+ All Categories
Home > Documents > Laser Ablation - Fundamentals and Applications

Laser Ablation - Fundamentals and Applications

Date post: 21-Jan-2017
Category:
Upload: vandiep
View: 234 times
Download: 2 times
Share this document with a friend
39
University of California at Berkeley Lawrence Berkeley National Laboratory Laser Ablation Laser Ablation Fundamentals & Applications Fundamentals & Applications Samuel S. Mao Department of Mechanical Engineering University of California at Berkeley Advanced Energy Technology Department Lawrence Berkeley National Laboratory March 10, 2005
Transcript
Page 1: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

Fundamentals & ApplicationsFundamentals & Applications

Samuel S. MaoDepartment of Mechanical Engineering

University of California at BerkeleyAdvanced Energy Technology DepartmentLawrence Berkeley National Laboratory

March 10, 2005

Page 2: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is “Laser Ablation”?

Mass removal by coupling laser energy to a target material

Page 3: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Is it important?Is it important?

target

substrate

materialplume

Film deposition* oxide/superconductor films* nanocrystals/nanotubes

laser ablation

target

plasma lens

optical spectrometer

mass spectrometerMaterials characterization

* semiconductor doping profiling* solid state chemical analysis

target transparent solid

microstructure

Micro structuring* direct wave guide writing* 3D micro fabrication

Page 4: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Is it important?Is it important?

Film deposition* oxide/superconductor films* nanocrystals/nanotubes

laser ablation

100 µm

Materials characterization* semiconductor doping profiling* solid state chemical analysis

Micro structuring* direct wave guide writing* 3D micro fabrication

Page 5: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

laser ablation

Do we really understand?Do we really understand?

plasmaplasma

targettarget

laser laser beambeam “Laser ablation … is still

largely unexplored at the fundamental level.”

J. C. Miller & R. F. Haglund,Laser Ablation and Desorption

(Academic, New York, 1998)

Page 6: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is happening?

nanosecondpicosecond microsecondfemtosecond10-15 s 10-12 s 10-9 s 10-6 s

laser

pul

se

target

Page 7: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

??

ExperimentsExperiments -- ultrafast imagingultrafast imaging

ablation laser beam

target

CCD

probe beam

pump beam

delay time

imaging laser beam

Pump-probe technique

Page 8: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

1 fs = 10 –15 sFemtosecond Time ScaleFemtosecond Time Scale

laser

pul

se

glassair

100 fs,800 nmE = 30 µJ

Ultrafast imaging - time dependent energy transfer

self-focusing

C

Velectronic excitation

e-h plasma

100 µm

Page 9: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Femtosecond Time ScaleFemtosecond Time Scale

0

50 fs

z (µm)

elec

tron

num

ber

dens

ity (1

019 c

m-3)

0

5333 fs

0

5667 fs

0

51000 fs

0

51333 fs

0

51667 fs

0 100 200 300 400 5000

5

2000 fs

0

z

Electron number density ne – time/space dependencelas

er p

ulse

22

2

1 τωωτα+

= p

nc

0

2

εω

e

ep m

en=

• Transmittance (probe beam)

• Absorption coefficient

• Plasma frequency

dII ed α−=

0

ne ~ 1019 cm-3

Page 10: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Femtosecond Time ScaleFemtosecond Time Scale

Peak electron number density ne - time dependence

0 500 1000 1500 2000 25001x1019

2x1019

3x1019

4x1019

5x1019

6x1019

Ne,

max

(cm

-3)

time (fs)

flattened peak electron number density

no breakdown

0

50 fs

z (µm)

elec

tron

num

ber

dens

ity (1

019 c

m-3)

0

5333 fs

0

5667 fs

0

51000 fs

0

51333 fs

0

51667 fs

0 100 200 300 400 5000

5

2000 fs

Page 11: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Femtosecond Time ScaleFemtosecond Time Scale

Fundamental processeslas

er p

ulse

Nonlinear absorption

Nonlinear opticsSelf-focusing - intensity dependence of refractive index

Electronic excitation - interband absorption

C

V

positive refractive index change

negative refractive index change

0

z

suppress self-focusing

Page 12: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Femtosecond Time ScaleFemtosecond Time Scale

Propagation of electronic excitation in glass

-500 0 500 1000 1500 2000 2500

-500

50100150200250300350400450500

v = 1.8x108 m/sn = 1.65

z (µ

m)

t (fs)

250 µJ 120 µJ 60 µJ 30 µJ 12 µJ

100 fs,800 nmE = 30 µJ

[Appl. Phys. A 79, 1695–1709 (2004)]

Page 13: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is happening?

