+ All Categories
Home > Documents > Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic...

Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic...

Date post: 12-Apr-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
113
Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED 1413 SUPA SISSA, April 2017 Jonathan Keeling Polariton and photon condensates SISSA, April 2017 1
Transcript
Page 1: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Modelling organic condensates from weak tostrong coupling

Jonathan Keeling

University of

St Andrews

FOUNDED

1413

SUPA

SISSA, April 2017

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 1

Page 2: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Condensation, Lasing, Superradiance

Atomic BEC T ∼ 10−7K

[Anderson et al. Science ’95]

Polariton Condensate T ∼ 20K

Quantum Wells"Cavity"

[Kasprzak et al. Nature, ’06]

Photon CondensateT ∼ 300K

[Klaers et al. Nature, ’10]

LaserT ∼?, < 0,∞

Superradiance transitionT ∼ 0

κ

Pump

κ

x

z

[Baumann et al. Nature ’10]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 2

Page 3: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Organic polaritons: What & Why

Why: Polariton splitting∼ 1eV � kBTRoom

In−plane momentum

Exciton

Ene

rgy

Phot

on

Examples:

Anthracene Polariton Lasing

[Kena Cohen and Forrest, Nat. Photon ’10]

Polymers (MeLPPP, TDAF)

[Plumhoff et al. Nat. Materials ’14, Daskalakis etal. ibid]

Biologically produced materials (GFP)[Dietrich et al. Sci. Adv. ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 3

Page 4: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Organic polaritons: What & Why

Why: Polariton splitting∼ 1eV � kBTRoom

In−plane momentum

Exciton

Ene

rgy

Phot

on

Examples:

Anthracene Polariton Lasing

[Kena Cohen and Forrest, Nat. Photon ’10]

Polymers (MeLPPP, TDAF)

[Plumhoff et al. Nat. Materials ’14, Daskalakis etal. ibid]

Biologically produced materials (GFP)[Dietrich et al. Sci. Adv. ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 3

Page 5: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Organic polaritons: What & Why

Why: Polariton splitting∼ 1eV � kBTRoom

In−plane momentum

Exciton

Ene

rgy

Phot

on

Examples:Anthracene Polariton Lasing

[Kena Cohen and Forrest, Nat. Photon ’10]

Polymers (MeLPPP, TDAF)

[Plumhoff et al. Nat. Materials ’14, Daskalakis etal. ibid]

Biologically produced materials (GFP)[Dietrich et al. Sci. Adv. ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 3

Page 6: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Motivation: vacuum-state strong coupling

Linear response (no pump, nocondensate): effects ofmatter-light coupling alone.

[Canaguier-Durand et al. Angew. Chem. ’13;Baumberg group]

Q1. Can ultra-strong couplingto light change:I charge distribution?I vibrational configuration?I molecular orientation?I crystal structure?

Q2. Are changes collective(√

N factor) or not?

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 4

Page 7: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Motivation: vacuum-state strong coupling

Linear response (no pump, nocondensate): effects ofmatter-light coupling alone.

[Canaguier-Durand et al. Angew. Chem. ’13;Baumberg group]

Q1. Can ultra-strong couplingto light change:I charge distribution?I vibrational configuration?I molecular orientation?I crystal structure?

Q2. Are changes collective(√

N factor) or not?

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 4

Page 8: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Motivation: Bose-Einstein condensation of photons

(Curved) microcavityOrganic R6G dye (in solvent)Thermalisation of lightCondensation at P > Pth

[Klaers et al, Nature, 2010]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 5

Page 9: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Motivation: Bose-Einstein condensation of photons

(Curved) microcavityOrganic R6G dye (in solvent)Thermalisation of lightCondensation at P > Pth

[Klaers et al, Nature, 2010]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 5

Page 10: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Motivation: Bose-Einstein condensation of photons

(Curved) microcavityOrganic R6G dye (in solvent)Thermalisation of lightCondensation at P > Pth

[Klaers et al, Nature, 2010]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 5

Page 11: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7

Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 12: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7

Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 13: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7

Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 14: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 15: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 16: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Paradigms & Models

Weakly interacting dilute Bose gas

H =

∫dd r ψ†(−µ−∇2)ψ + Uψ†ψ†ψψ

I Single field — assumes strong coupling

I Continuum model, hard to include molecular physics

7

Laser rate equationsI Emission, absorption — assumes weak coupling, lasing.

