+ All Categories
Home > Documents > L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell...

L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell...

Date post: 25-Oct-2020
Category:
Upload: others
View: 10 times
Download: 0 times
Share this document with a friend
34
1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7 th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University West Lafayette, IN USA Lundstrom: Fall 2019 ECE 255: Fall 2019 Purdue University
Transcript
Page 1: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

1

ECE 255

MOS Current Mirrors and Basic Gain Cell

(Sedra and Smith, 7th Ed., Secs. 8.1-8.3)

Mark Lundstrom School of ECE

Purdue University West Lafayette, IN USA

Lundstrom: Fall 2019

ECE 255: Fall 2019 Purdue University

Page 2: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

IC Amplifiers

2

For the rest of the course, we will shift our focus to integrated circuit electronics.

Lundstrom: Fall 2019

First question: How do we bias a MOSFET when it’s on an a Si chip?

ID = 100 µA

Page 3: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Classic 4-resistor bias circuit

3

VDD

RD RG1

RG2 RS

Not suitable because large resistors are

required.

Page 4: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Why avoid large resistors?

4 http://www.computerhistory.org/revolution/digital-logic/12/281

µA 709 op amp Designed by Robert Widlar

2 transistors 2 resistors

Page 5: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Principles of IC Design

5 Lundstrom: Fall 2019

1)  Avoid large value resistors

2)  Avoid large value capacitors

3)  Use low voltage power supplies

4)  Exploit the ability to “size” transistors (W/L for MOSFETs, AE for bipolar)

5)  Use CMOS unless bipolar is essential

Page 6: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Outline

6

1)  Introduction

2)  MOS Current Mirrors

3)  CS Amplifiers with Active Loads

Lundstrom: Fall 2019

Page 7: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Review: MOSFET DC Design

7

VDD = +5 V

R1 = ?kΩ

ID =

kn

2VGS −Vtn( )2

= WL

′kn

2VGS −Vtn( )2

ID = 0.1 VGS −1( )2mA

Design for: ID = 0.5 mA

What region is this MOSFET operating in?

VD

Is VDS ≥ VGS −Vtn( )

VD ≥ VD −1( ) ✓

saturation region

Page 8: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Review: MOSFET DC Design

8

VDD = +5 V

R1 = ?kΩ

ID = 0.1 VGS −1( )2

ID = 0.1 VGS −1( )2= 0.5

Design for: ID = 0.5 mA

VGS = 3.24 V

R1 =

5− 3.240.5

= 3.53 kΩ

Lundstrom: Fall 2019

VD =VGS = 3.24 V

VD =VGS

Page 9: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Review: MOSFET DC Analysis

9

VDD = +5 V

R1 = 3.53kΩ

ID = 0.1 VGS −1( )2

ID = 0.1 VGS −1( )2

ID = ? mA

VGS =VDD − ID R1

2 equations in 2 unknowns

Solve quadratic eqn.

Lundstrom: Fall 2019

Page 10: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

MOSFET “current mirror”

10

IG = 0

Q1

VDD = +5 V

R1 = 3.53kΩ

ID = 0.1 VGS −1( )2

ID1 = 0.5 mA

+VGS = 3.24 V−

Q2

VD2

ID2 = ?

ID = 0.1 VGS −1( )2

ID2 = ID1 if

VD2 > VGS –Vtn

VD2 > 2.24 V

VD = 3.24 V

Page 11: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

MOSFET current source

11

IO = 0.5 mA

VO >VGS −Vtn

Lundstrom: Fall 2019

VO I

VO =VDS2

IO = 0.5 mA

2.24 V

Page 12: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

“sizing” transistors

12

VDD

R1

ID1 =

WL

⎛⎝⎜

⎞⎠⎟ 1

′kn

2VGS −Vtn( )2

IG = 0

Q1 Q2

IREF

+VGS

ID2 =

WL

⎛⎝⎜

⎞⎠⎟ 2

′kn

2VGS −Vtn( )2

ID2

IREF

=W L( )2

W L( )1

VD2

VD2 >VGS −Vtn( ) ID2

Now, let’s look more

closely at the effect of VD2.

Page 13: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

MOSFETs

13

VDS

IC

act

VGS

“saturation”

VDS > VGS −Vtn( )

VGS −Vtn

“triode”

VDSsat

Q1 VDS1 =VGS

ID =

′kn

2WL

⎛⎝⎜

⎞⎠⎟

VGS −Vtn( )2

VD2

Page 14: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

MOSFETs with output conductance

14

VDS

IC

act

VGS

VDS > VGS −Vtn( )

VGS −Vtn

VDSsat

ID =

′kn

2WL

⎛⎝⎜

⎞⎠⎟

VGS −Vtn( )21+VDS VA( )

Q1 VDS1 =VGS Q2 VDS2 ≠VDS1

Page 15: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Real MOSFET current mirror

15

VDD

R1

IG = 0

Q1 Q2

IREF

+VGS

VD

ID1 =

′kn

2WL

⎛⎝⎜

⎞⎠⎟ 1

VGS −Vtn( )21+VDS1 VA( )

ID2 =

′kn

2WL

⎛⎝⎜

⎞⎠⎟ 2

VGS −Vtn( )21+VD2 VA( )

ID2

IREF

=W L( )2

W L( )11+VD2 VA( )1+VGS VA( )

ID2

VDS1 =VGS

IREF =

′kn

2WL

⎛⎝⎜

⎞⎠⎟ 1

VGS −Vtn( )21+VGS VA( )

Page 16: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Real MOSFET current mirror

