0CentralControlSubsystem

EmergencyCommandsforsafetyunitsLandinggearcontrolcommandsWing/StabilizerCommandsWeight

SystemStatusEmergencyNotif./AlertsGuidance/Navigation

SystemStatusEmergencyNotif./AlertsLocationData

PowerDistributionCommands

SystemStatusMaintenanceresultsDatalogs/history

Housing/StructuralSupport Housing/StructuralSupport

StructurecomponentmeasurementsHousing/StructuralSupport 4.0VehicleStructure

Subsystem

Housing/StructuralSupport

Housing/StructuralSupport Housing/StructuralSupport

WeightStorageSafetyFeaturesSeatingHeating/CoolingLighting

DataRequests/QueriesFlightCommands

SeatAdjustmentsClimateAdjustmentsWeight 5.0UserControl

Subsystem

UserVoiceCommunicationsTuningAdjustments

PowerOn/OffSignals SystemStatusEmergencyNotif./AlertsGuidance/NavigationUserVoiceSignalsBroadcasts

Comm.ComponentmeasurementsExternalEmergencyNotif./AlertsExternalGuidance/Commanding

Weight ExternalVoiceCommunicationsSignalsBroadcastData 6.0CommunicationsSubsystem

RFSignals(VoiceCommunications,SystemStatus,EmergencyNotif/Alerts,LocationData)

ElectricalPower ElectricalPower ElectricalPower ElectricalPowerWeight

ElectricalPower ElectricalPower 7.0PowerManagementSubsystem

Heat

ep.jhu.edu

Physical Concept (3 of 5)Central Control Subsystem PBD

18

§ Depicts physical connections between subsystem components§ N2 diagram describes items passed between components

3.0CentralControlSubsystem3.1GPSReceiver

HW/SWCombination

3.2InertialNavigationSystemHW/SWCombination

3.3DataStorageUnit

HW3.4AircraftControlUnit

HW/SWCombination

3.5SignalDistributor

HWTwistedPairCables

RFSignalsGPS

MaintenanceTestConsole,TwistedPairCables

TwistedPairCables

AllSubsystems TwistedPairCables

4.0VehicleStructureSubsystem

7.0PowerManagementSubsystem

Housing,Fasteners(bolts,screws),

ElectricalWiringSATACable

TwistedPairCables AllSubsystems

TwistedPairCables

ExternalEntity

RepeatedExternalEntity

InternalEntity

Legend

ep.jhu.edu

Physical Concept (4 of 5)Central Control Subsystem - Aircraft Control Unit Data Flow Diagram (DFD)

19

PHYS_3.1GPSReceiver

PHYS_3.2 InertialNavigationSystem

PHYS_3.4Aircraft

ControlUnit PHYS_3.5Signal

Distributor

PHYS_1.0SenseandAvoid

Subsystem

Maintenance

GPS

PHYS_2.0PropulsionSubsystem

PHYS_4.0VehicleStructureSubsystem

PHYS_5.0UserControl

Subsystem

PHYS_6.0Communications

SubsystemPHYS_7.0PowerManagementSubsystem

PHYS_3.3Data

StorageUnit

QueriesDiagnosticsTest

DataRequestFlightCommands

EphemerisandTimingData

FUNC_2.1DetermineLocation

LocationalData

PositionalData

FUNC_2.2Detect

Surroundings

FUNC_2.3Determine

ManeuverPath

FUNC_2.4Perform

Maneuvers

FUNC_2.6EvaluateCurrent

FlightStatus

SensorMeasurements

SensorMeasurements

FUNC_4.0Monitor

SystemHealthandStatus

ComponentMeasurements

ComponentMeasurements Component

Measurements

ComponentMeasurements

ComponentMeasurements

ComponentMeasurements

Locational/PositionalData

AllReceivedandGenerated Data

ComponentMeasurementsLocational/PositionalDataSensorMeasurements

FUNC_6.3Output

Communications

PHYS_6.0Communications

Subsystem

ExternalCommunications

EmergencyNotifications/AlertsEmergencyGuidance/CommandingWeatherDataExternalPositionData