7Complex Gross-Pitaevskii/Ginzburg Landau equationsi∂tψ =

(−∇2ψ + V (r) + U|ψ|2

)ψ + i (P(ψ,n, r)− κ)ψ

I Applies to laser, condensate — fluids of light

I Continuum theory

7

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 6

Page 17: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

What kinds of modelling

Top-downI Equilibrium stat. mech.I (complex/stochastic/. . . )GPE (+

Boltzmann)→ condensateI Rate equations→ laser

Tractable microscopic toy modelsBottom up

I DFT (or quantum chemistry)→ electronic structure

I Time-dependent DFT /MD→ vibrational spectra

I FDTD/transfer-matrix→ cavity modes

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 7

Page 18: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

What kinds of modelling

Top-downI Equilibrium stat. mech.I (complex/stochastic/. . . )GPE (+

Boltzmann)→ condensateI Rate equations→ laser

Tractable microscopic toy modelsBottom up

I DFT (or quantum chemistry)→ electronic structure

I Time-dependent DFT /MD→ vibrational spectra

I FDTD/transfer-matrix→ cavity modes

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 7

Page 19: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

What kinds of modelling

Top-downI Equilibrium stat. mech.I (complex/stochastic/. . . )GPE (+

Boltzmann)→ condensateI Rate equations→ laser

Tractable microscopic toy modelsBottom up

I DFT (or quantum chemistry)→ electronic structure

I Time-dependent DFT /MD→ vibrational spectra

I FDTD/transfer-matrix→ cavity modes

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 7

Page 20: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Toy models1 Full molecular spectra electronic

structure & Raman spectrum

2 Focus on low-energy effective theory

Two-level system, HOMO/LUMOSingle DoF PES

En

erg

y

nuclear coordinate⇓

See also [Galego, Garcia-Vidal,Feist. PRX ’15]

3 Simplified archetypal model: Dicke-Holstein

Each molecule: two DoFI Electronic state: 2LSI Vibrational state: harmonic oscillator

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 8

Page 21: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Toy models1 Full molecular spectra electronic

structure & Raman spectrum

2 Focus on low-energy effective theory

Two-level system, HOMO/LUMOSingle DoF PES

En

erg

y

nuclear coordinate⇓

See also [Galego, Garcia-Vidal,Feist. PRX ’15]

3 Simplified archetypal model: Dicke-Holstein

Each molecule: two DoFI Electronic state: 2LSI Vibrational state: harmonic oscillator

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 8

Page 22: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Toy models1 Full molecular spectra electronic

structure & Raman spectrum

2 Focus on low-energy effective theory

Two-level system, HOMO/LUMOSingle DoF PES

En

erg

y

nuclear coordinate⇓

Photon

See also [Galego, Garcia-Vidal,Feist. PRX ’15]

3 Simplified archetypal model: Dicke-Holstein

Each molecule: two DoFI Electronic state: 2LSI Vibrational state: harmonic oscillator

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 8

Page 23: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Toy models1 Full molecular spectra electronic

structure & Raman spectrum

2 Focus on low-energy effective theory

Two-level system, HOMO/LUMOSingle DoF PES

En

erg

y

nuclear coordinate⇓

Photon

See also [Galego, Garcia-Vidal,Feist. PRX ’15]

3 Simplified archetypal model: Dicke-Holstein

Each molecule: two DoFI Electronic state: 2LSI Vibrational state: harmonic oscillator

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 8

Page 24: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Toy models1 Full molecular spectra electronic

structure & Raman spectrum

2 Focus on low-energy effective theory

Two-level system, HOMO/LUMOSingle DoF PES

En

erg

y

nuclear coordinate⇓

Photon

See also [Galego, Garcia-Vidal,Feist. PRX ’15]

3 Simplified archetypal model: Dicke-Holstein

Each molecule: two DoFI Electronic state: 2LSI Vibrational state: harmonic oscillator

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 8

Page 25: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Holstein-Tavis-Cummings modelModel capable of lasing & condensation

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)

+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)

]

En

erg

y

nuclear coordinate⇓

Photon

Cwik et al. EPL 105 ’14; Spano, J. Chem. Phys ’15; Galego et al. PRX ’15; Cwik etal. PRA ’16; Herrera & Spano PRL ’16; Wu et al. PRB ’16; Zeb etal. arXiv:1608.08929; Herrera & Spano arXiv:1610.04252; . . .

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 9

Page 26: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Holstein-Tavis-Cummings modelModel capable of lasing & condensation

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]

En

erg

ynuclear coordinate

Photon

Cwik et al. EPL 105 ’14; Spano, J. Chem. Phys ’15; Galego et al. PRX ’15; Cwik etal. PRA ’16; Herrera & Spano PRL ’16; Wu et al. PRB ’16; Zeb etal. arXiv:1608.08929; Herrera & Spano arXiv:1610.04252; . . .

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 9

Page 27: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Introduction and models

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 10

Page 28: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Weak coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 11

Page 29: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Photon: Microscopic Model

H =∑

m

ωma†mam +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i am + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]2D harmonic oscillatorωm = ωcutoff + mωH.O.

