+ All Categories
Home > Documents > Laws of Motion1

Laws of Motion1

Date post: 07-Aug-2018
Category:
Upload: ashok-pradhan
View: 215 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/21/2019 Laws of Motion1

    1/65

    Newton’s Laws of Motion 1genius PHYSICS by Pradeep Kshetrapal

     4.1 Point Mass.

    (! "n ob#e$t $an be $onsidered as a point ob#e$t if during %otion in a gi&en ti%e' it $o&ersdistan$e %u$h greater than its own sie)

    (*! +b#e$t with ero di%ension $onsidered as a point %ass)

    (,! Point %ass is a %athe%ati$al $on$ept to si%plify the proble%s)

     4.2 Inertia.

    (! Inherent property of all the bodies by &irtue of whi$h they $annot $hange their state of 

    rest or unifor% %otion along a straight line by their own is $alled inertia)

    (*! Inertia is not a physi$al -uantity' it is only a property of the body whi$h depends on %assof the body)

    (,! Inertia has no units and no di%ensions

    (.! /wo bodies of e-ual %ass' one in %otion and another is at rest' possess sa%e inertiabe$ause it is a fa$tor of %ass only and does not depend upon the &elo$ity)

     4.3 Linear Momentum.

    (! Linear %o%entu% of a body is the -uantity of %otion $ontained in the body)

    (*! It is %easured in ter%s of the for$e re-uired to stop the body in unit ti%e)(,! It is %easured as the produ$t of the %ass of the body and its &elo$ity i.e.' Mo%entu% 0

    %ass 1 &elo$ity)

    If a body of %ass m  is %o&ing with &elo$ity v   then its linear %o%entu%  p is gi&en byv m p =

    (.! It is a &e$tor -uantity and it’s dire$tion is the sa%e as the dire$tion of &elo$ity of thebody)

    (2! 3nits 4 kg5m/sec 6S)I)7' g-cm/sec 6C)8)S)7

    (9! :i%ension 4 76 −MLT 

    (;! If two ob#e$ts of di

  • 8/21/2019 Laws of Motion1

    2/65

    2 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

     4.4 Newton’s First Law." body $ontinue to be in its state of rest or of unifor% %otion along a straight line' unless it

    is a$ted upon by so%e e@ternal for$e to $hange the state)

    (! If no net for$e a$ts on a body' then the &elo$ity of the body $annot $hange i.e. the body

    $annot a$$elerate)

    (*! Newton’s Arst law deAnes inertia and is rightly $alled the law of inertia) Inertia are of 

    three types 4

    Inertia of rest' Inertia of %otion' Inertia of dire$tion

    (,!Inertia of rest :

     It is the inability of a body to $hange by itself' its state of rest) /his

    %eans a body at rest re%ains at rest and $annot start %o&ing by its own)

    Example 4 (i! " person who is standing freely in bus' thrown ba$Bward' when bus startssuddenly)

    hen a bus suddenly starts' the for$e responsible for bringing bus in %otion is alsotrans%itted to lower part of body' so this part of the body $o%es in %otion along with the bus)hile the upper half of body (say abo&e the waist! re$ei&es no for$e to o&er$o%e inertia of restand so it stays in its original position) /hus there is a relati&e displa$e%ent between the twoparts of the body and it appears as if the upper part of the body has been thrown ba$Bward)

    Note 4 If the %otion of the bus is slow' the inertia of %otion will be trans%itted tothe body of the person unifor%ly and so the entire body of the person will $o%e in%otion with the bus and the person will not e@perien$e any #erB)

    (ii! hen a horse starts suddenly' the rider tends to fall ba$Bward on a$$ount of inertia of rest of upper part of the body as e@plained abo&e)

    (iii! " bullet Ared on a window pane %aBes a $lean hole through it while a stone breaBs thewhole window be$ause the bullet has a speed %u$hgreater than the stone) So its ti%e of $onta$t with glassis s%all) So in $ase of bullet the %otion is trans%ittedonly to a s%all portion of the glass in that s%all ti%e)Hen$e a $lear hole is $reated in the glass window' whilein $ase of ball' the ti%e and the area of $onta$t is large)

    :uring this ti%e the %otion is trans%itted to the entirewindow' thus $reating the $ra$Bs in the entire window)

    (i&! In the arrange%ent shown in the Agure 4

    (a! If the string B is pulled with a sudden #erB then it will e@perien$e tension while due toinertia of rest of %ass M this for$e will not be trans%itted to the string A and sothe string B will breaB)

    (b! If the string B  is pulled steadily the for$e applied to it will betrans%itted fro% string B to A through the %ass M and as tension in A will begreater than in B by Mg (weight of %ass M! the string A will breaB)

    (&! If we pla$e a $oin on s%ooth pie$e of $ard board $o&ering a glass and

    striBe the $ard board pie$e suddenly with a Anger) /he $ardboard slips awayand the $oin falls into the glass due to inertia of rest)

    M

     A

    B

    Cra$Bs by theball

    Hole by thebullet

  • 8/21/2019 Laws of Motion1

    3/65

    Newton’s Laws of Motion 3genius PHYSICS by Pradeep Kshetrapal

    (&i! /he dust parti$les in a durree falls o< when it is beaten with a sti$B) /his is be$ause thebeating sets the durree in %otion whereas the dust parti$les tend to re%ain at rest and hen$eseparate)

    (.! Inertia of motion : It is the inability of a body to $hange itself its state of unifor%

    %otion i.e., a body in unifor% %otion $an neither a$$elerate nor retard by its own)Example 4 (i! hen a bus or train stops suddenly' a passenger sitting inside tends to fall

    forward) /his is be$ause the lower part of his body $o%es to rest with the bus or train but theupper part tends to $ontinue its %otion due to inertia of %otion)

    (ii! " person #u%ping out of a %o&ing train %ay fall forward)

    (iii! "n athlete runs a $ertain distan$e before taBing a long #u%p) /his is be$ause &elo$itya$-uired by running is added to &elo$ity of the athlete at the ti%e of #u%p) Hen$e he $an #u%po&er a longer distan$e)

    (2! Inertia of direction : It is the inability of a body to $hange by itself dire$tion of %otion)

    Example  4 (i! hen a stone tied to one end of a string is whirled and the string breaBs

    suddenly' the stone Dies o< along the tangent to the $ir$le) /his is be$ause the pull in the stringwas for$ing the stone to %o&e in a $ir$le) "s soon as the string breaBs' the pull &anishes) /hestone in a bid to %o&e along the straight line Dies o< tangentially)

    (ii! /he rotating wheel of any &ehi$le throw out %ud' if any' tangentially' due to dire$tionalinertia)

    (iii! hen a $ar goes round a $ur&e suddenly' the person sitting inside is thrown outwards)

    Sample problem based on Newton’s frst law

    P roblem 1.  hen a bus suddenly taBes a turn' the passengers are thrown outwards be$ause of[AFMC 1! CPM" 2###$ 2##1%

    (a! Inertia of %otion (b! "$$eleration of  %otion

    ($!Speed of %otion (d! Eoth (b! and ($!

    Solution 4 (a! 

    P roblem 2.  " person sitting in an open $ar %o&ing at $onstant &elo$ity throws a ball &erti$ally up intoair) /he ball fall

    [&AMC&" 'Med.( 1)%

    (a! +utside the $ar (b! In the $ar ahead of  the person

    ($!In the $ar to the side of the person (d! F@a$tly in the hand whi$h threw it up

    Solution 4 (d! Ee$ause the horiontal $o%ponent of &elo$ity are sa%e for both $ar and ball so they $o&ere-ual horiontal distan$es in gi&en ti%e inter&al)

     4.) Newton’s *econd Law.

    (! /he rate of $hange of linear %o%entu% of a body is dire$tly proportional to the e@ternalfor$e applied on the body and this $hange taBes pla$e always in the dire$tion of the appliedfor$e)

    (*! If a body of %ass m' %o&es with &elo$ity v  then its linear %o%entu% $an be gi&en by

    v m p =  and if for$e→

    F   is applied on a body' then

     dt 

     pd F 

    dt 

     pdF 

    =⇒∝

    ordt 

     pd F = (  0 in C)8)S) and S)I) units!

  • 8/21/2019 Laws of Motion1

    4/65

    4 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    or amdt 

    v dmv m

    dt 

    dF 

      === !( ("s ==

    dt 

    v d a a$$eleration produ$ed in the body!

      amF  =  

    >or$e 0 %ass × a$$eleration

    Sample problem based on Newton’s second law

    P roblem 3.  " train is %o&ing with &elo$ity *G msec) on this' dust is falling at the rate of 2G kgmin) /hee@tra for$e re-uired to %o&e this train with $onstant &elo$ity will be

    [+P&" 1%

    (a! 9)99 ! (b! GGG !  ($! 99)9 ! (d!

    *GG ! 

    Solution 4 (a! >or$edt 

    dmv F  =   !99)9

    9G

    2G*G   =×=

    P roblem 4.  " for$e of G Newton a$ts on a body of %ass *G kg for G se$onds) Change in its %o%entu%is [MP P&" 2##2%

    (a! 2 kg ms (b! GG kg ms  ($! *GG kg ms (d! GGG kg ms

    Solution 4 (b! Change in %o%entu% se$HGGGGti%efor$e   mkg=×=×=

    P roblem ).  " &ehi$le of GG kg is %o&ing with a &elo$ity of 2 msec) /o stop it inG

    sec' the re-uired

    for$e in opposite dire$tion is[MP P&" 1)%

    (a! 2GGG ! (b! 2GG ! ($! 2G !  (d!GGG !

    Solution 4 (a! kgm GG=   'H2   smu =   G=v   t  0 G) sec

    uv m

    dt 

    mdv Fo"ce

    !(   −==  

    )G

    !2G(GG   −=

    !F  2GGG−= 4., Force.

    (! >or$e is an e@ternal e

  • 8/21/2019 Laws of Motion1

    5/65

    Newton’s Laws of Motion )genius PHYSICS by Pradeep Kshetrapal

    (*! :i%ension 4 >or$e 0 %ass × a$$eleration

      76776676 **   −− ==   MLT LT MF 

    (,! 3nits 4  "bsolute units 4 (i! !e#ton (S)I)! (ii! $%ne (C)8)S!

    8ra&itational units 4 (i! Kilogra%5for$e (M)K)S)! (ii! 8ra%5for$e (C)8)S!