Locational/PositionalDataSensorMeasurements

Locational/PositionalDataSensorMeasurements

ManeuverPath

SystemStatusEmergency Notif./AlertsGuidance/Navigation

SystemStatusDatalogs/historyDiagnosticsResults

PHYS_2.0PropulsionSubsystem

FlightCommands

AdjustmentCommands

PropulsionCommands

PHYS_1.0SenseandAvoid

SubsystemSensorAdjustmentCommands

PHYS_3.0VehicleStructureSubsystem

PHYS_7.0Power

ManagementSubsystem

LandingGear,Wing/StabilizerCommands

PowerDistributionCommands

QueriedData

ExternalEntity

Function

Level1Component

Legend

Level2Component

Level2Repository

ep.jhu.edu

Physical Concept (5 of 5)Traceability

20

Req_ID Subsystem/Category Description

Type(Binary,

Quantitative,orQualitative)

Verification_Method

(I,A,T,orD)LinkedPhysicalComponents

SA.001 SenseandAvoid

Thesenseandavoidsubsystemshalllocatestationaryobjectswithadetectionrangeofatleast1mile.

Quantitative D [PHYS_1.1]ADS-B[PHYS_1.2]EO/IRSensors

PR.003 Propulsion Thepropulsionsubsystemshallhaveapower-to-weightratioofatleast4kW/kgpermotor.

Quantitative T [PHYS_2.1]ElectricMotors

P.015 performance Thesystemshallcomputeflightrouteswithin10secondsofreceivingadestinationaddress.

Quantitative D [PHYS_3.4]AircraftControlUnit[PHYS_3.4.3]Microprocessor[PHYS_3.4.3.1]Navigation/GuidanceSoftware

Requirements to Physical Component Traceability

Phys_ID Class Level Component_Name Linking_Req_ID1.0 Subsystem 1 SenseandAvoidSubsystem1.1 Component 2 ADS-B1.1.1 ConfigurationItem 3 ADS-BInReceiver

1.1.1.1 Part 4 Antenna

[REQ_EI.033]Thesystemshallreceiveexternalaircraftpositionaldataandweatherdatafromotherairbornevehiclesandgroundaircontrolstationsat1090MHz.

1.1.1.2 Part 4 SignalProcessor

[REQ_II.001]Thesenseandavoidsubsystemshallsendreceivedexternalaircraftpositiondatatothecentralcontrolsubsystemwithin20millisecondsofreceipt.

Physical Component to Requirements Traceability

§ Traceability was maintained throughout conceptual design

ep.jhu.edu

Trade Study (1 of 6)Introduction and Alternatives

21

§ Trade space existed for the various risk areas of the APAV, requiring the evaluation of alternatives to determine the most feasible and cost-effective solution

§ Formal trade analysis was conducted for the sense and avoid subsystem of the APAV§ Alternatives included:

§ Electro-optical/Infrared (EO/IR) Sensor Package§ Automatic Dependent Surveillance – Broadcast (ADS-B)§ Airborne Sense-and-Avoid (ABSAA) Radar§ Traffic Alert and Collision Avoidance System (TCAS II)

Example ABSAA

Basic ADS-B explanation Basic TCAS II explanation

Example EO/IR Sensor

ep.jhu.edu

Trade Study (2 of 6)Selection Criteria

22

§ Selection criteria was based on the system requirements of the APAV system and these criteria represent the major characteristics for sense and avoid capabilities§ Field of View (FOV) - the observable area of a sensor, broken down by:

§ Azimuth Range - the angle measured between the vehicle direction of travel and the projected line-of-sight (LOS) to the target

§ Minimum Elevation - the angle between the ground and the LOS to the object

§ Detection Range - the furthest distance an object could be detected§ Detection Accuracy - measurement of the error in the detection range§ Weight – weight of the system§ Power – power consumed by the system

ep.jhu.edu

Trade Study (3 of 6)Selection Criteria Traceability

23

Req_ID Description RelatedCriteria

SA.007 Thesenseandavoidsubsystemshallsenseobjectswithinanazimuthrangeofatleast± 90° referencedfromthedirectionoftravel.