femtosecond picosecond nanosecond microsecond

laser

pul

se

target

Page 14: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

50 µm

(laser pulse: 35 ps, fluence: 90 J/cm2)

t = 50 ps

50 µm

(laser pulse: 35 ps, fluence: 60 J/cm2)

t = 50 ps

ablation laser pulse

target Cu

(air)

1 ps = 10 –12 sPicosecond Time ScalePicosecond Time Scale

Picosecond imaging

Page 15: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Threshold behavior

(laser pulse length 35 ps; pictures taken at 20 ps)

85 J/cm2

plasma onset

110 J/cm2

regime-2

40 J/cm2

regime-1

50 µm

Threshold for picosecond plasma formation – same as the threshold for ablation efficiency reduction:

~ 85 J/cm2 (laser fluence)

~ 1012 W/cm2 (power density)(threshold for direct laser-induced air breakdown: ~ 1013 W/cm2)

0 100 200 300 400 5000

5

10

15

20

25

abla

tion

dept

h (µ

m)

laser fluence (J/cm2)

1 2

Page 16: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Ultrafast interferometry

r

z

t = 15 ps interference pattern

50 µm

target

Page 17: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Electron number density

0 50 100 150 200 2500.0

2.0x1019

4.0x1019

6.0x1019

8.0x1019

1.0x1020

1.2x1020

Ne (

cm-3)

Z (µm)

z

t = 15 ps

air density

A large electron number density!(close to target surface)

Page 18: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Longitudinal (z) expansion

z

(laser energy: 10 mJ)

50 µ

m

0 20 40 60 80 100 1200

100

200

300

400

500

z (µ

m)

t (ps)

longitudinal plasma extent vs. time

longitudinal expansion is suppressed (t > 50 ps)!

Page 19: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Lateral (r) expansion(t > 50 ps: expansion only in lateral direction)

lateral plasma radius vs. time

(laser energy: 10 mJ)

r0 500 1000 1500 2000 2500

0

10

20

30

40

50

r (µ

m)

t (ps)

lateral expansion follows a power law!

Page 20: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Distribution of laser energy (100%):~ ~ 50% absorbed by the picosecond micro-plasma

~ ~ 50% reaching target surface

2/1

4/1

tr

o

E

ρE: energy deposition density (laser axis)ρ0: ambient gas (air) density

similarity relation(2D blast wave - line energy source)

10 100 10001

10

100

t1/2

10.0 mJ 7.5 mJ

r (µm

)

time (ps)

t1/2 power law

Energy deposition to picosecond plasma

plasma onset

85 J/cm2 110 J/cm2

50 µm

40 J/cm2

0 100 200 300 400 5000

5

10

15

20

25

abla

tion

dept

h (µ

m)

laser fluence (J/cm2)

reduced efficiency

Page 21: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Picosecond Time ScalePicosecond Time Scale

Theoretical model (laser-solid-gas interaction) electronion (gas)

atom (gas)

gas (1atm)

before laser irradiationCu

laser beam

after laser irradiationCu

electron

Cu atom

photon

laser heating of target (metal) • electron heating - absorption of laser energy• lattice heating - electron-phonon collisions

plasma development above target • surface electron emission (seed)• impact ionization of gas

Page 22: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is happening?

femtosecond picosecond nanosecond microsecond

laser

pul

se

target

Page 23: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

1 ns = 10 –9 sNanosecond Time ScaleNanosecond Time Scale

Plasma evolution – picosecond to nanosecond

time dependence

(35 ps, 7 mJ)

laser energy dependence

(35 ps, 2 ns)

Page 24: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Nanosecond Time ScaleNanosecond Time Scale

Plasma development

plasma advancement:

~ 106 cm/s~ 10 µm every 1 ns (1000 ps)

solid

laser pulse

shock wave

plasma

vapor

target

Page 25: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Nanosecond Time ScaleNanosecond Time Scale

Plasma shielding – nanosecond

solid

laser

10 100

0.1

1

10

abla

tion

dept

h (µ

m)

laser fluence (J/cm2)

25 ns, 248 nm laser ablation of Cu(single pulse, in air, 100 µm spot diameter)

Experiment

0 1 2 3 4 5 6 7 8 9 10 11 12

without plasma

t (ns)

Theory

100 GW/cm2

30 GW/cm2

20 GW/cm2

3 ns, 1064 nm laser ablation of Si(single pulse)

Page 26: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is happening?

femtosecond picosecond nanosecond microsecond

laser

pul

se

target

Page 27: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

1 µs = 10 –6 sMicrosecond Time ScaleMicrosecond Time Scale

Plume evolution

below threshold

10 ns 160 ns 760 ns 1.6 µs 4.9 µs64 ns

100 µm

(3 ns, 1.8x1010 W/cm2)

above threshold4.2 µs1.3 µs860 ns200 ns70 ns5 ns

100 µm

(3 ns, 2.1x1010 W/cm2)