Incoherent processes: excitation,decay, loss, vibrationalthermalisation.Weak coupling, perturbative in g

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 12

Page 30: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Photon: Microscopic Model

H =∑

m

ωma†mam +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i am + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]2D harmonic oscillatorωm = ωcutoff + mωH.O.

Incoherent processes: excitation,decay, loss, vibrationalthermalisation.Weak coupling, perturbative in g

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 12

Page 31: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Photon: Microscopic Model

H =∑

m

ωma†mam +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i am + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]2D harmonic oscillatorωm = ωcutoff + mωH.O.

Incoherent processes: excitation,decay, loss, vibrationalthermalisation.Weak coupling, perturbative in g

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 12

Page 32: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

tru

m

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 33: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

tru

m

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 34: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 35: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 36: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 37: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Steady state populations and equilibriumRate equation: ∂tnm = −κnm + Γ(−δm)(nm + 1)N↑ − Γ(δm)nmN↓

Steady state distribution:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

Microscopic conditions for equilibrium:I Emission/absorption rate:

Γ(δ) ' 2g2 Re[∫

dte−iδt〈D†α(t)Dα(0)〉]

Dα = exp(

2λ0(bα − b†α))

I Equilibrium,→ Kubo-Martin-Schwingercondition:

〈D†α(t)Dα(0)〉 = 〈D†α(−t − iβ)Dα(0)〉 ↔ Γ(+δ) = Γ(−δ)eβδ

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

[Kirton & JK PRL ’13]Jonathan Keeling Polariton and photon condensates SISSA, April 2017 13

Page 38: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Chemical potential?

Steady state, thermalised:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

' e−βδm+βµ,

eβµ ≡N↑N↓

=Γ↑ +

∑m Γ(δm)nm

Γ↓ +∑

m Γ(−δm)(nm + 1)

Below threshold,

µ = kBT ln[Γ↑/Γ↓]

At/above threshold, µ→ δ0

[Kirton & JK, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 14

Page 39: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Chemical potential?

Steady state, thermalised:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

' e−βδm+βµ,

eβµ ≡N↑N↓

=Γ↑ +

∑m Γ(δm)nm

Γ↓ +∑

m Γ(−δm)(nm + 1)

Below threshold,

µ = kBT ln[Γ↑/Γ↓]

At/above threshold, µ→ δ0

[Kirton & JK, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 14

Page 40: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Chemical potential?

Steady state, thermalised:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

' e−βδm+βµ,

eβµ ≡N↑N↓

=Γ↑ +

∑m Γ(δm)nm

Γ↓ +∑

m Γ(−δm)(nm + 1)

Below threshold,

µ = kBT ln[Γ↑/Γ↓]

At/above threshold, µ→ δ0

[Kirton & JK, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 14

Page 41: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Chemical potential?

Steady state, thermalised:

nm

nm + 1=

Γ(−δm)N↑κ+ Γ(δm)N↓

' e−βδm+βµ,

eβµ ≡N↑N↓

=Γ↑ +

∑m Γ(δm)nm

Γ↓ +∑

m Γ(−δm)(nm + 1)

Below threshold,

µ = kBT ln[Γ↑/Γ↓]

At/above threshold, µ→ δ0

[Kirton & JK, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 14

Page 42: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Weak coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 15

Page 43: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump intensity

Consider effects of pump profile, Γ↑(r) =Γ↑ exp

(−r2/2σ2

p)

(2πσ2p)d/2

Experiments: [Marelic & Nyman, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 16

Page 44: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump intensity

Consider effects of pump profile, Γ↑(r) =Γ↑ exp

(−r2/2σ2

p)

(2πσ2p)d/2

Experiments: [Marelic & Nyman, PRA ’15]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 16

Page 45: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Modelling spatial profile.

Gauss-Hermite modes:I(r) =

∑m nm|ψm(r)|2

Use exact R6G spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Sp

ectr

um

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Varying excited density – differential coupling to modes

∂tnm = −κnm + Γ(−δm)Om(nm + 1)− Γ(δm)(ρM −Om)nm

Om =

∫drρ↑(r)|ψm(r)|2, ρ↑ + ρ↓ = ρM

∂tρ↑(r) = −Γ↓(r)ρ↑(r) + Γ↑(r)ρ↓(r))

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 17

Page 46: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Modelling spatial profile.

Gauss-Hermite modes:I(r) =

∑m nm|ψm(r)|2

Use exact R6G spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Sp

ectr

um

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Varying excited density – differential coupling to modes

∂tnm = −κnm + Γ(−δm)Om(nm + 1)− Γ(δm)(ρM −Om)nm

Om =

∫drρ↑(r)|ψm(r)|2, ρ↑ + ρ↓ = ρM

∂tρ↑(r) = −Γ↓(r)ρ↑(r) + Γ↑(r)ρ↓(r))

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 17

Page 47: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Modelling spatial profile.