    !e#ton 4 +ne Newton is that for$e whi$h produ$es an a$$eleration of *H   sm   in a

    body of %ass ilog"am) ∴ !e#ton *H   smkg=

    $%ne 4 +ne dyne is that for$e whi$h produ$es an a$$eleration of *H   scm   in a

    body of %ass g"am) ∴  $%ne *se$H   cmgm=

    elation between absolute units of for$e !e#ton 

    2

    G= $%ne ilog"am-&o"ce 4 It i s that for$e whi$h produ$es an a$$eleration of *H=)?   sm   in a

    body of %ass kg) ∴  kg-& 0 ?)= !e#ton

    '"am-&o"ce 4 It is that for$e whi$h produ$es an a$$eleration of *H?=G   scm  in a body of 

    %ass gm) ∴  gm-&  0 ?=G $%ne 

    elation between gra&itational units of for$e 4 kg-&  0 ;G gm-& 

    (.! amF  =  for%ula is &alid only if for$e is $hanging the state of rest or %otion and the %assof the body is $onstant and Anite)

    (2! If m is not $onstant dt 

    dm

    v dt 

    v d

    mv mdt 

    d

     

    +== !((9! If for$e and a$$eleration ha&e three $o%ponent along x ' %  and (  a@is' then

    Eody re%ains at rest) Here for$e is trying to $hange the state of 

    rest)

    Eody starts %o&ing) Here for$e $hanges the state of rest)

    In a s%all inter&al of ti%e' for$e in$reases the %agnitude of 

    speed and dire$tion of %otion re%ains sa%e)

    In a s%all inter&al of ti%e' for$e de$reases the %agnitude of 

    speed and dire$tion of %otion re%ains sa%e)

    In unifor% $ir$ular %otion only dire$tion of &elo$ity $hanges'

    speed re%ains $onstant) >or$e is always perpendi$ular to

    &elo$ity)

    In non5unifor% $ir$ular %otion' ellipti$al' paraboli$ or hyperboli$

    %otion for$e a$ts at an angle to the dire$tion of %otion) In all

    these %otions) Eoth %agnitude and dire$tion of &elo$ity

    $hanges)

    u 0 G v  0 G

    F  u

    v  J u

    u 0 G v   G

    v   uu ≠ G

    v F 

    F  0 mg

  • 8/21/2019 Laws of Motion1

    6/65

    , Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    k F  )F iF F   (  %  x LLL ++=  and k a )aiaa   (  %  x 

    LLL   ++=

    >ro% abo&e it is $lear that  (  (  %  %  x  x    maF maF maF    === ''

    (;! No for$e is re-uired to %o&e a body unifor%ly along a straight line)

    maF  = G=∴ F  ("s G=a !(=! hen for$e is written without dire$tion then positi&e for$e %eans repulsi&e while

    negati&e for$e %eans attra$ti&e)

    Example 4 *ositive &o"ce  >or$e between two si%ilar $harges

    !egative &o"ce >or$e between two opposite $harges

    (?! +ut of so %any natural for$es' for distan$e 2G− met"e' nu$lear for$e is strongest while

    gra&itational for$e weaBest) nalgra&itationeti$ele$tro%agnu$lear   F F F    >>

    (G! atio of ele$tri$ for$e and gra&itational for$e between two ele$tron .,GH   =ge   F F 

    ge   F F    >>∴

    (! Constant for$e 4 If the dire$tion and %agnitude of a for$e is $onstant) It is said to be a$onstant for$e)

    (*! ariable or dependent for$e 4 

    (i! Time dependent &o"ce  4 In $ase of i%pulse or %otion of a $harged parti$le in analternating ele$tri$ Aeld for$e is ti%e dependent)

    (ii! *osition dependent &o"ce 4 8ra&itational for$e between two bodies*

    *

    m'm

     or >or$e between two $harged parti$les *G

    *

    .   " 

    ++

    πε = )

    (iii! elocit% dependent &o"ce 4 is$ous for$e !9(   "v πη 

    >or$e on $harged parti$le in a %agneti$ Aeld !sin(   θ +vB

    (,! Central for$e 4 If a position dependent for$e is always dire$ted towards or away fro% aA@ed point it is said to be $entral otherwise non5$entral)

    Example  4 Motion of earth around the sun) Motion of ele$tron in an ato%) S$attering of α 5parti$les fro% a nu$leus)

    (.! Conser&ati&e or non $onser&ati&e for$e 4 If under the a$tion of a for$e the worB done ina round trip is ero or the worB is path independent' the for$e is said to be $onser&ati&eotherwise non $onser&ati&e)

    Example 4 Conser&ati&e for$e 4 8ra&itational for$e' ele$tri$ for$e' elasti$ for$e)

    Non $onser&ati&e for$e 4 >ri$tional for$e' &is$ous for$e)

    (2! Co%%on for$es in %e$hani$s 4

    α -parti$le

    Nu$leus

    F Fle$tro

    n

    Nu$leus

    OF Sun

    Farth

  • 8/21/2019 Laws of Motion1

    7/65

    Newton’s Laws of Motion -genius PHYSICS by Pradeep Kshetrapal

    (i! eigt  4 eight of an ob#e$t is the for$e with whi$h earth attra$ts it) It is also $alled thefor$e of gra&ity or the gra&itational for$e)

    (ii! Reaction o" !o"mal &o"ce 0  hen a body is pla$ed on a rigid surfa$e' the bodye@perien$es a for$e whi$h is perpendi$ular to the surfa$es in $onta$t) /hen for$e is $alled

    Nor%al for$e’ or ea$tion’)

    (iii! Tension 4 /he for$e e@erted by the end of taut string' rope or $hain against pulling(applied! for$e is $alled the tension) /he dire$tion of tension is so as to pull the body)

    (i&! Sp"ing &o"ce 0 F&ery spring resists any atte%pt to $hange its length) /his resisti&e for$e

    in$reases with $hange in length) Spring for$e is gi&en by x F    −= Q where  x   is the $hange inlength and   is the spring $onstant (unit !m!)

     4.- &ui/i0rium of Concurrent Force.

    (! If all the for$es worBing on a body are a$ting on the sa%e point' then they are said to be$on$urrent)

    (*! " body' under the a$tion of $on$urrent for$es' is said to be in e-uilibriu%' when there is

    no $hange in the state of rest or of unifor% %otion along a straight line)(,! /he ne$essary $ondition for the e-uilibriu% of a body under the a$tion of $on$urrent

    for$es is that the &e$tor su% of all the for$es a$ting on the body %ust be ero)

    (.! Mathe%ati$ally for e-uilibriu% ∑   = GnetF    or ∑   = G x F  Q ∑   = G % F  Q ' ∑   = G ( F (2! /hree $on$urrent for$es will be in e-uilibriu%' if they $an be represented $o%pletely by

    three sides of a triangle taBen in order)

    T  0 F 

     A

    B1*F 

    F  ,F 

     x 

    F  0 x 

    mg

    R

    mg $osθ 

    R

    θ  mgθ 

  • 8/21/2019 Laws of Motion1

    8/65

     Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    (9! La%i’s /heore% 4 >or $on$urrent for$esγ  β α  sinsinsin,*   F F F  ==

    Sample problem based on orce and equilibrium

    P roblem ,.  /hree for$es starts a$ting si%ultaneously on a parti$le %o&ing with &elo$ity .v /hese for$esare represented in %agnitude and dire$tion by the three sides of a triangle AB1 (as shown!) /he parti$le will now %o&e with &elo$ity

    [AI&&& 2##3%

    (a! v re%aining un$hanged

    (b! Less than v 

    ($! 8reater than v 

    (d! v  in the dire$tion of the largest for$e B1

    Solution 4 (a! 8i&en three for$es are in e-uilibriu% i.e. net for$e will be ero) It %eans the parti$le will%o&e with sa%e &elo$ity)

    P roblem -.  /wo for$es are su$h that the su% of their %agnitudes is = ! and their resultant isperpendi$ular to the s%aller for$e and %agnitude of resultant is *) /hen the %agnitudes of the for$es are [AI&&& 2##2%

    (a! * !' 9 ! (b! , !, 2!  ($! G !' = ! (d!9 !' * ! 

    Solution 4 (b! Let two for$es are F  and !( **   F F F    < )

    "$$ording to proble%4 =*   =+ F F  R))(i!

    "ngle between F  and resultant (R! is ?G

    ∴   ∞=+= θ θ 

    $os

    sin?Gtan

    *

    *

    F F 

    F  

    G$os*   =+⇒   θ F F 

    ⇒ 

    *

    $os

    F −=θ  R))(ii!

    and θ $os* ***

    *

    * F F F F R   ++=

      θ $os*.. ***

    *   F F F F    ++= R))(iii!

    by sol&ing (i!' (ii! and (iii! we get !F  2 = and !F  ,* =

    P roblem .   /he resultant of two for$es' one double the other in %agnitude' is perpendi$ular to thes%aller of the two for$es) /he angle between the two for$es is

    [C&" '&n.Med.( 2##2%

    (a!   o9G (b!   o*G ($!   o2G (d!   o?G

    Solution4 (b! Let for$es are F  and *F  and angle between the% is θ  and resultant %aBes an angle α withthe for$e F.

    α β 

    γ  *F F 

    ,F 

    C

     A   B

    F *

    R  0*

    θ 

  • 8/21/2019 Laws of Motion1

    9/65

    Newton’s Laws of Motion genius PHYSICS by Pradeep Kshetrapal

    ?Gtan$os*

    sin*tan   =

    +=

    θ 

    θ α 

    F F 

    F  ∞=  

    ⇒  G$os*   =+   θ F F    ∴   *H$os   −=θ   or °= *Gθ 

    P roblem . " weightless ladder' *G &t  long rests against a fri$tionless wall at an angle of 9Go with thehoriontal) " 2G pound %an is . &t  fro% the top of the ladder) " horiontal for$e is neededto pre&ent it fro% slipping) Choose the $orre$t %agnitude fro% the following

    [C5*& PM" 1%

    (a! ;2 l2 (b! GG l2  ($! ;G l2 (d! 2G l2 

    Solution4 ($! Sin$e the syste% is in e-uilibriu% therefore ∑   = G x F  and ∑   = G % F    ∴   *RF  = andR.  =

    Now by taBing the %o%ent of for$es about point B.

    =+ !)(!)(   E1. B1F  !(  A1R   6fro% the Agure E10 . $os 9G7

    !9G$os*G(!9G$os.(!9Gsin*G)(

    R. F   =+

    G*,G   R. F    =+   [ ]. R   ="s

    ∴  l2. 