Page 28: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Microsecond Time ScaleMicrosecond Time Scale

18 GW/cm2

0.0

+2.0

-2.0

-4.0

-6.0

ablat

ion

dept

h(µ

m)

21 GW/cm2

0.0

+2.0

-2.0

-4.0

-6.0

ablat

ion

dept

h(µ

m)

4.2 µs4.9 µs

Threshold behavior

1010 10110

5

10

15

20

25

abla

tion

dept

h (µ

m)

laser intensity (W/cm2)

Page 29: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Microsecond Time ScaleMicrosecond Time Scale

Theoretical model

solid~ 1 ns

solid

superheated liquid layer

~ 100 nssolid

~ 1 µs

109 1010 1011

5

10

15

20 experiment theory

abla

tion

dept

h (µ

m)

laser intensity (W/cm2)

)]11(exp[)2( 2/1

0 TTkmL

Tmkmptx

bB

evBb

x

−=∂∂ −

=

πρ

β

• Normal vaporization (Hertz-Knudsen equations)

ablation below threshold: normal evaporation

ablation above threshold: normal evaporation and explosive boiling

)exp()( xIxTk

xtTC laser ααρ −+

∂∂

∂∂

=∂∂

• Explosive boiling (heat diffusion – Tmax~ Tc)

Page 30: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

What is happening?

femtosecond picosecond nanosecond

laser

pul

se

target

microsecond

Page 31: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

Fundamental processes

lase

relectronic

plasma

electronicexcitation

solid

heated zone

plasma

vapor

liquid

fspsnsµsdroplets

absorption/excitationfs

ionization (photon)conductionps

radiationionization (shock wave)vaporizationconvectionmelting

ns

boilingµs

Page 32: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Laser AblationLaser Ablation

Applications

20 40 60 80 100 120 140 160 1800.0

0.5

1.0 ns laser, 266 nm fs laser, 266 nm

Zn/C

u ra

tio

time (s)

micro-analysis nano-material

Page 33: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Applications of Applications of UltrafastUltrafast Laser AblationLaser Ablation

Ultrafast laser ablation (τpulse < tthermal) – FEL capability!• Non-thermal ablation regime

E

+

-fs laser

ion

electron

target

Reduced dependence on thermal propertiesReduced larger cluster particles generation

Page 34: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Micro Analysis

20 40 60 80 100 120 140 160 1800.0

0.5

1.0 ns laser, 266 nm fs laser, 266 nm

MS

signa

l: Zn

/Cu

ratio

time(s)Mass Spectrometry - Laser ablation of brass (CuZn alloy)

ns

fs

The problem of nanosecond laser ablation

Applications of Applications of UltrafastUltrafast Laser AblationLaser Ablation

Page 35: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

MicroMicro--Analysis ApplicationAnalysis ApplicationNew magnetic film material(data storage applications)

0 10 20 30 40 50102

103

104

105

106

107

108

109

1010

depth profile (bulk material)

Cu

Fe

elem

ent c

ount

s (a.

u.)

time (s)

laser

depth profiling

sputtering target

0.00

0.05

0.10

0.15

0.20

151050

Cu/

Fe r

atio

time (s)

surface profiling (film material)laser

surface profiling

deposited film

Page 36: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

Applications of Applications of UltrafastUltrafast Laser AblationLaser Ablation

Nano Material

The problem of nanosecond laser ablation

50 µm

50 µm

Nanowires with large particles

1 µm

Page 37: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

NanoNano--Material ApplicationMaterial Application

Pulsed laser deposition – ZnO nanowire growth

Setup

substratetemperature control

ultrafast lasergas

gastarget

fabrication chamber

Page 38: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

NanoNano--Material ApplicationMaterial Application

excitation source

266 nm (Nd:YAG)

ZnO nanowiresapphiresubstrate

~ 100 nm

ZnO nanowire: natural laser cavity

370 375 380 385 390 395 4000

500

1000

1500

2000

2500

3000

above threshold below threshold

inte

nsity

(a.u

.)

wavelength (nm)

[Science 292 (2001) 1897]

10-3 10-2 10-1 100 101

105

106

lasing

spontaneousem

issi

on in

tens

ity (a

.u.)

excitation energy (mJ)

Nanolaser spectra

UV lasing

(room temperature)

Nanowire nanolaser

Page 39: Laser Ablation - Fundamentals and Applications

University of California at Berkeley Lawrence Berkeley National Laboratory

AcknowledgementsAcknowledgements

U. S. Department of Energy

Yanfeng ZhangQuanming LuPeidong YangRichard RussoXianglei Mao


Recommended