Gauss-Hermite modes:I(r) =

∑m nm|ψm(r)|2

Use exact R6G spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Sp

ectr

um

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Varying excited density – differential coupling to modes

∂tnm = −κnm + Γ(−δm)Om(nm + 1)− Γ(δm)(ρM −Om)nm

Om =

∫drρ↑(r)|ψm(r)|2, ρ↑ + ρ↓ = ρM

∂tρ↑(r) = −Γ↓(r)ρ↑(r) + Γ↑(r)ρ↓(r))

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 17

Page 48: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Modelling spatial profile.

Gauss-Hermite modes:I(r) =

∑m nm|ψm(r)|2

Use exact R6G spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Sp

ectr

um

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Varying excited density – differential coupling to modes

∂tnm = −κnm + Γ(−δm)Om(nm + 1)− Γ(δm)(ρM −Om)nm

Om =

∫drρ↑(r)|ψm(r)|2, ρ↑ + ρ↓ = ρM

∂tρ↑(r) = −Γ↓(r)ρ↑(r) + Γ↑(r)ρ↓(r))

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 17

Page 49: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump: below threshold

Far below threshold:I If κ� ρMΓ(δm),

nm

nm + 1' e−βδm ×

∫dr

1ρM

ρ↑(r)|ψm(r)|2

Resulting profile, I(r) =∑

m nm|ψm(r)|2

0

0.5

1

0 5 10 15

I(r)

/I(0

)

r/lHO

I(r)Boltzmann

0

0.5

1

Γ↑(r

)/Γ

↑(0

)

Pump shape

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

σcl

ou

d/l

HO

σpump/lHO

σcloudσpump

σT

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 18

Page 50: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump: below threshold

Far below threshold:I If κ� ρMΓ(δm),

nm

nm + 1' e−βδm ×

∫dr

1ρM

ρ↑(r)|ψm(r)|2

Resulting profile, I(r) =∑

m nm|ψm(r)|2

0

0.5

1

0 5 10 15

I(r)

/I(0

)

r/lHO

I(r)Boltzmann

0

0.5

1

Γ↑(r

)/Γ

↑(0

)

Pump shape

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

σcl

ou

d/l

HO

σpump/lHO

σcloudσpump

σT

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 18

Page 51: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump: below threshold

Far below threshold:I If κ� ρMΓ(δm),

nm

nm + 1' e−βδm ×

∫dr

1ρM

ρ↑(r)|ψm(r)|2

Resulting profile, I(r) =∑

m nm|ψm(r)|2

0

0.5

1

0 5 10 15

I(r)

/I(0

)

r/lHO

I(r)Boltzmann

0

0.5

1

Γ↑(r

)/Γ

↑(0

)

Pump shape

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

σcl

ou

d/l

HO

σpump/lHO

σcloudσpump

σT

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 18

Page 52: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump: below threshold

Far below threshold:I If κ� ρMΓ(δm),

nm

nm + 1' e−βδm ×

∫dr

1ρM

ρ↑(r)|ψm(r)|2

Resulting profile, I(r) =∑

m nm|ψm(r)|2

0

0.5

1

0 5 10 15

I(r)

/I(0

)

r/lHO

I(r)Boltzmann

0

0.5

1

Γ↑(r

)/Γ

↑(0

)

Pump shape

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

σcl

ou

d/l

HO

σpump/lHO

σcloudσpump

σT

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 18

Page 53: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Spatially varying pump: below threshold

Far below threshold:I If κ� ρMΓ(δm),

nm

nm + 1' e−βδm ×

∫dr

1ρM

ρ↑(r)|ψm(r)|2

Resulting profile, I(r) =∑

m nm|ψm(r)|2

0

0.5

1

0 5 10 15

I(r)

/I(0

)

r/lHO

I(r)Boltzmann

0

0.5

1

Γ↑(r

)/Γ

↑(0

)

Pump shape

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16σ

clo

ud/l

HO

σpump/lHO

σcloudσpump

σT

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 18

Page 54: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Near threshold behaviour

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

Large spot, σp � lHO

“Gain saturation” at centreSaturation of f (r) = 1/(1 + e−βµ) — spatial equilibriation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 19

Page 55: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Near threshold behaviour

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

Large spot, σp � lHO

“Gain saturation” at centreSaturation of f (r) = 1/(1 + e−βµ) — spatial equilibriation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 19

Page 56: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Near threshold behaviour

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

Large spot, σp � lHO

“Gain saturation” at centreSaturation of f (r) = 1/(1 + e−βµ) — spatial equilibriation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 19

Page 57: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Near threshold behaviour

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

Large spot, σp � lHO

“Gain saturation” at centreSaturation of f (r) = 1/(1 + e−βµ) — spatial equilibriation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 19

Page 58: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Near threshold behaviour

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

Large spot, σp � lHO

“Gain saturation” at centreSaturation of f (r) = 1/(1 + e−βµ) — spatial equilibriation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 19

Page 59: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 20

Page 60: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling: One excitation subspace

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Strong coupling: fate of spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Photon

Exciton

Restrict, a†a +∑

i σ+i σ−i = 1.