AzimuthRange

SA.008 Thesenseandavoidsubsystemshallsenseobjectswithinanazimuthrangeofatleast± 90° referencedfromtheoppositedirectionoftravel.

AzimuthRange

SA.009 Thesenseandavoidsubsystemshallsenseobjectswithinaminimumelevationangleof20° orless. MinimumElevation

SA.001 Thesenseandavoidsubsystemshalllocatestationaryobjectswithadetectionrangeofatleast1mile. DetectionRange

SA.003 Thesenseandavoidsubsystemshalllocatemovingobjectswithadetectionrangeofatleast0.5miles. DetectionRange

SA.005 Thesenseandavoidsubsystemshalltrackmovingobjectswithadetectionrangeofatleast0.5miles. DetectionRange

SA.002 Thesenseandavoidsubsystemshalllocatestationaryobjectswithadetectionrangeaccuracyof+/- 1ftorless. DetectionAccuracy

SA.004 Thesenseandavoidsubsystemshalllocatemovingobjectswithadetectionrangeaccuracyof+/- 1.5ftorless. DetectionAccuracy

SA.005 Thesenseandavoidsubsystemshalltrackmovingobjectswithadetectionrangeaccuracyof+/- 1.5ftorless. DetectionAccuracy

C.012 Thesystemshallhavefulloperations(e.g.takeoff,flight,landing,detecting,communications)whileunderminimumloadingconditions(oneaveragesizedpassengerandnocargo)forarangeofatleast400milesbeforerequiringpowerreplenishment.

Weight

O.013 Thesystemshallhaveanemptyweightofnomorethan2500lbs. Weight

O.014 Thesystemshallhaveamaximumtakeoffweight(includingpassengersandcargo)of3500lbs. Weight

O.012 Thesystemshallhavefulloperations(e.g.takeoff,flight,landing,detecting,communications)whileunderminimumloadingconditions(oneaveragesizedpassengerandnocargo)forarangeofatleast400milesbeforerequiringpowerreplenishment.

Power

PR.001 Thepropulsionsubsystemshalloutputpowerofatleast260kWpermotor. Power

ep.jhu.edu

Trade Study (4 of 6)Criteria Weighting

24

§ Normalized criteria weights were generated by following the Nth-root Pair-wise comparison method

Value Meaning Definition1 EqualImportance Bothalternativescontributeequally totheobjective

3 ModerateImportance Experienceandjudgement giveaslightedge toonealternative

5 Strong Importance Experienceandjudgement strongly favoronealternative

7 VeryStrongImportance

Activity strongly favoredanditsdominance isdemonstrated inpractice

9 AbsoluteImportance Evidence favoringonealternativeishighestpossible

FOV(azim

uthrange)

FOV(m

inelevatio

n)

DetectionRa

nge

DetectionAccuracy

Weight

Power Row

ValueProducts

NthrootofRowValue

Products

NormalizedWeightingFactor

FOV(azimuth range) 1 1 2 2 3 3 36 1.817 0.269FOV(minelevation) 1 1 2 2 3 3 36 1.817 0.269DetectionRange 0.5 0.5 1 2 2 2 2 1.122 0.166

DetectionAccuracy 0.5 0.5 0.5 1 2 2 0.5 0.891 0.132Weight 0.333 0.333 0.5 0.5 1 0.5 0.013889 0.490 0.073Power 0.333 0.333 0.5 0.5 2 1 0.055556 0.618 0.091