16

VDD

R1

IG = 0

Q1 Q2

IREF

+VGS

VD

ID2

IREF

=W L( )2

W L( )11+VD2 VA( )1+VGS VA( )

ID2

ID2

IREF

=W L( )2

W L( )11+

VD2 −VGS( )VA

⎝⎜

⎠⎟

Page 17: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Real MOSFET current source

17

VDD

R1

Q1 Q2

IREF

IO

Lundstrom: Fall 2019 See Sec. 8.6

RO = ro

VO >VGS −Vtn

IREF

RO =

VA

IO

IO

Page 18: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

NMOS vs. PMOS

18

VDD

R1

ID =

′kn

2WL

VGS −Vtn( )2

IREF

VDD

R1 IREF

ID =

′kp

2WL

VSG − Vtp( )2

Lundstrom: Fall 2019

+VGS

+VSG

Page 19: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

PMOS Current Mirror

19 Lundstrom: Fall 2019

VDD

R1

Q1 Q2

IREF

IO

IO

VO <VSG − Vtp

VDD

VO

+VSG

Page 20: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Outline

20

1)  Introduction

2)  MOS Current Mirror

3)  CS Amplifiers with Active Loads

Lundstrom: Fall 2019

Page 21: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Common Source amplifier

21

+

υi

+

υ0

D S

VDD

RD

G

Aυo= υo

υi

= −gmRD

Rin = ∞

Ro = RD

MOSFETs have modest gm, so we need a very large drain resistor.

Lundstrom: Fall 2019

Page 22: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Basic IC gain cell

22

+

υi

+

υ0

D S

VDD

G

Aυo= υo

υi

= ?

Rin = ?

Rout = ?

IO

Ideal current source

RO = ∞

Draw s.s. circuit

Lundstrom: Fall 2019 *

Page 23: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Basic IC gain cell: Results

23

+

υi

+

υ0

D S

VDD

G

Aυo= υo

υi

= −gmro

Rin = ∞

Ro = ro

IO

Ideal current source

RO = ∞

Lundstrom: Fall 2019

Page 24: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Maximum gain (“intrinsic gain” / “self gain”)

24

+

υi

+

υ0

D S

VDD

G

Aυo= −gmro

IO

Ideal current source

RO = ∞

ro =VAID

= 1λID

A0 = Aυo= gmro

VA = ′VAL ∝ LLundstrom: Fall 2019

gm = IDVGS −Vtn( ) 2(1)

gm = 2knID(2)

*

Page 25: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Maximum (intrinsic/self) gain

25

+

υi

+

υ0

D S

VDD

G

IO

Ideal current source

RO = ∞

A0 =VA

VGS −Vtn( ) 2 =′VAL

VGS −Vtn( ) 2

A0 =VA2knID

= ′VAL2knID

Low currents and long channels give high gain

But, they give low transconductance and bandwidth

10 < A0 < 40Lundstrom: Fall 2019

Page 26: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Non-ideal current source

26

+

υi

+

υ0

D S

VDD

G

IO

Real current source

RO

Aυo= −gm ro || RO( )

Lundstrom: Fall 2019

How do we implement the current source?

Page 27: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Implementation

27

+

υi

+

υ0

Q1

VDD

R1 IREF

Q2 Q3 Aυo

= −gm roN || roP( )

roN ≈ roP = ro

Aυo= −gmro = − A0

2

Half of the self-gain

Page 28: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Example 8.4 (p. 453 in Sedra and Smith)

28

+

υi

+

υ0

VDD

Q1 R1

Q2

IREF

Q3

IREF = 0.1mA

kn = 2 mA V2

kp = 0.65 mA V2

Vtn = Vtp = 0.6 V

VAn = 20 V

VAp = 10 V

*

Page 29: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Voltage gain

29

+

υi

+

υ0

VDD

Q1 R1

Q2

IREF

Q3

Aυo= −gm1 roN || roP( )

gm1 = 2knID= 2 × 2 × 0.1 = 0.63mS

ron =VANID

= 200.1

= 200 kΩ

rop =VAPID

= 100.1

= 100 kΩ

Aυo= −0.63 200 ||100( ) = −42

Page 30: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Min and Maximum output voltages

30

+

υi

+

υ0

VDD

Q1 R1

Q2

IREF

Q3

VDS1 >VGS1 −Vtn

υo >VGS1 −Vtn

VSD2 >VSG2 − Vtp

VDD −υo( ) >VSG2 − Vtp

υo <VSS −VSG2 + Vtp

Page 31: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Min and Maximum output voltages

31

+

υi

+

υ0

VDD

Q1 R1

Q2

IREF

Q3

There is a minimum output voltage to keep Q1 in saturation.

There is a maximum output voltage to keep Q2 in saturation.

Page 32: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Basic gain cell

32

+

υi

+

υ0

VDD

Q1 R1

Q2

IREF

Q3

Aυo= −gm roN || roP( )

Question: How can we increase the gain of the basic cell? Answer: Cascode

Page 33: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Summary

33

Current mirrors are used extensively in analog IC design.

The basic common source amplifier suffers from low gain when implemented in Si. A solution must be found.

Lundstrom: Fall 2019

Page 34: L29 MOS Current Mirrors and Gain Cell V2€¦ · 1 ECE 255 MOS Current Mirrors and Basic Gain Cell (Sedra and Smith, 7th Ed., Secs. 8.1-8.3) Mark Lundstrom School of ECE Purdue University

Current Mirrors and Basic Gain Cell

Lundstrom: Fall 2019 34

1)  Introduction

2)  MOS Current Mirror

3)  CS Amplifiers with Active Loads


Recommended