Questions:I Competition of g

√N vs ωv ,

ωvλ20

I Scaling with N

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 21

Page 61: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling: One excitation subspace

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Strong coupling: fate of spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Photon

Exciton Restrict, a†a +∑

i σ+i σ−i = 1.

Questions:I Competition of g

√N vs ωv ,

ωvλ20

I Scaling with N

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 21

Page 62: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling: One excitation subspace

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Strong coupling: fate of spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Photon

Exciton Restrict, a†a +∑

i σ+i σ−i = 1.

Questions:I Competition of g

√N vs ωv ,

ωvλ20

I Scaling with N

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 21

Page 63: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling: One excitation subspace

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Strong coupling: fate of spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Photon

Exciton Restrict, a†a +∑

i σ+i σ−i = 1.

Questions:I Competition of g

√N vs ωv ,

ωvλ20

I Scaling with N

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 21

Page 64: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling: One excitation subspace

H = ωa†a +N∑

i=1

[ωXσ

+i σ−i + g

(σ+i a + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Strong coupling: fate of spectrum

0

0.2

0.4

0.6

0.8

1

-400 -200 0 200 400

Spec

trum

δ=ω - ωZPL

Γ(-δ)Γ(δ)

Photon

Exciton Restrict, a†a +∑

i σ+i σ−i = 1.

Questions:I Competition of g

√N vs ωv ,

ωvλ20

I Scaling with N

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 21

Page 65: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 66: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 67: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 68: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 69: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 70: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution

Vibrational Wigner function:

W (x ,p) =

∫dy〈x + y/2|ρ|x − y/2〉ieiyp,

(bi + b†i√

2

)|x〉i = x |x〉i

Conditioned on Photon |P〉/Exciton at i , |X 〉i /Other site |X 〉j 6=i

N = 2, ω = ωX , ωR ≡ g/√

N = 1

-1 0 1 2 3 4 5-1

0 1

2 3

4 5

-4

-3

-2

-1

0

1

2

V/ωv

x1

x2

V/ωv

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 22

Page 71: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution, larger N

Brute force approach, N sites, b†b < M , DHilbert = MN

Permutation symmetry. DHilbert ∼ NM , typical M ∼ 5− 6

N = 20, ω = ωX , ωR ≡ g/√

N = 1

Increasing N, suppressW|P〉(x 6= 0)

Exact energy and statevs ωR, λ0 for validation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 23

Page 72: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution, larger N

Brute force approach, N sites, b†b < M , DHilbert = MN

Permutation symmetry. DHilbert ∼ NM , typical M ∼ 5− 6

N = 20, ω = ωX , ωR ≡ g/√

N = 1

Increasing N, suppressW|P〉(x 6= 0)

Exact energy and statevs ωR, λ0 for validation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 23

Page 73: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution, larger N

Brute force approach, N sites, b†b < M , DHilbert = MN

Permutation symmetry. DHilbert ∼ NM , typical M ∼ 5− 6

N = 20, ω = ωX , ωR ≡ g/√

N = 1

Increasing N, suppressW|P〉(x 6= 0)

Exact energy and statevs ωR, λ0 for validation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 23

Page 74: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Exact solution, larger N

Brute force approach, N sites, b†b < M , DHilbert = MN

Permutation symmetry. DHilbert ∼ NM , typical M ∼ 5− 6

N = 20, ω = ωX , ωR ≡ g/√

N = 1

Increasing N, suppressW|P〉(x 6= 0)

Exact energy and statevs ωR, λ0 for validation

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 23

Page 75: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Extending to arbitrary N, polaron ansatz

Polaron transform, Di(λ) = exp(λ(b†i − bi)

)N site polaron ansatz

|Ψ〉 =

α |P〉∏j

Dj(λa) +β√N

∑i

|X 〉i Di(λb)∏j 6=i

Dj(λc)

|0〉V[Wu et al. PRB ’16, Zeb et al. arXiv:1608.08929]