Sum: 6.756 1.000

ep.jhu.edu

Trade Study (5 of 6)Utility Curves

25

§ Utility functions used to translate an alternative’s raw score against a criterion to a utility score

§ Curves developed according to independent research and assumed to be linear

ep.jhu.edu

Trade Study (6 of 6)Results

26

§ Based on analysis, ADS-B provided the highest operational utility and cost-effectiveness

§ Sensitivity analysis§ Set weights for each criterion to zero and reevaluated performance

§ ADS-B continued to provide the highest operational utility and cost-effectiveness

§ Further analysis§ ADS-B is heavily reliant on the factor that it only communicates with other ADS-B equipped aircraft of stations§ This limits the ability of sense and avoidance for non-aircraft entities

§ Additional analysis needed to assess potential combinations of sense and avoid systems (e.g. ADS-B with EO/IR)

Criteria Units WeightRawScore

UtilityValue

WeightedUtilityScore

RawScore

UtilityValue

WeightedUtilityScore

RawScore

UtilityValue

WeightedUtilityScore

RawScore

UtilityValue

WeightedUtilityScore

FOV(azimuthrange) [degrees] 0.269 110 0.417 0.112 180 1.000 0.269 110 0.417 0.112 180 1.000 0.269FOV(minelevation) [degrees] 0.269 15 0.700 0.188 0 1.000 0.269 30 0.400 0.108 0 1.000 0.269DetectionRange [Nmi] 0.166 5 0.025 0.004 150 0.750 0.125 10 0.050 0.008 40 0.200 0.033DetectionAccuracy [Nmi] 0.132 0.01 0.980 0.129 0.05 0.900 0.119 0.1 0.800 0.106 0.4 0.200 0.026Weight [lbs] 0.073 600 0.143 0.010 20 0.971 0.071 21 0.970 0.070 22 0.969 0.070Power [W] 0.091 27 0.979 0.089 250 0.303 0.028 50 0.909 0.083 80 0.818 0.075

TCASII

0.743

20000

0.000037

OperationalUtilityFunction(weightedsum)

Cost[$]Cost-EffectivenessSelectionFunction

(weightedsum/cost)

EO/IR ADS-B ABSAARADAR

0.534 0.879 0.487

19000 8000 21000

0.000028 0.000110 0.000023

ep.jhu.edu

Risk Management (1 of 3)Approach

27

§ Managed and followed risks throughout each phase of design§ Followed Kossiakoff approach for defining likelihood and

consequence § Total of 8 risks remain at final assessment

§ 5 Technical§ 1 Operational§ 2 Programmatic

Level Likelihood Description1 NotLikely Willeffectivelyavoidormitigate thisriskbasedonstandard

practices2 LowLikelihood Haveusuallymitigated thistypeofriskwithminimal

oversight insimilarcases3 Likely Maymitigatethis risk,butwork-aroundswillberequired4 HighlyLikely Cannotmitigate thisrisk,butadifferentapproachmight5 NearCertainty Cannotmitigate thistypeofrisk;noknownprocessesof

work-aroundsareavailable

ImpactTo:Level Performance Schedule Cost1 MinimalorNoImpact MinimalorNoImpact MinimalorNoImpact2 Minorperformanceshortfall,

sameapproachretainedAdditionalactivitiesrequired, abletomeetkeydates

Budget increaseorunitproductioncostincrease<1%

3 Moderateperformanceshortfall,butwork-aroundsavailable

Minorscheduleslip,willmissneededdates

Budget increaseorunitproductioncostincrease<5%

4 Unacceptable,butwork-aroundsavailable

Projectcriticalpathaffected Budget increaseorunitproductioncostincrease<10%

5 Unacceptable;noalternativesexist

Cannotachievekeyprojectmilestones

Budget increaseorunitproductioncostincrease>10%

ep.jhu.edu

Risk Management (2 of 3)Risk Overview

28

RiskID Type Title RiskStatement RiskDescription

Initial

Likelih

ood

Initial

Conseq

uence

Fina

lLikelih

ood

Fina

lCo

nseq

uence

R-001 T ImmatureElectronicFlightTechnologies

Ifcurrentelectronicpowersourcetechnologiesareinsufficienttosupportalloperationsofapassengeraircraft,thenthesystemmaybeunabletomeetdesiredemissionsstandardsandchangestothesystemdesignwillbeincurred.