    F  ;G,G

    2G=

    ,G

    ==×==

    P roblem 1#.  " %ass M  is suspended by a rope fro% a rigid support at * as shown in the Agure)"nother rope is tied at the end 3' and it is pulled horiontally with a for$e F ) If the rope *3

    %aBes angle θ  with the &erti$al then the tension in the string *3 is

    (a!   θ sinF 

    (b!   θ sinHF 

    ($!   θ $osF 

    (d!   θ $osHF 

    Solution4 (b! >ro% the Agure

    >or horiontal e-uilibriu%

    F T    =θ sin

    ∴  θ sin

    F T  =

    P roblem 11.  " spring balan$e " shows a reading of * kg' when an alu%iniu% blo$B is suspended fro%it) "nother balan$e B shows a reading of 2 kg' when a beaBer full of li-uid is pla$ed in its

    pan) /he two balan$es are arranged su$h that the Al  blo$B is $o%pletely i%%ersed insidethe li-uid as shown in the Agure) /hen [II"67&& 1)%

    (a! /he reading of the balan$e A will be %ore than * kg 

    (b! /he reading of the balan$e B will be less than 2 kg 

    ($!/he reading of the balan$e A will be less than * kg) and that of B will be %ore than 2 kg 

    (d! /he reading of balan$e " will be * kg) and that of B will be 2kg)

    Solution4 ($! :ue to buoyant  for$e on the alu%iniu% blo$B the reading of spring balan$e A will be less than * Bg but it in$rease the reading of balan$e B)

    P roblem 12.  In the following diagra%' pulley *   is %o&able and pulley **   is A@ed) /he &alue of angle θ  will be

    M

    *

    θ 

    3

     A

    m

    B

    9 &t 

    . &t 

    R

     AF 

    E 1

    B

    all

    R*

     

    9Go

    $

    θ 

    T  T  

    $osθ 

    mg

    T  sinθ 

  • 8/21/2019 Laws of Motion1

    10/65

    1# Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    (a! 9Go 

    (b! ,Go 

    ($! .2o 

    (d! 2o 

    Solution4 (b! >ree body diagra% of pulley * is shown in the Agure

    >or horiontal e-uilibriu% θ θ  $os$os *   T T    =  ∴   *   T T   =  

    and . T T    == *>or &erti$al e-uilibriu%

    . T T    =+   θ θ  sinsin *  ⇒  . . .    =+   θ θ  sinsin

    ∴ *

    sin   =θ    or °= ,Gθ 

    P roblem 13.  In the following Agure' the pulley is %assless and fri$tionless) /he relation between T  '

    *T   and ,T   will be

    (a! ,*   T T T    ≠=

    (b! ,*   T T T    =≠

    ($! ,*   T T T    ≠≠

    (d! ,*   T T T    ==

    Solution 4 (d! Sin$e through a single string whole syste% is atta$hed so *,*   T T T .    ===

    P roblem 14. In the abo&e proble% (,!' the relation between . 

     and *. 

     will be

    (a!θ $os*

    *

    . .   = (b!   θ $os* .  ($! *   . .   = (d!

    *

    $os*

    . . 

      θ =

    Solution 4 (a! >or &erti$al e-uilibriu%

    * $os$os   . T T    =+   θ θ    [ ]**"s   . T T    ==

    *$os*   . .    =θ   

    )$os*

    *θ 

    . .   =∴

    P roblem 1).  In the following Agure the %asses of the blo$Bs A and B are sa%e and ea$h e-ual to m) /he tensions in the strings 4A and  AB are *T    and T    respe$ti&ely) /he syste% is in

    e-uilibriu% with a $onstant horiontal for$e %g on B) /he T   is

    (a! mg 

    (b!   mg*

    ($!   mg,

    (d!   mg2

    Solution 4 (b! >ro% the free body diagra% of blo$B B

    mgT    =$osθ  RR(i!mgT    −= sinθ  R))(ii!

      

    * *

    *θ 

     

     *

    **θ θ 

    T *

    T ,

    θ *

    θ 

     A

    mg

    m

    m

    B

    4

    T *

    T  T *

    T  $osθ  T 

    * $osθ 

     

    T  sinθ 

    T * sinθ 

    θ θ 

    T  T *

     

    T  $os

    θ T * $os

    θ θ θ 

    mg

    T  $os

    θ 

    θ 

    B mgT 

     sin

    θ 

  • 8/21/2019 Laws of Motion1

    11/65

    Newton’s Laws of Motion 11genius PHYSICS by Pradeep Kshetrapal

    by s-uaring and adding ( )   ( ) **** *$ossin   mgT    =+   θ θ 

    ∴   mgT  *  =

    P roblem 1,. In the abo&e proble% (2!' the angle θ   is

    (a! ,Go (b! .2o  ($! 9Go (d!      

      −*

    tan

    Solution 4 (b! >ro% the solution (2! by di&iding e-uation(ii! by e-uation (i!

    mg

    mg

    T =

    $os

    sin

    θ θ 

    ∴   tan   =1θ  or °= .2θ P roblem 1-.  In the abo&e proble% (2! the tension *T   will be

    (a! mg (b!   mg* ($!   mg, (d!   mg2

    Solution 4 (d! >ro% the free body diagra% of blo$B A 

    >or &erti$al e-uilibriu% ** $os$os   θ θ    T mgT    +=

      °+= .2$os*$os **   mgmgT    θ 

      mgT  *$os **   =θ  R))(i!

    >or horiontal e-uilibriu% ** sinsin   θ θ    T T    =   °= .2sin*mg

      mgT    =** sinθ  R))(ii!

    by s-uaring and adding (i! and (ii! e-uilibriu%

    *** !(2mgT    =   or mgT  2*  =

    P roblem 1$  In the abo&e proble% (2! the angle *θ   will be

    (a! ,Go (b! .2o  ($! 9Go (d!      

      −*

    tan

    Solution 4 (d! >ro% the solution (;! by di&iding e-uation(ii! by e-uation (i!

    mg

    mg

    *$os

    sin

    *

    * =θ θ 

    ⇒  *

    tan * =θ    ∴  

    =   −*

    tan *θ 

    P roblem 1. " %an of %ass m  stands on a $rate of %ass M) He pulls on a light rope passing o&er a

    s%ooth light pulley) /he other end of the rope is atta$hed to the $rate) >or the syste% to bein e-uilibriu%' the for$e e@erted by the %en on the rope will be

    (a! (M O m!g

    (b!   gmM !(*

    +

    ($! Mg

    (d! mg 

    Solution 4 (b! >ro% the free body diagra% of %an and $rate syste%4

    >or &erti$al e-uilibriu%

    gmMT  !(*   +=

    *

    !(   gmMT    +=∴

    M

    m

    T *

    mg

    T * $os

    θ *

    θ *

     A

    T  sin

    θ 

    T * sin

    θ *

    θ 

    T  $os

    θ 

    (M Om!g

    T  T 

  • 8/21/2019 Laws of Motion1

    12/65

    12 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    P roblem 2#. /wo for$es' with e-ual %agnitude F ' a$t on a body and the %agnitude of the resultant for$e

    is,

    F ) /he angle between the two for$es is

    (a!      

      −−

    =

    ;$os (b!    

      

      −−

    ,

    $os ($!    

      

      −,

    *$os (d!    

      

      −?

    =$os

    Solution 4 (a! esultant of two &e$tors " and E' whi$h are worBing at an angle θ  ' $an be gi&en by

    θ $os***  ABB AR   ++=   6"s F B A   == and,

    F R = 7

    θ $os*,

    ****

    F F F F 

    ++=   

      

     

    θ $os**?

    ***

    F F F 

    +=   ⇒  θ $os*

    ?

    ; ** F F    =−

     ⇒   

     

     

     

      −=

    =

    ;$osθ   or  

     

     

     

      −=   −

    =

    ;$os θ 

    P roblem 21. " $ri$Bet ball of %ass 2G gm is %o&ing with a &elo$ity of * ms and is hit by a bat so thatthe ball is turned ba$B with a &elo$ity of *G ms) /he for$e of blow a$ts for G)Gs on the ball) /he a&erage for$e e@erted by the bat on the ball is

    (a! .=G ! (b! 9GG !  ($! 2GG ! (d! .GG ! 

    Solution 4 (a! smv  H*   −=  and smv  H*G*   +=  6be$ause dire$tion is re&ersed7

    kggmm 2)G2G   == ' se$G)G=t 

    >or$e e@erted by the bat on the ballG)G

    !7*(*G62)G76 *   −−=−

    =t 

    v v mF   0 .=G !e#ton

     4. Newton’s "8ird Law. /o e&ery a$tion' there is always an e-ual (in %agnitude! and opposite (in dire$tion! rea$tion)

    (! hen a body e@erts a for$e on any other body' the se$ond body also e@erts an e-ual andopposite for$e on the Arst)

    (*! >or$es in nature always o$$urs in pairs) " single isolated for$e is not possible)

    (,! "ny agent' applying a for$e also e@perien$es a for$e of e-ual %agnitude but in oppositedire$tion) /he for$e applied by the agent is $alled  Action’ and the $ounter for$e e@perien$ed byit is $alled Reaction’)

    (.! "$tion and rea$tion ne&er a$t on the sa%e body) If it were so the total for$e on a bodywould ha&e always been ero i.e. the body will always re%ain in e-uilibriu%)

    (2! If  ABF  0 for$e e@erted on body A by body B ("$tion! and BAF  0 for$e e@erted on body B bybody A (ea$tion!

     /hen a$$ording to Newton’s third law of %otion BA AB   F F    −=

    (9! F@a%ple 4 (i! " booB lying on a table e@erts a for$e on the table whi$h is e-ual to theweight of the booB) /his is the for$e of a$tion)

     /he table supports the booB' by e@erting an e-ual for$e on the booB) /his is the for$e of rea$tion)

    "s the syste% is at rest' net for$e on it is ero) /herefore for$e of a$tion and rea$tion %ust be e-ual and opposite)

    (ii! Swi%%ing is possible due to third law of %otion)

    (iii! hen a gun is Ared' the bullet %o&es forward (a$tion!) /he gun re$oils ba$Bward(rea$tion!

    R

    mg

  • 8/21/2019 Laws of Motion1

    13/65

    Newton’s Laws of Motion 13genius PHYSICS by Pradeep Kshetrapal

    (i&! ebounding of rubber ball taBes pla$e due to third law of %otion)

    (&! hile walBing a person presses the ground in the ba$Bward dire$tion(a$tion! by his feet) /he ground pushes the person in forward dire$tion withan e-ual for$e (rea$tion!) /he $o%ponent of rea$tion in horiontal dire$tion

    %aBes the person %o&e forward)(&i! It is diT$ult to walB on sand or i$e)

    (&ii! :ri&ing a nail into a wooden blo$B without holding the blo$B isdiT$ult)

    Sample problem based on Newton’s third law

    P roblem 22.  You are on a fri$tionless horiontal plane) How $an you get o< if no horiontal for$e ise@erted by pushing against the surfa$e

    (a! Ey #u%ping (b! Ey splitting or sneeing

    ($! Ey rolling your body on the surfa$e (d! Ey running on the plane

    Solution 4 (b! Ey doing so we $an get push in ba$Bward dire$tion in a$$ordan$e with !e#ton5s third law of %otion)

     4. Frame of +eference.

    (! " fra%e in whi$h an obser&er is situated and %aBes his obser&ations is Bnown as his>ra%e of referen$e’)

    (*! /he referen$e fra%e is asso$iated with a $o5ordinate syste% and a $lo$B to %easure theposition and ti%e of e&ents happening in spa$e) e $an des$ribe all the physi$al -uantities liBeposition' &elo$ity' a$$eleration et$) of an ob#e$t in this $oordinate syste%)

    (,! >ra%e of referen$e are of two types 4 (i! Inertial fra%e of referen$e (ii! Non5inertialfra%e of referen$e)

    (i! Inertia/ frame of reference :

    (a! " fra%e of referen$e whi$h is at rest or whi$h is %o&ing with a unifor% &elo$ity along astraight line is $alled an inertial fra%e of referen$e)

    (b! In inertial fra%e of referen$e Newton’s laws of %otion holds good)

    ($! Inertial fra%e of referen$e are also $alled una$$elerated fra%e of referen$e or Newtonianor 8alilean fra%e of referen$e)

    (d! Ideally no inertial fra%e e@ist in uni&erse) >or pra$ti$al purpose a fra%e of referen$e %aybe $onsidered as inertial if it’s a$$eleration is negligible with respe$t to the a$$eleration of theob#e$t to be obser&ed)

    (e! /o %easure the a$$eleration of a falling apple' earth $an be $onsidered as an inertialfra%e)

    (f! /o obser&e the %otion of planets' earth $an not be $onsidered as an inertial fra%e but forthis purpose the sun %ay be assu%ed to be an inertial fra%e)

    Example 4 /he lift at rest' lift %o&ing (up or down! with $onstant &elo$ity' $ar %o&ing with$onstant &elo$ity on a straight road)

    (ii! Non inertia/ frame of reference :

    (a! "$$elerated fra%e of referen$es are $alled non5inertial fra%e of referen$e)

    (b! Newton’s laws of %otion are not appli$able in non5inertial fra%e of referen$e)Example 4 Car %o&ing in unifor% $ir$ular %otion' lift whi$h is %o&ing upward or downward

    with so%e a$$eleration' plane whi$h is taBing o

  • 8/21/2019 Laws of Motion1

    14/65

    14 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

     4.1# Im9u/se.