I Allows distinct Wigner functions |P〉 , |X 〉i , |X 〉j 6=i

I Polaron energy: ELP =ωX + ωP

2−

√(ωX + ωP

2

)2

+ ω2R

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 24

Page 76: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Extending to arbitrary N, polaron ansatz

Polaron transform, Di(λ) = exp(λ(b†i − bi)

)N site polaron ansatz

|Ψ〉 =

α |P〉∏j

Dj(λa) +β√N

∑i

|X 〉i Di(λb)∏j 6=i

Dj(λc)

|0〉V[Wu et al. PRB ’16, Zeb et al. arXiv:1608.08929]

I Allows distinct Wigner functions |P〉 , |X 〉i , |X 〉j 6=i

I Polaron energy: ELP =ωX + ωP

2−

√(ωX + ωP

2

)2

+ ω2R

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 24

Page 77: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Extending to arbitrary N, polaron ansatz

Polaron transform, Di(λ) = exp(λ(b†i − bi)

)N site polaron ansatz

|Ψ〉 =

α |P〉∏j

Dj(λa) +β√N

∑i

|X 〉i Di(λb)∏j 6=i

Dj(λc)

|0〉V[Wu et al. PRB ’16, Zeb et al. arXiv:1608.08929]

I Allows distinct Wigner functions |P〉 , |X 〉i , |X 〉j 6=i

I Polaron energy: ELP =ωX + ωP

2−

√(ωX + ωP

2

)2

+ ω2R

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 24

Page 78: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Extending to arbitrary N, polaron ansatz

Polaron transform, Di(λ) = exp(λ(b†i − bi)

)N site polaron ansatz

|Ψ〉 =

α |P〉∏j

Dj(λa) +β√N

∑i

|X 〉i Di(λb)∏j 6=i

Dj(λc)

|0〉V[Wu et al. PRB ’16, Zeb et al. arXiv:1608.08929]

I Allows distinct Wigner functions |P〉 , |X 〉i , |X 〉j 6=i

I Polaron energy: ELP =ωX + ωP

2−

√(ωX + ωP

2

)2

+ ω2R

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 24

Page 79: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=106, ωR=1

PP: λa=λb=λcEP: λa=λc=0

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=106, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 80: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=106, ωR=1

PP: λa=λb=λcEP: λa=λc=0

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=106, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 81: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=106, ωR=1

PP: λa=λb=λcEP: λa=λc=0

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=106, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 82: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=106, ωR=1

PP: λa=λb=λcEP: λa=λc=0

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=106, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 83: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=20, ωR=1

PP: λa=λb=λcEP: λa=λc=0

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=20, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 84: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation:

Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=20, ωR=1

PP: λa=λb=λcEP: λa=λc=0

Exact

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=20, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 85: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Polaron ansatz energy

Polaron energy:

ωX = ωX + ωv (λb2 − 2λ0λb + (N − 1)λc

2), ωP = ω + ωv Nλa2

ω2R = ω2

R exp[−(λa − λb)2 − (N − 1)(λa − λc)2

]EP: At N →∞ Suggests λa = λc ∼ 1/

√N → 0

PP: If ωR � ωv , suggests λa = λb = λc ∼ 1/√

N — factorisationMinimisation: Multipolaron ansatz: bimodal Wigner

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=20, ωR=1

PP: λa=λb=λcEP: λa=λc=0

2PS

Exact

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=20, λ0=1

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 25

Page 86: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Strong coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 26

Page 87: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Calculating spectra: Input-Output formalism

Obsevable features: absorption spectrum, A(ν) = 1− T (ν)−R(ν)

Scattering matrix gives:

A(ν) = −κt

[2 Im[DR(ν)] + (κt + κb)|DR(ν)|2

]Green’s function:

DR(t) = −i⟨

0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 27

Page 88: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Calculating spectra: Input-Output formalism

Obsevable features: absorption spectrum, A(ν) = 1− T (ν)−R(ν)

Scattering matrix gives:

A(ν) = −κt

[2 Im[DR(ν)] + (κt + κb)|DR(ν)|2

]Green’s function:

DR(t) = −i⟨

0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 27

Page 89: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Calculating spectra: Input-Output formalism

Obsevable features: absorption spectrum, A(ν) = 1− T (ν)−R(ν)

Scattering matrix gives:

A(ν) = −κt

[2 Im[DR(ν)] + (κt + κb)|DR(ν)|2

]Green’s function:

DR(t) = −i⟨

0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 27

Page 90: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Calculating spectra: Input-Output formalism

Obsevable features: absorption spectrum, A(ν) = 1− T (ν)−R(ν)

Scattering matrix gives:

A(ν) = −κt

[2 Im[DR(ν)] + (κt + κb)|DR(ν)|2

]Green’s function:

DR(t) = −i⟨

0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 27

Page 91: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 92: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 93: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 94: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