Autonomousflighttechnologies,letalonefully-electronicautonomousflighttechnologiesarestillrelativelynewadvancedconceptsintoday'sindustry.Currenttechnologiesmaynotbesufficientinbeingabletodeployafullyelectricautonomouspassengeraircraft.

4 4 2 4

R-002 T In-FlightCollision

Ifautonomousavoidancetechnologiesareimmatureandunabletoproperlyoperateinvariousenvironmentalconditions(day,night,rain,snow,winds),thentheAPAVwillbeunabletoprovidefullautonomyandsafetytothepassengers.

Autonomousaircraftfacethepotentialofcollidingwithotherairborneobjectssuchasbirds,drones,orotherdebris.Ifanobjectcollideswiththesystem,itmaycauseasystemfailure,posingathreattothepassenger(s).

3 4 2 3

R-003 T CyberAttacksIfprotectiveandreliablenetworksecurityisnotimplementedacrossthesystem,thencyberattackscouldresultinlossofflightcontrol,lossofcommunications,andviolationofpassengersafety.

TheAPAVcontainsseveralexternalfacinginterfaceswhichcanbetargetedbycyberattacks,orotherformsofelectronicattacks(i.e.jamming).

3 5 1 4

R-004 O ElectronicAttacks

Ifelectronicattacks(e.g.jamming)aresuccessfulagainsttheAPAV,thenthesystemwillbeunabletoestablishstablecommunicationslinkswithexternalentities,leadingtoadverseimpactsonsafetyandawareness.

TheAPAVcontainsseveralexternalfacinginterfaceswhichcanbetargetedbycyberattacks,orotherformsofelectronicattacks(i.e.jamming).Successfulattackscanresultinlossofpositionaldata,lossofcommunications,andreducedsafety.

3 4 1 4

R-005 T Modularity/StandardizationIfcomponentswithinthesystemarenon-standardandunique,thenthesystemwillhavelessmodularityandrequirespecializedtoolsandhighermaintenancedetail.

TheAPAVisarelativelynewconceptwhichmayutilizenewertechnologies.Usingnewtechnologiesposesariskthatnon-standardizedpartsareusedandspecializedequipmentwillberequiredforproductionandmaintenance.

3 3 1 2

R-006 T ConstrainingPolicies,Standards,&Regulations

IfcurrentFAApoliciesandstandardsposeoverlyconstrainingrequirements,theAPAVdesignmaybeconstrainedtocertainimplementationsordesigns.

Duetothenewconceptofautonomousairtransportation,policies,standards,andregulationstomanagepersonalautonomousaircraftmaynotbefullydevelopedorinplace.Existinggovernancemaybetoorestrictiveand/ornewgovernancemayneedtobedevelopedinordertoaccommodatethisconcept.

3 4 1 4

R-007 P SocietalShifttoConcept Ifthesystemisunabletogainsocietalapprovalandtrust,thencontinueddevelopmentandproductionofthesystemwillcease.

Beinganewerconcept,electronicautonomousaircraftmayposeaffordabilityconcernstothepublic.Additionally,societymayhavedifficultytrustingthesafetyoftheautonomousaircraftandmaythereforerejectthissystem.

4 5 1 5

R-008 P On-timecompletionofCapstoneProject

Ifpersonaltasks(e.g.work,travel)takeupmoretimethananticipated,thenthecompletionofdeliverableswillbedelayed.