    (! hen a large for$e worBs on a body for &ery s%all ti%e inter&al' it is $alled i%pulsi&efor$e)

    "n i%pulsi&e for$e does not re%ain $onstant' but $hanges Arst fro% ero to %a@i%u% and

    then fro% %a@i%u% to ero) In su$h $ase we %easure the total e  o  r  $  e

     /i%e

  • 8/21/2019 Laws of Motion1

    15/65

    Newton’s Laws of Motion 1)genius PHYSICS by Pradeep Kshetrapal

    (i&! "n athlete is ad&ised to $o%e to stop slowly after Anishing a fast ra$e) So that ti%e of stop in$reases and hen$e for$e e@perien$ed by hi% de$reases)

    (&! China wares are wrapped in straw or paper before pa$Bing)

    Sample problem based on Impulse

    P roblem 23. " ball of %ass 2Gg %o&ing with an a$$eleration *H*G   sm  is hit by a for$e' whi$h a$ts on itfor G) sec) /he i%pulsi&e for$e is

    [AFMC 1%

    (a! G)2 !-s (b! G) !-s  ($! G), !-s (d! )* !-s 

    Solution 4 ($! I%pulsi&e for$e ti%for$e×=   t am   ×=   )G*G2)G   ××= 0 G), !-s 

    P roblem 24. " for$e of 2G d%nes  is a$ted on a body of %ass 2 g whi$h is at rest for an inter&al of ,seconds' then i%pulse is

     (a!   s! 5G2)G ,−× (b!   s! 5G?=)G ,−× ($!   s! 5G2) ,−× (d!   s! 5G2)* ,−×Solution 4 ($! ti%for$epulseI%   ×=   ,G2G 2 ××=   −   s5G2) ,!−×=

    P roblem 2).  /he for$e5ti%e (F   t ! $ur&e of a parti$le e@e$uting linear %otion is as shown in the Agure) /he %o%entu% a$-uired by the parti$le in ti%e inter&al fro% ero to = second will be

     [CPM" 1%

    (a! * !-s

    (b! O . !-s

    ($! 9 !-s

    (d! Uero

    Solution 4 (d! Mo%entu% a$-uired by the parti$le is nu%eri$ally e-ual to the area en$losed between theF 5t  $ur&e and ti%e "@is) >or the gi&en diagra% area in a upper half is positi&e and in lowerhalf is negati&e (and e-ual to the upper half!) So net area is ero) Hen$e the %o%entu%a$-uired by the parti$le will be ero)

     4.11 Law of Conseration of Linear Momentum.

    If no e@ternal for$e a$ts on a syste% ($alled isolated! of $onstant %ass' the total %o%entu%of the syste% re%ains $onstant with ti%e)

    (! "$$ording to this law for a syste% of parti$lesdt 

     pd F  =

    In the absen$e of e@ternal for$e G=F   then = p  $onstant

    i.e.'   =+++= )))),*   p p p p $onstant)

    or   =+++  →→→

    )))),,**   v mv mv m $onstant

     /his e-uation shows that in absen$e of e@ternal for$e for a $losed syste% the linear%o%entu% of indi&idual parti$les %ay $hange but their su% re%ains un$hanged with ti%e)

    (*! Law of $onser&ation of linear %o%entu% is independent of fra%e of referen$e thoughlinear %o%entu% depends on fra%e of referen$e)

    (,! Conser&ation of linear %o%entu% is e-ui&alent to Newton’s third law of %otion)

    >or a syste% of two parti$les in absen$e of e@ternal for$e by law of $onser&ation of linear%o%entu%)

    =+ *   p p  $onstant)   =+ **   v mv m  $onstant)

    * . 9 =

    O *

    *

       >  o  r  $  e 

       (      !   !

     /i%e (s!

  • 8/21/2019 Laws of Motion1

    16/65

    1, Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    :i

  • 8/21/2019 Laws of Motion1

    17/65

    Newton’s Laws of Motion 1-genius PHYSICS by Pradeep Kshetrapal

    (a! /hrust on the ro$Bet 4 mgdt 

    dmuF    −−=

    Here negati&e sign indi$ates that dire$tion of thrust is opposite to the dire$tion of es$apinggases)

    dt 

    dmuF    −=  (if e

  • 8/21/2019 Laws of Motion1

    18/65

    1 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    Solution 4 (d! Mo%entu% of body for gi&en options are 4

    (a! * seH*G*)GGG   kgmmv    =×== (b! * se$H.)GGGG. , kgmmv    =××==   −

    ($! * se$HG,)9G*)G** .9 kgmmE   −− ×=××==  

    (d! * se$H=*)*GG*G*G* ,, kgmg/m   =××××==   −

    So for option (d! %o%entu% is %a@i%u%)

    P roblem 2. " ro$Bet with a lift5o< %ass .G2),   × kg is blasted upwards with an initial a$$eleration of )HG *sm  /hen the initial thrust of the blast is

    [AI&&& 2##3%

    (a!   !2G;2)   × (b!   !2G2),   × ($!   !2GG);   × (d!   !2GG).   ×

    Solution 4 ($! Initial thrust on the ro$Bet !(   agmF    +=   !GG(G2), . +×=   !2GG);   ×=

    P roblem 3#. In a ro$Bet of %ass GGG kg fuel is $onsu%ed at a rate of .G kgs) /he &elo$ity of the gasese#e$ted fro% the ro$Bet is smHG2 .× ) /he thrust on the ro$Bet is

    [MP PM" 14%

    (a!   !,G*× (b!   !.G2× ($!   !9G*× (d!   !?G*×

    Solution 4 ($! /hrust on the ro$Betdt 

    udmF  =   !.G(G2 .×=   !9G*×=

    P roblem 31. If the for$e on a ro$Bet %o&ing with a &elo$ity of ,GG ms  is *G !' then the rate of $o%bustion of the fuel is

    (a!G); kgs (b! ). kgs  ($! G)G; kgs (d! G); kgs

    Solution 4 (a! >or$e on the ro$Betdt 

    udm=   ∴ ate of $o%bustion of fuel )H;)G,GG

    *Gskg

    u

    dt 

    dm=== 

      

      

    P roblem 32. " ro$Bet has a %ass of GG kg) ?GV of this is fuel) It e#e$ts fuel &apours at the rate of

    kgsec with a &elo$ity of 2GG msec relati&e to the ro$Bet) It is supposed that the ro$Bet isoutside the gra&itational Aeld) /he initial upthrust on the ro$Bet when it #ust starts %o&ingupwards is [NC&+" 1-%

    (a! Uero (b! 2GG !  ($! GGG ! (d! *GGG !

    Solution 4 (b! 3p thrust for$e    

      =dt 

    dmuF    !2GG2GG   =×=

     4.12 Free 5od< =iaram.

    In this diagra% the ob#e$t of interest is isolated fro% its surroundings and the intera$tionsbetween the ob#e$t and the surroundings are represented in ter%s of for$es)

    Example 4

     4.13 A99arent >ei8t of a 5od< in a Lift.

    hen a body of %ass m  is pla$ed on a weighing %a$hine whi$h ispla$ed in a lift' then a$tual weight of the body is mg) /his a$ts on a

    weighing %a$hine whi$h o

  • 8/21/2019 Laws of Motion1

    19/65

    Newton’s Laws of Motion 1genius PHYSICS by Pradeep Kshetrapal

    Condition Fiure ?e/ocit< Acce/eration

    +eaction Conc/usion

    Lift is at rest v  0 G a 0 GR  mg 0 G

    ∴ R 0 mg"pparent weight0 "$tual weight

    Lift %o&ingupward ordownwardwith $onstant&elo$ity

    v  0 $onstanta 0 G

    R  mg 0 G

    ∴ R 0 mg"pparent weight0 "$tual weight

    Lifta$$eleratingupward at therate of Wa’

    v  0 &ariablea J g

    R  mg 0 ma

    ∴R 0 m(g Oa!

    "pparent weight "$tual weight

    Lifta$$eleratingupward at therate of g’

    v  0 &ariablea 0 g

    R  mg 0 mgR 0 *mg

    "pparent weight0 * "$tualweight

    Lifta$$elerating

    downward atthe rate of a’

    v  0 &ariablea J g

    mg  R 0 ma 

    ∴ R 0 m(g a!

    "pparent weight

    J "$tual weight

    Lifta$$eleratingdownward atthe rate of g’

    v  0 &ariablea 0 g

    mg  R 0 mg R 0 G

    "pparent weight0 Uero(weightlessness!

    Lifta$$eleratingdownward atthe rate ofa(g!

    v  0 &ariable a  g mg  R 0 ma R 0 mg  ma R 0 ve

    "pparent weightnegati&e %eansthe body will risefro% the Door ofthe lift and sti$B

    SpringEalan$e

    R

    mg

    LIF"

      Spring

    Ealan$e

    R

    mg

    LIF"

    a

      SpringEalan$e

    R

    mg

    LIF"

    g

      SpringEalan$e

    R

    mg

    LIF"

    a

      SpringEalan$e

    R

    mg

    LIF"

    g

      SpringEalan$e

    R

    mg

    LIF"

    a  g

      SpringEalan$e

    R

    mg

    LIF"

  • 8/21/2019 Laws of Motion1

    20/65

    2# Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    to the $eiling ofthe lift)

    Sample problems based on lit 

    P roblem 33. " %an weighs )=Gkg  He stands on a weighing s$ale in a lift whi$h is %o&ing upwards with a

    unifor% a$$eleration of )H2 *sm  hat would be the reading on the s$ale) !HG( *smg =  [C5*& 2##3%

    (a! .GG ! (b! =GG !  ($! *GG ! (d! Uero

    Solution 4 ($! eading of weighing s$ale !(   agm   += !2G(=G   +=   !*GG=

    P roblem 34. " body of %ass * kg is hung on a spring balan$e %ounted &erti$ally in a lift) If the liftdes$ends with an a$$eleration e-ual to the a$$eleration due to gra&ity g’' the reading on

    the spring balan$e will be

    (a! * kg (b! (. × g! kg  ($! (* × g! kg (d! Uero

    Solution 4 (d! !(   agmR   −=   G!(   =−=   gg   6be$ause the lift is %o&ing downward with a 0 g7

    P roblem 3). In the abo&e proble%' if the lift %o&es up with a $onstant &elo$ity of * msec' the reading onthe balan$e will

    Ee (a! * kg (b! . kg  ($! Uero (d! kg 

    Solution 4 (a! mgR =   !e#tog*= or kg*   6be$ause the lift is %o&ing with the ero a$$eleration7

    P roblem 3,. If the lift in proble%' %o&es up with an a$$eleration e-ual to the a$$eleration due togra&ity' the reading on the spring balan$e will be

    (a! * kg (b! (* × g! kg  ($! (. × g! kg (d! . kg 

    Solution 4 (d! !(   agmR   +=   !(   ggm   +=   6be$ause the lift is %o&ing upward with a 0g7

    mg*=   !gR **×=   !g.= or kg.