GR, N =∞

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 95: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

N =20

GR, N =∞

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 96: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

N =20N =100

GR, N =∞

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 97: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Tavis-Cummings-Holstein spectrum

Direct calculationDR(t) = −i

⟨0∣∣∣[a(t), a†(0)

]∣∣∣0⟩ θ(t)

Time-evolve |ψ0〉 = a†|0〉.Mean-field Green’s function

DR(ν) =1

ν + iκ/2− ωP + ΣX (ν)

ΣX (ν) = −∑

m

ω2R|fm(λ0)|2

ν + iγ/2− ωm

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Spect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

N =20N =100

GR, N =∞

/

Photon

Exciton

Multiple excitation ∼ 1/N,

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 28

Page 98: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Ultra strong coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 29

Page 99: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Ultra strong coupling experimental featuresUltra-strong coupling: ω, ωX ∼ g

√N ∝

√concentration

Normal state: configuration of molecules

[Canaguier-Durand et al. Angew. Chem. ’13 ]I Polariton vs molecular spectral weight – chemical eqbmI (Weakly) temperature dependent

Questions:I Can USC change ground state configurationI Disorder + vibrations + USC

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 30

Page 100: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Ultra strong coupling experimental featuresUltra-strong coupling: ω, ωX ∼ g

√N ∝

√concentration

Normal state: configuration of molecules

[Canaguier-Durand et al. Angew. Chem. ’13 ]I Polariton vs molecular spectral weight – chemical eqbmI (Weakly) temperature dependent

Questions:I Can USC change ground state configurationI Disorder + vibrations + USC

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 30

Page 101: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Ultra strong coupling experimental featuresUltra-strong coupling: ω, ωX ∼ g

√N ∝

√concentration

Normal state: configuration of molecules

[Canaguier-Durand et al. Angew. Chem. ’13 ]I Polariton vs molecular spectral weight – chemical eqbmI (Weakly) temperature dependent

Questions:I Can USC change ground state configurationI Disorder + vibrations + USC

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 30

Page 102: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Vibrational reconfiguration

Many photon modes, beyond RWA perturbatively

H =∑

k

ωk a†k ak +N∑

i=1

[ωXσ

+i σ−i +

∑k

gk

(σ+i (ak + a†k ) + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Reduced vibrational offset

λ0 → λ0(1− K1), K1 =∑

k

g2k

(ωk + ωX )2

I Increased effective coupling:g2

eff = g2 exp(−λ2

eff

)I But, no collective effect: δH ' K1N

[Cwik et al. PRA ’16]

lHOλ0

lHOλeff

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 31

Page 103: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Vibrational reconfiguration

Many photon modes, beyond RWA perturbatively

H =∑

k

ωk a†k ak +N∑

i=1

[ωXσ

+i σ−i +

∑k

gk

(σ+i (ak + a†k ) + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Reduced vibrational offset

λ0 → λ0(1− K1), K1 =∑

k

g2k

(ωk + ωX )2

I Increased effective coupling:g2

eff = g2 exp(−λ2

eff

)I But, no collective effect: δH ' K1N

[Cwik et al. PRA ’16]

lHOλ0

lHOλeff

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 31

Page 104: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Vibrational reconfiguration

Many photon modes, beyond RWA perturbatively

H =∑

k

ωk a†k ak +N∑

i=1

[ωXσ

+i σ−i +

∑k

gk

(σ+i (ak + a†k ) + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Reduced vibrational offset

λ0 → λ0(1− K1), K1 =∑

k

g2k

(ωk + ωX )2

I Increased effective coupling:g2

eff = g2 exp(−λ2

eff

)I But, no collective effect: δH ' K1N

[Cwik et al. PRA ’16]

lHOλ0

lHOλeff

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 31

Page 105: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Vibrational reconfiguration

Many photon modes, beyond RWA perturbatively

H =∑

k

ωk a†k ak +N∑

i=1

[ωXσ

+i σ−i +

∑k

gk

(σ+i (ak + a†k ) + H.c.