Giventhelargetimecommitmentofthisprojectandthecombinationofbusynessinpersonallife,Imaynotbeabletoachieveallmilestonesintheintendedtimeframe.Additionally,giventhatIhavenotgainedapprovalofmyproposalpriortothestartofthesemester,myschedulehasalreadybeensetback.

2 4 1 4

ep.jhu.edu

Risk Management (3 of 3)Risk 001 (Immature Electronic Flight Technologies) Review

29

RiskID:R-001RiskTitle:ImmatureElectronicFlightTechnologiesRiskType:Technical

RiskStatement:Ifcurrentelectronicpowersourcetechnologiesareinsufficienttosupportalloperationsofapassengeraircraft,thenthesystemmaybeunabletomeetdesiredemissionsstandardsandchangestothesystemdesignwillbeincurred.RiskDescription:Autonomousflighttechnologies,letalonefully-electronicautonomousflighttechnologiesarestillrelativelynewadvancedconceptsintoday'sindustry.Currenttechnologiesmaynotbesufficientinbeingabletodeployafullyelectricautonomouspassengeraircraft.

InitialLikelihood:4InitialConsequence:4CurrentLikelihood:2CurrentConsequence:4

Dec2018Aug2018 Sep2018 Oct2018 Nov2018

1

2 3

5

4

MitigationPlan:1. Conductresearchoncurrentlyavailableelectricaircrafttechnology2. Performtradeanalysistoidentifyfeasiblepowersourceoptionsforafully-electricpassengeraircraft3. Identifypotentialalternativestofully-electricpowersources(e.g.hybrid)4. Performadditionaltradeanalysistodeterminebestoverallsolutionforthepowersource.5. Designanddevelopmostfeasiblesolutiontomeetperformanceobjectivesandsafety

FurtherAssessment:Atthispointinthesystemdevelopment,tradestudieshavebeencarriedoutandafeasibleelectricpowersourcealternative hasbeenidentifiedtopowertheAPAV.Followingthetradestudies,requirementsweredevelopedcapturethesealternativesandensuretheproperdevelopmentofthepowersource.

1 2 3 4 5

5

4

3

2

1

ConsequenceRating

Likelihoo

d

1

4

2/3

5

ep.jhu.edu

Test Plan (1 of 2)

30

§ Scope: Describe the test and evaluation efforts needed to verify the sense and avoid capabilities of the APAV, implemented by the Sense and Avoid Subsystem and Aircraft Control Unit (ACU) of the Central Control Subsystem

§ Testing planned as three major phases:§ Phase 1 – virtual modeling and simulation§ Phase 2 – controlled environmental testing§ Phase 3 – flight testing

§ Test Objectives: Requirements verification, risk reduction (R-002 – In-Flight Collision), and technological readiness demonstration§ Success criteria and desired metrics each trace to system requirements§ All relevant requirements include a desired test result§ Example metrics include: max detection range, min detection accuracy, min avoidance

distance, max temperature, max visibility

ep.jhu.edu

Test Plan (2 of 2)

31

§ Test Environment: § Phase 1: Virtual environment, integrated development

environment (IDE)§ Phase 2: Environmental testing facility (e.g. McKinley

Climatic Laboratory)§ Phase 3: Controlled live operational environment

§ Test Equipment§ Phase 1: Computers, power supplies§ Phase 2: Weather simulators (e.g. wind, temperature, humidity, rain, snow, fog, etc.), stress

sensors (e.g. load sensor, thermometers, hygrometer, barometer), computers, detection entities, artificial signal generators, control stations, power supplies

§ Phase 3: ADS-B Out transmitters, artificial obstacles (air and ground), safety equipment (guards, nets), ground control station

§ Test Articles and Subjects§ ADS-B, EO/IR Sensors, Sensor Component Detectors,

ACU, APAV Prototype§ Flight Control S/W Developer, Senior Design Engineer,

T&E Analyst, Flight Operator, Development Technician, Emergency Response

Virtual Simulation Example

McKinley Climatic Lab F-22 Test

ep.jhu.edu

System Specification (1 of 2)Requirements Summary

32

§ Total of 216 requirements§ ~76% increase in requirements since the completion of the