    P roblem 3-. " %an is standing on a weighing %a$hine pla$ed in a lift' when stationary' his weight is

    re$orded as .G kg) If the lift is a$$elerated upwards with an a$$eleration of 2smH* ' then the

    weight re$orded in the %a$hine will be !HG( *smg =  [MP PM" 14%

    (a! ,* kg (b! .G kg  ($! .* kg (d! .= kg

    Solution 4 (d! !(   agmR   += !*G(.G   +=   !.=G=  or kg.=  

    P roblem 3. "n ele&ator weighing 9GGG kg is pulled upward by a $able with an a$$eleration of *2   −ms )

     /aBing g to be *G   −ms ' then the tension in the $able is[Mani9a/ M&& 1)%

    (a! 9GGG ! (b! ?GGG !  ($! 9GGGG ! (d! ?GGGG !

    Solution 4 (d! !(   agmT    +=   !2G(9GGG   +=   !T  GGG'?G=

    P roblem 3. /he ratio of the weight of a %an in a stationary lift and when it is %o&ing downward withunifor% a$$eleration a’ is , 4 *) /he &alue of a’ is (g5 "$$eleration due to gra&ity on the

    earth! [MP P&" 1-%

    (a!   g*

    ,(b! ,

    g($!   g,

    *(d! g 

  • 8/21/2019 Laws of Motion1

    21/65

    Newton’s Laws of Motion 21genius PHYSICS by Pradeep Kshetrapal

    Solution 4 (b!*

    ,

    !(lift%o&ingdownwardin%anaofweight

    liftstationaryin%anaofweight=

    −=

    agm

    mg

    ∴*

    ,=

    − ag

    g  ⇒  agg ,,*   −=   or

    ,

    ga =

    P roblem 4#. " 9G kg %an stands on a spring s$ale in the lift) "t so%e instant he Ands' s$ale reading has$hanged fro% 9G kg to 2G kg for a while and then $o%es ba$B to the original %arB) hatshould we $on$lude

    (a! /he lift was in $onstant %otion upwards

    (b! /he lift was in $onstant %otion downwards

    ($! /he lift while in $onstant %otion upwards' is stopped suddenly

    (d! /he lift while in $onstant %otion downwards' is suddenly stopped

    Solution 4 ($! >or retarding %otion of a lift !(   agmR   += for downward %otion

      !(   agmR   −=  for upward %otion

    Sin$e the weight of the body de$rease for a while and then $o%es ba$B to original &alue it%eans the lift was %o&ing upward and stops suddenly)

    Note 4  8enerally we use !(   agmR   += for upward %otion!(   agmR   −=  for downward %otion

    here a0 a$$eleration' but for the gi&en proble% a0 retardation

    P roblem 41. " bird is sitting in a large $losed $age whi$h is pla$ed on a spring balan$e) It re$ords aweight pla$ed on a spring balan$e) It re$ords a weight of *2 !) /he bird (%ass 0 G)2kg! Dies

    upward in the $age with an a$$eleration of *H*   sm ) /he spring balan$e will now re$ord a

    weight of [MP PM" 1%

    (a! *. ! (b! *2 ! ($! *9 ! (d! *; ! Solution 4 (b! Sin$e the $age is $losed and we $an treat bird $age and air as a $losed (Isolated! syste%) In

    this $ondition the for$e applied by the bird on the $age is an internal for$e due to thisreading of spring balan$e will not $hange)

    P roblem 42. " bird is sitting in a wire $age hanging fro% the spring balan$e) Let the reading of the springbalan$e be .  ) If the bird Dies about inside the $age' the reading of the spring balan$e is

    *.  ) hi$h of the following is true

    (a! *   . .   = (b! *   . .   >

    ($! *   . .   < (d! Nothing deAnite $an be predi$ted

    Solution 4 (b! In this proble% the $age is wire5$age the %o%entu% of the syste% will not be $onser&edand due to this the weight of the syste% will be lesser when the bird is Dying as $o%pared to

    the weight of the sa%e syste% when bird is resting is *   . .   < )

     4.14 Acce/eration of 5/oc; on @orionta/ *moot8 *urface.

    (! >8en a 9u// is 8orionta/

    R 0 mg 

    and F  0 ma

    ∴ a 0 F m

    (*! >8en a 9u// is actin at an an/e ' ( to t8e 8orionta/ 'u9ward(

    mg

    R

    m F a

  • 8/21/2019 Laws of Motion1

    22/65

    22 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    R O F  sin θ  0 mg

    ⇒  R 0 mg  F  sinθ  

    and F  $osθ  8 ma

    ∴ m

    F a   θ $os=

    (,! >8en a 9us8 is actin at an an/e ' ( to t8e 8orionta/ 'downward(

    R 0 mg O F  sinθ  

    and F  $osθ  8 ma

    m

    F a

      θ $os=

     4.1) Acce/eration of 5/oc; on *moot8 Inc/ined P/ane.

    (! >8en inc/ined 9/ane is at rest

    Nor%al rea$tion R 0 mg $osθ 

    >or$e along a in$lined plane

    F  B mg sinθ 

    ma 8 mg  sinθ  

    ∴ a 8 g sinθ  

    (*! >8en a inc/ined 9/ane ien a 8orionta/ acce/eration b’

    Sin$e the body lies in an a$$elerating fra%e' an inertial for$e ( m2! a$ts on it in the opposite

    dire$tion)Nor%al rea$tion R 0 mg $osθ  O m2 sinθ 

    and ma 0 mg  sin θ  9 m2 $os θ  

    ∴ a 0 g sinθ   2 $osθ  

    Note 4  /he $ondition for the body to be at rest relati&e to the in$lined plane 4 a 0 g sinθ  2 $osθ  0 G

    ∴ 2 0 g tanθ  

    4.1, Motion of 5/oc;s in Contact.

    Condition Free 0od< diaram &uation Force and acce/eration

    mg $osθ  Om2 sinθ 

    R

    θ  mg

    a

    θ 

    θ 

    2

    mg

    R

    m F  

    $osθ 

    F F  

    sinθ θ 

    F  

    sinθ 

    R

    m F  

    $osθ 

    aF 

    F mg   θ 

    mg $osθ 

    R

    θ  mg

    a F 

  • 8/21/2019 Laws of Motion1

    23/65

    Newton’s Laws of Motion 23genius PHYSICS by Pradeep Kshetrapal

    am& F  =−*   mm

    F a

    +=

    am&  *=*

    *

    mm

    F m& 

    +=

    am&  =*   mm

    F a

    +=

    am& F  *=−*

    mm

    F m& 

    +=

    am& F   =−,*   mmm

    F a

    ++=

    am& &  **   =−,*

    ,*

    !(

    mmm

    F mm& 

    ++

    +

    =

    am&  ,* = ,*,

    * mmm

    F m

    &  ++=

    am&   =,*   mmm

    F a

    ++=

    am& &  **   =−,*

    mmm

    F m& 

    ++=

    am& F  ,* =−,*

    **

    !(

    mmm

    F mm& 

    ++

    +

    =

    Sample problems based on motion o blocks in contact 

    P roblem 43. /wo blo$Bs of %ass . kg and 9 kg are pla$ed in $onta$t with ea$h other on a fri$tionlesshoriontal surfa$e) If we apply a push of 2 ! on the hea&ier %ass' the for$e on the lighter

    %ass will be

    (a! 2 ! 

    m

    F  & 

    ma

    m*

    m*a

    m

    ma

    m*

    m*a

    m

    ma

    m*a

    &  m

    *

    & *

    m

    ma

    m*a

    &  m

    *

    & *

    m,

    & *

    m,a

    m

    m,F 

    B

    m*

    1

    mm

    *F 

     A

    B

    m

    m*

    F  A

    B

    m

    m,

     A B

    m*

    1

    .kg

    9kg

    2!

  • 8/21/2019 Laws of Motion1

    24/65

    24 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    (b! . !

    ($! * !

    (d! None of the abo&e

    Solution 4 ($! Let kgmkgm .'9 *   ==  and !F  2=  (gi&en!

    >or$e on the lighter %ass 0*

    *

    mm

    F m

    .9

    2.

    =   !*=

    P roblem 44. In the abo&e proble%' if a push of 2 ! is applied on the lighter %ass' the for$e e@erted bythe lighter %ass on the hea&ier %ass will be

    (a! 2 ! (b! . !  ($! * ! (d! None of the abo&e

    Solution 4 (d! >or$e on the hea&ier %ass*

    mm

    F m

    +=

    .9

    29

    =   !,=

    P roblem 4). In the abo&e proble%' the a$$eleration of the lighter %ass will be

    (a! *2)G   −ms (b!*

    .

    2   −ms ($! *9

    2   −ms (d! None of the abo&e

    Solution 4 (a!systeof the%ass /otal

    systetheonfor$eNeton"$$elerati   = *H2)G

    G

    2sm==

    P roblem 4,. /wo blo$Bs are in $onta$t on a fri$tionless table one has a %ass m and the other * m  asshown in Agure) >or$e F  is applied on %ass *m then syste% %o&es towards right) Now the

    sa%e for$e F  is applied on m) /he ratio of for$e of $onta$t between the two blo$Bs will be in

    the two $ases respe$ti&ely)

    (a! 4 (b! 4 * ($! 4 , (d! 4 .

    Solution 4 (b! hen the for$e is applied on %ass *m $onta$t for$e,*

    gg

    mm

    m&    =

    +=

    hen the for$e is applied on %ass m $onta$t for$e ggmm

    m& 

    ,

    *

    *

    **   =+=

    atio of $onta$t for$es *

    * =& & 

    F m*m

  • 8/21/2019 Laws of Motion1

    25/65

    Newton’s Laws of Motion 2)genius PHYSICS by Pradeep Kshetrapal

     4.1- Motion of 5/oc;s Connected 0< Mass Less *trin.