)+ ωv

(b†i bi − λ0σ

+i σ−i (b†i + bi)

)]Reduced vibrational offset

λ0 → λ0(1− K1), K1 =∑

k

g2k

(ωk + ωX )2

I Increased effective coupling:g2

eff = g2 exp(−λ2

eff

)I But, no collective effect: δH ' K1N

[Cwik et al. PRA ’16]

lHOλ0

lHOλeff

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 31

Page 106: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Ultra strong coupling

1 Introduction and modelsHolstein-Dicke model

2 Weak couplingPhoton BECSpatial profile

3 Strong couplingExact eigenstatesSpectrum

4 Ultra strong couplingVibrational reconfigurationVibrations and disorder

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 32

Page 107: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Bumps in the middle of the spectrum

Orgin of bumps in middle of spectrum: Disorder

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω [eV]

ωRωRωR

=0.3 eV=0.5 eV=0.7 eV

Central peak:

DR(ν) =1

ν + iκ/2− ωk + ΣX (ν)

ΣX (ν) = −∫

dxρ(x)ω2

Rν + iγ/2− x

Gaussian ρ(x), variance σx[Houdré et al. , PRA ’96]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 33

Page 108: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Bumps in the middle of the spectrum

Orgin of bumps in middle of spectrum: Disorder

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω [eV]

ωRωRωR

=0.3 eV=0.5 eV=0.7 eV

Central peak:

DR(ν) =1

ν + iκ/2− ωk + ΣX (ν)

ΣX (ν) = −∫

dxρ(x)ω2

Rν + iγ/2− x

Gaussian ρ(x), variance σx[Houdré et al. , PRA ’96]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 33

Page 109: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Disorder + Vibrations + Strong coupling

Disordered spectrum +vibrations,λ2

0 = 0.02� 1, σx = 0.01eV

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω

=0.3eV=0.5eV=0.7eV

ωRωRωR

Stronger disorder,λ2

0 = 0.5, σ = 0.025eV

0

0.2

0.4

0.6

0.8

1

1.2

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Spec

tral

wei

ght

ω [eV]

0.03

0.04

0.05

kBT[eV]

[Cwik et al. PRA ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 34

Page 110: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Disorder + Vibrations + Strong coupling

Disordered spectrum +vibrations,λ2

0 = 0.02� 1, σx = 0.01eV

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω [eV]

1.9 2 2.1

Bar

e m

olec

ule

ωRωRωR

=0.3 eV=0.5 eV=0.7 eV

Stronger disorder,λ2

0 = 0.5, σ = 0.025eV

0

0.2

0.4

0.6

0.8

1

1.2

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Spec

tral

wei

ght

ω [eV]

0.03

0.04

0.05

kBT[eV]

[Cwik et al. PRA ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 34

Page 111: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Disorder + Vibrations + Strong coupling

Disordered spectrum +vibrations,λ2

0 = 0.02� 1, σx = 0.01eV

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω [eV]

1.9 2 2.1

Bar

e m

olec

ule

ωRωRωR

=0.3 eV=0.5 eV=0.7 eV

Stronger disorder,λ2

0 = 0.5, σ = 0.025eV

0

0.2

0.4

0.6

0.8

1

1.2

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5S

pec

tral

wei

ght

ω [eV]

0.03

0.04

0.05

kBT[eV]

[Cwik et al. PRA ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 34

Page 112: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Acknowledgements

GROUP:

COLLABORATION: S. De Liberato (Southhampton).

FUNDING:

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 35

Page 113: Jonathan Keeling - University of St Andrewsjmjk/talks/2017-04-trieste.pdf · Modelling organic condensates from weak to strong coupling Jonathan Keeling University of St Andrews FOUNDED

Summary

Photon BEC and thermalisation

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

σcl

oud/l

HO

σpump/lHO

σcloud, η=10-5

σcloud, η=10-3

σpumpσT

0

0.002

0.004

Exci

ted m

ole

cule

s, f

f(r)PumpEqbm

0

0.5

1

-20 -15 -10 -5 0 5 10 15 20

Photo

ns

r/lHO

I(r)Boltz.

[Kirton & JK, PRL ’13, PRA ’15, JK & Kirton, PRA ’16]

Single polariton state, Exact solution vs Polaron ansatz

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

EL

P

λ0

N=20, ωR=1

PP: λa=λb=λcEP: λa=λc=0

2PS

Exact

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1

ωR

N=20, λ0=1

-4 -2 0 2 4ν ωv

0.2

0.4

0.6

0.8

Sp

ect

ral w

eig

ht

M =3ωR =2.5ωvλ0 =1

N =10

N =20N =100

GR, N =∞

/

[Zeb, Kirton, JK, arXiv:1608.08929]

Vibrations + disorder + USC

0

0.1

0.2

0.3

0.4

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

Spe

ctra

l wei

ght

ω [eV]

1.9 2 2.1

Bar

e m

olec

ule

ωRωRωR

=0.3 eV=0.5 eV=0.7 eV

0

0.1

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Spec

tral

wei

ght

ω [eV]

0.03

0.04

0.05

kBT[eV]

0

0.2

0.4

0.6

0.8

1

1.2

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

Spec

tral

wei

ght

ω [eV]

0.03

0.04

0.05

kBT[eV]

[Cwik et al. PRA ’16]

Jonathan Keeling Polariton and photon condensates SISSA, April 2017 36


Recommended