Requirements Analysis Report (RAR) § Requirements added, modified, and deleted throughout the course of the

system development§ Maintained traceability throughout each phase

§ 81% of requirements are quantitative as compared to 62% at the completion of the RAR

Total Quantitative % Quantitative Binary QualitativeRequirements Analysis Report 123 76 62% 31 16Functional Analysis Report 145 91 63% 37 17Trade Study 149 95 64% 37 17Conceptual Design Report 155 101 65% 37 17Test Plan 155 102 66% 37 16System Specifications 216 176 81% 40 0

ep.jhu.edu

System Specification (2 of 2)Key Performance Parameters (KPPs)

33

Req_ID Description Rationale

Type(Binary,

Quantitative,orQualitative)

VerificationMethod

(I,A,T,orD)

C.001 Thesystemshallhaveanoperationalavailabilityofatleast0.9999. Usersexpectahighlevelofsystemeffectivenessandhaveaneedforthesystemtobereadilyavailableasatransportvehicle.

Quantitative A

C.002 ThesystemshallhaveaMeanTimeToFailure(MTTF)ofatleast400,000traveledmiles.

Roadvehiclestypicallylastaround200,000miles.GiventhesystemtravelsthroughairtheMTTFwasdeterminedtobehigher.MTTFmeasuredinunitsofmilestraveledinsteadoftime.

Quantitative A

C.003 Thesystemshallhaveafaultdetectionrateofatleast99%. Safetyisalargeconcerntocommuters;theautonomyofthevehiclemustalsoincludeself-detectionofanomalies.

Quantitative T

F.001 Thesystemshallconductfullyautonomoussense,avoid,andmaneuveringduringflightthroughdayandnightconditions.

AmainobjectiveoftheAPAVistoprovideautonomyandminimizetheneedforhumancontribution.Thesystemshouldbeoperableindayornightconditions.

Binary D

F.009 Thesystemshalltransportpassengersandcargowithtraveltimesatleast20%fasterthanapersonalroadvehiclewouldachieveoverthesamedistance.

Amajorobjectiveofthesystemistoprovideafastermodeoftransportationtocommuters.

Quantitative A

P.014 Thesystemshalldeployemergencysafetyfeatureswithin0.1secondsofdetectingacriticalfault.

Safetyisalargeconcerntocommuters;safetyfeaturesmustbepresenttokeepinjuriesataminimum.

Quantitative D

O.012 Thesystemshallhavefulloperations(e.g.takeoff,flight,landing,detecting,communications)whileunderminimumloadingconditions(oneaveragesizedpassengerandnocargo)forarangeofatleast400milesbeforerequiringpowerreplenishment.

Asanairvehicle,thissystemisexpectedtoprovideatleastthesamerangeasatypicalroadvehicleononetankofgas(averagetanksizeis16gallonsandaveragempgis24.7)

Quantitative D

O.020 Thesystemshallenableoperationsundervariousenvironmentalconditions,toinclude:i.Altitudesrangingfromatleast0to40,000ft abovesealevelii.Rainfallofatleastmoderateintensity(0.4inchesperhour)iii.Temperaturesrangingfromatleast-20°Fto130°Fiv.Humidityrangingfrom0%to100%v.SnowfallofatleastCategory1ontheNESISscale(byNOAA)vi.Windsuptoatleast50knots,steadywinds up toatleast40knots,

andgustspreadsuptoatleast15knotsvii.Visibilities of0.5statutemilesorlessduringthedayviii.Visibilitiesof1statutemileorlessduringthenightix.Sandanddustconcentrationsofatleast0.5gramspermeterscubed

Airtravelissubjecttovariousenvironmentalconditionsandthesystemshouldbeabletoprovideavailabilitytothecommutersthroughthesevariousconditions.