    Condition Free 0od< diaram &uation "ension and acce/eration

    amT  =*   mmF a+

    =

    amT F  *=−*

    mm

    F mT 

    +=

    amT F  =−*   mm

    F a

    +=

    amT  *=*

    *

    mm

    F mT 

    +=

    amT   =,*   mmm

    F a

    ++=

    amT T  **   =−,*

    mmmF mT ++

    =

    amT F  ,* =−,*

    **

    !(

    mmm

    F mmT 

    ++

    +=

    amT F   =−,*   mmm

    F a

    ++=

    amT T  **   =−,*

    ,*

    !(

    mmm

    F mmT 

    ++

    +

    =

    amT  ,* =,*

    ,*

    mmm

    F mT 

    ++

    =

    m

    ma

    m*

    m*a

    m

    ma

    m

    ma

    m,

    m,a

    T *

    T *

    m*a

    T  m

    *

    m

    ma

    T *

    m*a

    T  m

    *

    m,

    m,a

    T *

    m*

    m*a

    m

    m*

    F T 

    B

     A

    m

    m*

    F  T 

    B

     A

    m

    m,

    F  A B

    m*

    1

    T *

    m,

    F  A B

    m*

    1

    T *

    m

  • 8/21/2019 Laws of Motion1

    26/65

    2, Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    Sample problems based on motion o blocks connected by mass less string

    P roblem 4-. " %onBey of %ass *G kg is holding a &erti$al rope) /he rope will not breaB when a %assof *2 kg is suspended fro% it but will breaB if the %ass e@$eeds *2 kg) hat is the %a@i%u%

    a$$eleration with whi$h the %onBey $an $li%b up along the rope !HG( *smg =

    [C5*& 2##3%(a! *HG   sm (b! *H*2   sm ($! *H2)*   sm (d! *H2   sm

    Solution 4 ($! Ma@i%u% tension that string $an bear (T max ! 0 *2 × g ! 0 *2G ! 

     /ension in rope when the %onBey $li%b up ( )agmT    +=

    >or li%iting $ondition %a@T T  =  ⇒  *2G!(   =+ agm   ⇒  ( ) *2GG*G   =+ a   ∴  *H2)*   sma=

    P roblem 4. /hree blo$Bs of %asses * kg' , kg and 2 kg are $onne$ted to ea$h other with light string andare then pla$ed on a fri$tionless surfa$e as shown in the Agure) /he syste% is pulled by a

    for$e 'G!F   =  then tension =T [Drissa 7&& 2##2%

    (a! !  (b! 2 !  ($! = ! (d! G !

    Solution 4 ($! Ey $o%paring the abo&e proble% with general e@pression)( )

    ,*

    ,*

    mmm

    F mmT 

    +++

    =   ( )2,*

    G2,

    +++

    =

    !e#to==

    P roblem 4. /wo blo$Bs are $onne$ted by a string as shown in the diagra%) /he upper blo$B is hung by

    another string) " for$e F  applied on the upper string produ$es an a$$eleration of *H*   sm  in

    the upward dire$tion in both the blo$Bs) If T  and T ′  be the tensions in the two parts of thestring' then [AME '&n.( 2###%

    (a!   !T  =);G=  and !T  *).;=′

    (b!   !T  =)2==  and !T  *).;=′

    ($!   !T  =);G=  and !T  =)2==′

    (d!   !T  =);G=  and G=′T Solution 4 (a! >ro% >)E):) of %ass . kg gT a .W.   −=   )R)(i!

    >ro% >)E):) of %ass * kg  gT T a *W*   −−=   )R)(ii!

    >or total syste% upward for$e

    ( ) ( )agT F    ++== .*   ( )  !*=9   += 0 ;G)= N

    by substituting the &alue of / in e-uation (i! and (ii!

    and sol&ing we get !T  *).;W=

    P roblem )#. /hree %asses of 2 kg) G kg and 2 kg are suspended &erti$ally as shown in the Ag) If thestring atta$hed to the support breaBs and the syste% falls freely' what will be the tension in

    *kg2kg,kg

    G! T 

    T *

    T F 

    *kg

    .kg

    T ′ 

    .kg

    T ′ 

    .g

    .a *kg

    T ′ 

    *g

    *a

    T ′ 

    2k g

    Gk g

    2kg

  • 8/21/2019 Laws of Motion1

    27/65

    Newton’s Laws of Motion 2-genius PHYSICS by Pradeep Kshetrapal

    the string between G kg and 2 kg %asses) /aBe *G   −=   msg ) It is assu%ed that the string

    re%ains tight during the %otion

    (a! ,GG !  (b! *2G !  ($! 2G ! (d! Uero

    Solution 4 (d! In the $ondition of free fall' tension be$o%es ero)

    P roblem )1. " sphere is a$$elerated upwards with the help of a $ord whose breaBing strength is A&eti%es its weight) /he %a@i%u% a$$eleration with whi$h the sphere $an %o&e up without

    $ord breaBing is

    (a! .g (b! ,g  ($! *g (d! g 

    Solution 4 (a! /ension in the $ord 0 m(g O a! and breaBing strength 0 2 mg 

    >or $riti$al $ondition ( )   mgagm 2=+   ⇒  ga .= /his is the %a@i%u% a$$eleration with whi$h the sphere $an %o&e up with $ord breaBing)

    4.1 Motion of Connected 5/oc; Der a Pu//e

  • 8/21/2019 Laws of Motion1

    28/65

    2 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    , *T T    =,*

    ,* 7!6(

    mmm

    gmmma

    ++−+=

    Condition Free 0od< diaram &uation "ension andacce/eration

    hen pulley ha&e aAnite %ass M andradius R then tension intwo seg%ents of stringare di

  • 8/21/2019 Laws of Motion1

    29/65

    Newton’s Laws of Motion 2genius PHYSICS by Pradeep Kshetrapal

    T gmam   −= **   gmm

    mmT 

    *

    * !sin(

    ++

    =  θ 

    amgmT  sin   =−   α   g

    mm

    mma

    *

    * !sinsin(

    +−

    =  α β 

    T gmam   −=   β sin**   gmm

    mmT 

    *

    * !sin(sin

    ++

    =  β α 

    Condition Free 0od< diaram &uation "ension andacce/eration

    amT gm sin   =−θ *

    sin

    mm

    gma

    +=

      θ 

    amT  *= gmm

    mmT 

    *

    *

    .

    *

    +=

    amT  =*

    *.

    *

    mm

    gmaa +==

    *

    **

    .   mm

    gma

    +=

    m*aT 

    m*g 

    sinβ 

    m*

     β 

    m

     A

    *

    m*

    aT 

    θ B

    m

    ma

    θ 

    mg sinθ 

    m*

    *T 

    m*g

    m*

    (a

    *!

    m

    ma

    m*

    m*a

    m

    ma

    α 

    mg 

    sinα a

    m

    m

    *

    T T  a

    α    β  A

    B

    *

    B

    T T 

    a*

    a

    m

     A

    m*

  • 8/21/2019 Laws of Motion1

    30/65

    3# Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    "s**

    * !(

    dt 

     x d

    *

    * !(

    *

    dt 

     x d=

    *

    *a

    a   =∴

    =a  a$$eleration of blo$B A

    =*a  a$$eleration of blo$B B

    *

    *

    .*mmgmmT 

    +=T gmam ** **   −=

      T gmam   −=   gMmm

    mma

    76

    !(

    *

    *

    ++−

    =

    gmT am ***   −=   gMmm

    MmmT 

    76

    !*(

    *

    * ++

    +=

    MaT T    =− *   gMmm

    MmmT 

    76

    !*(

    *

    *** ++

    +=

    Sample problems based on motion o blocks over pulley

    P roblem )2. " light string passing o&er a s%ooth light pulley $onne$ts two blo$Bs of %asses m  and *m(&erti$ally!) If the a$$eleration of the syste% is g/ = then the ratio of the %asses is

    [AI&&& 2##2%

    (a! = 4 (b! ? 4 ; ($! . 4 , (d! 2 4 ,

    Solution 4 (b!   gmm

    mma   

     

      

     +−

    =*

    * 0

    =

    gQ by sol&ing ;H?

    * =m

    P roblem )3. " blo$B  A of %ass ; kg is pla$ed on a fri$tionless table) " thread tied to it passes o&er a

    fri$tionless pulley and $arries a body B of %ass , kg at the other end) /he a$$eleration of the syste% is (gi&en g 0 G !*−ms

    [era/a '&n.( 2###%

    (a! *GG   −ms

    (b! *,   −ms

    ($! *G   −ms

    (d! *,G   −ms

    Solution 4 (b!   gmm

    ma   

     

     

     

     +

    =*

    *H,G,;

    ,sm= 

      

      

    +=

    m

    mg

    ma

    m*

    T *

    m*g

    m*a

    MT *

    Ma

    M

    m

     A

    m*

    B

    aa

    T *

    T *

    1

    B

     A

  • 8/21/2019 Laws of Motion1

    31/65

    Newton’s Laws of Motion 31genius PHYSICS by Pradeep Kshetrapal

    P roblem )4. /wo %asses m  and *m  are atta$hed to a string whi$h passes o&er a fri$tionless s%ooth

    pulley) hen 'G   kgm   =   '9*   kgm   = the a$$eleration of %asses is[Drissa 7&& 2##2%

    (a! *G *H sm

    (b! *H2   sm

    ($! *)2 *H sm

    (d! *HG   sm

    Solution 4 ($!   gmm

    mma

    *

    *

    +−

    = G9G

    9G   

      

    +−

    = *H2)*   sm=

    P roblem )).  /wo weights .   and *.   are suspended fro% the ends of a light string passing o&er as%ooth A@ed pulley) If the pulley is pulled up with an a$$eleration g' the tension in the stringwill be

    (a!*

    *.. . . . 

    +(b!

    *

    **. . . . +

    ($!*

    *

    . . . . +

    (d!!(* *

    *

    . . . . +

    Solution 4 (a! hen the syste% is at rest tension in string( ) gmm

    mmT 

    *

    **

    +=

    If the syste% %o&es upward with a$$eleration g  then ( )ggmm

    mmT    +

    +=

    *

    **  gmm

    mm

    *

    *.

    +=   or

    *

    *.

    ##

    ##T 

    +=

    P roblem ),. /wo %asses M  and M* are atta$hed to the ends of a string whi$h passes o&er a pulley

    atta$hed to the top of an in$lined plane) /he angle of in$lination of the plane in θ ) /aBe g 0G ms*)

    If M 0 G kg' M* 0 2 kg' θ  0 ,Go' what is the a$$eleration of %ass M* 

    (a! *G   −ms (b! *2   −ms

    ($!*

    ,

    *   −ms (d! Uero

    Solution 4 (d! "$$eleration gmm

    mm

    *

    * sin

    +−

    =  θ 

    gG2

    ,Gsin)G2

    +−

    =   gG2

    22

    +−=  0 G

    P roblem )-. In the abo&e proble%' what is the tension in the string

    (a! GG ! (b! 2G !  ($! *2 ! (d! Uero

    Solution 4 (b!( )

    gmm

    mmT 

    *

    * sin

    ++=   θ    ( )

    2G

    G),Gsin2G

    ++×=   !2G=

    P roblem ). In the abo&e proble%' gi&en that M*  0 *M  and M*  %o&es &erti$ally downwards witha$$eleration a) If the position of the %asses are re&ersed the a$$eleration of M* down thein$lined plane will be

    (a! * a (b! a  ($! a* (d! None of the abo&e

    Solution 4 (d! If * *mm   = ' then *m  %o&es &erti$ally downward with a$$eleration

    gmm

    mm

    a *

    * sin

    +

    =

      θ 

    gmm

    mm

    *

    ,Gsin*

    +

    = 0 g/ *

    If the position of %asses are re&ersed then *m  %o&es downward with a$$eleration

    m

    m*

    G kg

    9 kg

    M

    M*

    θ 

  • 8/21/2019 Laws of Motion1

    32/65

    32 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    gmm

    mma

    *

    * sinW+

    −=

      θ G)

    *

    ,Gsin*

    =+

    −=   g

    mm

    mm6"s m* 0 *m7

    i.e. the *m  will not %o&e)

    P roblem ). In the abo&e proble%' gi&en that M*  0 *M  and the tension in the string is T ) If thepositions of the %asses are re&ersed' the tension in the string will be

    (a! . T  (b! T   ($! T  (d! T *

    Solution 4 ($! /ension in the string( )

    gmm

    mmT 

    *

    * sin

    ++

    =  θ 

    If the position of the %asses are re&ersed then there will be no e

  • 8/21/2019 Laws of Motion1

    33/65

    Newton’s Laws of Motion 33genius PHYSICS by Pradeep Kshetrapal

    >ro% (i! and (ii! ,H,H

    *

    ==g

    g

    a

    a

    P roblem ,4. In the ad#oining Agure m 0 .m*) /he pulleys are s%ooth and light) "t ti%e t  0 G' the

    syste% is at rest) If the syste% is released and if the a$$eleration of %ass m is a' then thea$$eleration of m* will be

    (a! g 

    (b! a 

    ($!*

    a

    (d! *a 

    Solution 4 (d! Sin$e the %ass *m  tra&els double distan$e in $o%parison to %ass m  therefore

    its a$$eleration will be double i.e) *a

    P roblem ,). In the abo&e proble% (9.!' the &alue of a will be

    (a! g (b!*

    g($!

    .

    g(d!

    =

    g

    Solution 4 ($! Ey drawing the >E: of m  and *m

    T gmam *   −=   R))(i!

    ( )   gmT am ** *   −= R))(ii!

    by sol&ing these e-uation .Hga =

    P roblem ,,. In the abo&e proble%' the tension T  in the string will be

    (a! m*g (b!

    *

    *gm ($!   gm*,

    *(d!   gm*

    *

    ,

    Solution 4 (d! >ro% the solution (92! by sol&ing e-uation

    gmT  **

    ,=

    P roblem ,-. In the abo&e proble%' the ti%e taBen by m in $o%ing to rest position will be

    (a! G)* s (b! G). s  ($! G)9 s (d! G)= s 

    Solution 4 (b! /i%e taBen by %ass *m  to $o&er the distan$e *G cm

    2)*

    *)G*

    .H

    *)G**   ×=×==ga

    /t  se$.)G=

    P roblem ,. In the abo&e proble%' the distan$e $o&ered by m* in G). s will be(a! .G cm (b! *G cm  ($! G cm (d! =G cm

    Solution 4 (a! Sin$e the *m  %ass $o&er double distan$e therefore S 0 * × *G 0 .G cm

    P roblem ,. In the abo&e proble%' the &elo$ity a$-uired by m* in G). se$ond will be

    (a! GG cms (b! *GG cms ($! ,GG cms (d! .GG cms 

    Solution 4 (b! elo$ity a$-uired by %ass *m  in G). se$

    >ro% at uv    += 6"s *H2*

    G*H   smga   === 7

    .)G2G   ×+=v    )H*GGH*   seccmsm   ==

    P roblem -#. In the abo&e proble%' the additional distan$e tra&ersed by m* in $o%ing to rest positionwill be

    m

    m*

    *Gcm

    m*

    m*g

    m*(*a

    !

    m

    *T 

    mg

    ma

  • 8/21/2019 Laws of Motion1

    34/65

    34 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    (a! *G cm (b! .G cm ($! 9G cm (d! =G cm 

    Solution 4 (a! hen *m  %ass a$-uired &elo$ity *GG $%se$ it will %o&e upward till its &elo$ity be$o%es

    ero)

    ( )cm

    g

    u; *G

    GG*

    *GG

    *

    **

    =

    ×

    ==

    P roblem -1.  /he a$$eleration of blo$B B in the Agure will be

    (a!!.( *

    *

    mm

    gm

    +

    (b!!.(

    *

    *

    *

    mm

    gm

    +

    ($!!.(

    *

    *

    mm

    gm

    +

    (d!!(

    **

    mmgm

    +

    Solution 4 (a! hen the blo$B *m  %o&es downward with a$$eleration a' the a$$eleration of %ass m  will

    be a*  be$ause it $o&ers double distan$e in the sa%e ti%e in $o%parison to *m )

    Let T  is the tension in the string)

    Ey drawing the free body diagra% of A and B 

    amT  *=   RR))(i!

    amT gm ** *   =− RR))(ii!

    by sol&ing (i! and (ii!

    ( )*

    *

    .   mm

    gma

    +

    =

    m

    m

    *

     A

    B

    *T 

    m

    *

    m*g

    m*am

    m(*a!

  • 8/21/2019 Laws of Motion1

    35/65

    Newton’s Laws of Motion 3)genius PHYSICS by Pradeep Kshetrapal

     4.1 Motion of Massie *trin.

    Condition Free 0od< diaram &uation "ension and

    acce/eration

    =T   for$e applied bythe string on the blo$B

    amMF  !(   +=

    MaT   =mM

    F a

    +=

    !(

    mM

    F MT 

    +=

    F mM

    mMT 

    !(*

    !*(* +

    +=

    =*T   /ension at %idpoint of the rope

    am

    MT     

     

     

     

      +=

    *

    *

    m 0 Mass of string

    T  0 /ension in string ata distan$e x  fro% theend where the for$e isapplied

    maF  =

    mF a H=

    F L

     x LT     

      

         −=

    aL

     x LmT     

      

         −=

    M 0 Mass of unifor%rod

    L 0 Length of rod

    L

    MxaT F    =−

    M

    F F a *

     −=

    MaF F    =− *      

      + 

      

       −=

    L

     x F 

    L

     x F T  *

    Mass of seg%ent B1

     x LM      =

    F L

     x LT     

      

         −=   F 

    L

     x LT     

      

         −=

    M

    a

    F m

    M

    T *

    m*M

    F m

    aF 

    LT 

     x 

    m 6(L  x !L7

    aT 

    F *

    L

     x  B A

    LT 

     x 

    1

    B

     A

    B

     A

    (M/L! x  A B

    a

    F *

    a

    M

  • 8/21/2019 Laws of Motion1

    36/65

    3, Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

     

    4.2# *9rin 5a/ance and P8  

    and the needle %ust in %iddle of the bea% i.e. a 0 2)E

  • 8/21/2019 Laws of Motion1

    37/65

    Newton’s Laws of Motion 3-genius PHYSICS by Pradeep Kshetrapal

    >or rotational e-uilibriu% about point 4’

    2. > a.  =  !(!( *   +=+ RR(iii!

    >ro% (i!' (ii! and (iii!

     /rue weight *. . .  =

    (b! If the bea% of physi$al balan$e is not horiontal (when the pans are e%pty! and the

    ar%s are e-ual

    i.e.  >  =  > and 2a =

    In this physi$al balan$e if a body of weight   is pla$ed in =  Pan then to balan$e it)

    e ha&e to put a weight   in >  Pan

    >or e-uilibriu% . > .  =    +=+ R))(i!

    Now if pans are $hanged then to balan$e the bodywe ha&e to put a weight *.  in X Pan)

    >or e-uilibriu% . > .  =    +=+ * R))(ii!

    >ro% (i! and (ii!

     /rue weight*

    *   . . .   +

    =

     Sample problems 'iscellaneous(

    P roblem -2. " body weighs = gm' when pla$ed in one pan and =gm' when pla$ed in the other pan of a false balan$e) If the bea% is horiontal (when both the pans are e%pty!' the true weight of the body is

    (a! , gm (b! * gm  ($! 2)2 gm (d! 2 gm

    Solution 4 (b! >or gi&en $ondition true weight 0 *. .  ==×= 0* gm)

    P roblem -3. " plu%b line is suspended fro% a $eiling of a $ar %o&ing with horiontal a$$eleration of a) hat will be the angle of in$lination with &erti$al

    [Drissa 7&& 2##3%

    (a! !H(tan ga− (b! !H(tan ag− ($! !H($os ga− (d! !H($os ag−

    Solution 4 (a! >ro% the Agure

    g

    a=θ tan

    ( )ga Htan −=θ 

    P roblem -4. " blo$B of %ass kg2  is %o&ing horiontally at a speed of )2 ms) " perpendi$ularfor$e of 2 ! a$ts on it for . sec) hat will be the distan$e of the blo$B fro% the point wherethe for$e started a$ting [P0 PM" 2##2%

    (a! G m (b! = m  ($! 9 m (d! * m 

     = 

     AB

    4

    a 2

    a

    gθ 

    a

     θ 

  • 8/21/2019 Laws of Motion1

    38/65

    3 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    Solution 4 (a! In the gi&en proble% for$e is worBing in a dire$tion perpendi$ular to initial &elo$ity) So thebody will %o&e under the eor $riti$al $ondition m(g  a! 0 *, mg  ⇒  mgmamg

    ,

    *=−   ∴ 

    ,

    ga =

    So' this is the %ini%u% a$$eleration by whi$h a Are%an $an slides down on a rope)

    T  T 

    θ θ 

     

    *T  sin θ 

  • 8/21/2019 Laws of Motion1

    39/65

    Newton’s Laws of Motion 3genius PHYSICS by Pradeep Kshetrapal

    P roblem -. " $ar %o&ing at a speed of ,G kilo mete"s per hour’s is brought to a halt in = met"es byapplying braBes) If the sa%e $ar is %o&ing at 9G km) per hour' it $an be brought to a haltwith sa%e braBing power in

    (a! = met"es (b! 9 met"es ($! *. met"es (d! ,* met"es 

    Solution 4 (d! >ro% asuv  *** −=  asu *G * −=

    a

    us

    *

    *

    =  ⇒  *us∝  (if a 0 $onstant!

    .,G

    9G**

    *

    * =   

      =  

     

      

     =

    u

    u

    s

    s ⇒  =.. *   ×==   ss   ,*=  met"es)

     ).1 Introduction.