Quantitative D

ep.jhu.edu

Summary of Final Concept and Further Work

34

§ User Needs and independent research served as the basis for the system development

§ Additional review from subject matter experts (SMEs) are needed§ Recommend the following next steps:

§ Perform additional formal trade analysis of:§ Propulsion Subsystem motors§ Power Management Subsystem batteries§ Vehicle Structure Subsystem safety features

§ Develop high-level cost estimations for projected development and manufacturing costs

§ Conduct system reviews for each major phase (based on DoD readiness events)§ System Requirements Review (SRR)§ System Functional Review (SFR)§ Preliminary Design Review (PDR)

ep.jhu.edu

Lessons Learned

35

§ Be consistent with tracking and assessing schedule§ Include extra time buffers in your schedule§ Learn a Systems Engineering tool (e.g. CORE)

§ A lot of time was spent on manually tracing between requirements, functions, and physical components

§ Much time was also spent looking for places where updates/modifications needed to be carried over

§ Systems Engineering is a team effort§ Practice proper configuration management (version control)

§ The iterative nature of SE results in many changes which should be documented for reference

ep.jhu.edu

Recommendations

36

§ If possible, consider offering an elective which teaches the use of System Engineering tools (e.g. CORE, DOORS)§ This may give students more incentive to use these tools for this course§ These tools may help students maintain consistency and traceability, as

well as improve the overall quality of work§ Send reminders to keep students motivated and thinking about this

course prior to enrolling§ Access to blackboard site is given while taking the 5th core course

(typically the mid-point of the program for most), but then the capstone course was never mentioned again

§ Getting the proposal done prior to the beginning of the course gives students more time to work on the other deliverables

ep.jhu.edu

Questions?

37

ep.jhu.edu

References

38

§ ADS-B Technologies LLC. (2018). What is ADS-B? Retrieved December 1, 2018 from website: http://www.ads-b.com/

§ Designboom. (2018). Researchers Test Cars and Planes in Extreme Weather Conditions Inside Lab. Retrieved November 4, 2018 from website: https://www.designboom.com/technology/mckinley-climatic-laboratory-07-27-2017/

§ Desjardins, J. (2018). Visualizing the Average Commute Time in U.S. States and Cities. Visual Capitalist. Retrieved August 20, 2018, from website: http://www.visualcapitalist.com/average-commute-u-s-states-cities/

§ Dronelife. (2015). NASA to Test Sense-and-Avoid Technology for Drones. Retrieved November 4, 2018 from website: https://dronelife.com/2015/06/29/nasa-to-test-sense-and-avoid-technology-for-drones/

§ Ingraham, C. (2017). The American Commute is Worse Today Than its Ever Been. Washington Post. Retrieved August 20, 2018, from website: https://www.washingtonpost.com/news/wonk/wp/2017/02/22/the-american-commute-is-worse-today-than-its-ever-been/?utm_term=.2307886f0a28

§ Kossiakoff, A. (2011). Systems Engineering Principles and Practice. Second Edition. John Wiley & Sons.

§ NAVSEA (2017). NSWC Crane Hosts Surface Electro-Optics/Infrared (EO/IR) Standards Profile Review. Retrieved December 1, 2018 from website: https://www.navsea.navy.mil/Media/News/Article/1243556/nswc-crane-hosts-surface-electro-opticsinfrared-eoir-standards-profile-review/

§ Traffic Avoidance Collision System. (2018). Wikipedia. Retrieved December 1, 2018 from website: https://en.wikipedia.org/wiki/Traffic_collision_avoidance_system

§ Union of Concerned Scientists (UCS). (2018). Car Emissions & Global Warming. Retrieved August 20, 2018 from website: https://www.ucsusa.org/clean-vehicles/car-emissions-and-global-warming#.W3tlm-hKhPY


Recommended