    If we slide or try to slide a body o&er a surfa$e the %otion is resisted by a bonding between

    the body and the surfa$e) /his resistan$e is represented by a single for$e and is $alled fri$tion)

     /he for$e of fri$tion is parallel to the surfa$e and opposite to the dire$tion of intended

    %otion)

    ).2 "

  • 8/21/2019 Laws of Motion1

    40/65

    4# Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    (ii! :ire$tion of the for$e of li%iting fri$tion is always opposite to the dire$tion in whi$h one

    body is at the &erge of %o&ing o&er the other

    (iii! CoeT$ient of stati$ fri$tion 4 (a! s µ   is $alled $oeT$ient of stati$ fri$tion and deAned as

    the ratio of for$e of li%iting fri$tion and nor%al rea$tion R

    F s = µ 

    (b! :i%ension 4 76 GGG T LM

    ($! 3nit 4 It has no unit)

    (d! alue of s µ   lies in between G and

    (e! alue of  µ   depends on %aterial and nature of surfa$es in $onta$t that %eans whether

    dry or wet Q rough or s%ooth polished or non5polished)

    (f! alue of  µ   does not depend upon apparent area of $onta$t)

    (,! inetic or d

  • 8/21/2019 Laws of Motion1

    41/65

    Newton’s Laws of Motion 41genius PHYSICS by Pradeep Kshetrapal

     

    ).3 ra98 5etween A99/ied Force and Force of Friction.

    (! Part 4A of the $ur&e represents stati$ fri$tion !(   sF  ) Its &alue in$reases linearly with the

    applied for$e

    (*! "t point  A  the stati$ fri$tion is %a@i%u%) /his

    represent li%iting fri$tion !(   lF  )

    (,! Eeyond A' the for$e of fri$tion is seen to de$rease

    slightly) /he portion B1 of the $ur&e therefore represents

    the Bineti$ fri$tion !(   k F  )

    (.! "s the portion B1 of the $ur&e is parallel to x 5a@is

    therefore Bineti$ fri$tion does not $hange with the applied

    for$e' it re%ains $onstant' whate&er be the applied for$e)

     ).4 Friction is a Cause of Motion.

    It is a general %is$on$eption that fri$tion always opposes the %otion) No doubt fri$tion

    opposes the %otion of a %o&ing body but in %any $ases it is also the $ause of %otion) >or

    e@a%ple 4

    (! In %o&ing' a person or &ehi$le pushes the ground

    ba$Bwards (a$tion! and the rough surfa$e of ground rea$ts and

    e@erts a forward for$e due to fri$tion whi$h $auses the %otion)

     If there had been no fri$tion there will be slipping and no %otion)

    (*! In $y$ling' the rear wheel %o&es by the for$e $o%%uni$ated to it by pedalling while front

    wheel %o&es by itself) So' when pedalling a bi$y$le' the for$e e@erted by rear wheel on ground

    %aBes for$e of fri$tion a$t on it in the forward dire$tion (liBe walBing!) >ront wheel %o&ing by

    itself e@perien$e for$e of fri$tion in ba$Bward dire$tion (liBe rolling of a ball!) 6Howe&er' if 

    pedalling is stopped both wheels %o&e by the%sel&es and so e@perien$e for$e of fri$tion in

    ba$Bward dire$tion)7

    (,! If a body is pla$ed in a &ehi$le whi$h is a$$elerating' the for$e of fri$tion is the $ause of 

    %otion of the body along with the &ehi$le ( i.e.' the body will re%ain at rest in the a$$elerating

    &ehi$le until !)mgma   s µ <  If there had been no fri$tion between body and &ehi$le the body will not%o&e along with the &ehi$le)

    hilepedalling

    Pedalling isstoped

    ma µ smg

    a

    "$tion

    >ri$tion

    θ 

     A

    1B

    F l

    F k 

       >  o  r  $  e 

      o   f   f  r   i  $   t   i  o  n

    "pplied for$e4

  • 8/21/2019 Laws of Motion1

    42/65

    42 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    >ro% these e@a%ples it is $lear that without fri$tion %otion $annot be started' stopped ortransferred fro% one body to the other)

    Sample problems based on undamentals o riction

    P roblem 1. If a ladder weighing *2G!  is pla$ed against a s%ooth &erti$al wall ha&ing $oeT$ient of fri$tion between it and Door is G),' then what is the %a@i%u% for$e of fri$tion a&ailable at

    the point of $onta$t between the ladder and the Door[AIIM* 2##2%

    (a! ;2 ! (b! 2G ! ($! ,2 ! (d! *2 !

    Solution 4 (a! Ma@i%u% for$e of fri$tion !RF    sl ;2*2G,)G   =×==  µ 

    P roblem 2. +n the horiontal surfa$e of a tru$B ( µ  0 G)9!' a blo$B of %ass kg is pla$ed) If the tru$B isa$$elerating at the rate of 2m/sec* then fri$tional for$e on the blo$B will be

    [C5*& PM" 2##1%

    (a! 2 !  (b! 9 ! ($! 2)== ! (d! = !

    Solution 4 (a! Li%iting fri$tion !mgR   ss ==)2=)?9)G   =××===   µ  µ 

    hen tru$B a$$elerates in forward dire$tion at the rate of *H2   sm  a pseudo for$e !(ma  of 

    2! worBs on blo$B in ba$B ward dire$tion) Here the %agnitude of pseudo for$e is less than

    li%iting fri$tion So' stati$ fri$tion worBs in between the blo$B and the surfa$e of the tru$B

    and as we Bnow' stati$ fri$tion 0 "pplied for$e 0 2!)

    P roblem 3. " blo$B of %ass * kg is Bept on the Door) /he $oeT$ient of stati$ fri$tion is G).) If a for$e F  of 

    *)2 ! is applied on the blo$B as shown in the Agure' the fri$tional for$e between the blo$Band the Door will be [MP P&" 2###%

    (a! *)2 ! 

    (b! 2 !

    ($! ;)=. !

    (d! G !

    Solution 4 (a! "pplied for$e 0 *)2 ! and li%iting fri$tion 0  µ mg 0 G). 1 * 1 ?)= 0 ;)=. ! 

    "s applied for$e is less than li%iting fri$tion) So' for the gi&en $ondition stati$ fri$tion will

    worB)

    Stati$ fri$tion on a body 0 "pplied for$e 0 *)2 !)

    P roblem 4. " blo$B A with %ass GG kg is resting on another blo$B B of %ass *GG kg) "s shown in Agurea horiontal rope tied to a wall holds it) /he $oeT$ient of fri$tion between  A and B is G)*

    while $oeT$ient of fri$tion between B and the ground is G),) /he %ini%u% re-uired for$e F 

    to start %o&ing B will be [+P&" 1%

    (a! ?GG ! 

    (b! GG !

    ($! GG ! 

    (d! *GG !

    Solution 4 ($! /wo fri$tional for$e will worB on blo$B B)

    B' AB   & & F    +=   gmmgm   B AB'a AB !(   ++=   µ  µ   0 G)* 1 GG 1 G O G), (,GG! 1 G

      0 *GG O ?GG 0 GG!) (/his is the re-uired %ini%u% for$e! 

    P roblem ). " *G kg blo$B is initially at rest on a rough horiontal surfa$e) " horiontal for$e of ;2 !  isre-uired to set the blo$B in %otion) "fter it is in %otion' a horiontal for$e of 9G ! is re-uired

     A

    B F 

    &  AB

     A

    B F 

    & B' 8roun

    d

  • 8/21/2019 Laws of Motion1

    43/65

    Newton’s Laws of Motion 43genius PHYSICS by Pradeep Kshetrapal

    to Beep the blo$B %o&ing with $onstant speed) /he $oeT$ient of stati$ fri$tion is  [AME 1%

    (a! G),=  (b! G).. ($! G)2* (d! G)9G

    Solution 4 (a! CoeT$ient of stati$ fri$tion ,=)G=)?*G

    ;2=

    ×==R

    F l

    S

     µ  )

    P roblem ,. " blo$B of %ass M is pla$ed on a rough Door of a lift) /he $oeT$ient of fri$tion between the

    blo$B and the Door is  µ ) hen the lift falls freely' the blo$B is pulled horiontally on the Door)hat will be the for$e of fri$tion

    (a!  µ  Mg (b!  µ  Mg* ($! * µ  Mg (d! None of theseSolution 4 (d! hen the lift %o&es down ward with a$$eleration WaW then e

  • 8/21/2019 Laws of Motion1

    44/65

    44 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    R

    F =θ tan

    ∴  tan θ  0  µ   6"s we Bnow  µ =R

    F  7

    or !(tan

     µ θ 

      −

    =Hen$e $oeT$ient of li%iting fri$tion is e-ual to tangent of the angle of fri$tion)

    ). +esu/tant Force &Gerted 0< *urface on 5/oc; .

    In the abo&e Agure resultant for$e ** RF S   +=** !(!(   mgmgS   +=   µ 

    * +=   µ mgS

    when there is no fri$tion !G(   = µ   S will be %ini%u% i.e)' S 0 mg

    Hen$e the range of S $an be gi&en by' * +≤≤   µ mgSmg

     ). An/e of +e9ose.

    "ngle of repose is deAned as the angle of the in$lined plane with horiontal su$h that a body

    pla$ed on it is #ust begins to slide)

    Ey deAnition α   is $alled the angle of repose)

    In li%iting $ondition α sinmgF  =

    and α $osmgR =

    So α tan=R

    ∴  α θ  µ  tantan   ===RF 

      6"s we Bnow θ  µ  tan==RF 

    7

     /hus the $oeT$ient of li%iting fri$tion is e-ual to the tangent of angle of repose)

    "s well as θ α  =  i.e. angle of repose 0 angle of fri$tion)

    Sample problems based on angle o riction and angle o repose

    P roblem -. " body of 2 kg weight Bept on a rough in$lined plane of angle ,Go starts sliding with a $onstant&elo$ity) /hen the $oeT$ient of fri$tion is (assu%e g 0 G m/s*!

    [7IPM&+ 2##2%

    (a! ,H   (b! ,H* ($! , (d! ,*Solution 4 (a! Here the gi&en angle is $alled the angle of repose

    So',

    ,Gtan   ==   o µ 

    P roblem .  /he upper half of an in$lined plane of in$lination θ  is perfe$tly s%ooth while the lower half isrough) " body starting fro% the rest at top $o%es ba$B to rest at the botto% if the

    $oeT$ient of fri$tion for the lower half is gi&en[P0 PM" 2###%

    (a!  µ  0 sin θ   (b!  µ  0 $ot θ  ($!   µ  0 * $os θ  (d!  µ  0 * tan θ 

    Solution 4 (d! >or upper half by the e-uation of %otion asuv  *** +=*H!sin(*G** lgv    θ +=   θ singl=  6"s 7sin'*H'G   θ galsu   ===

    >or lower half

    !$os(sin*G * θ  µ θ  −+=   gu  l * 6"s !$os(sin'*H'G   θ  µ θ  −===   galsv  7

    R

    mg $os α α 

    α 

    mg sin α 

    mg

    S%ooth

    ough

  • 8/21/2019 Laws of Motion1

    45/65

    Newton’s Laws of Motion 4)genius PHYSICS by Pradeep Kshetrapal

    ⇒  !$os(sinsinG   θ  µ θ θ    −+=   glgl   6"s Anal &elo$ity of upper half will be e-ual to the initial&elo$ity of lower half7

    ⇒  θ  µ θ  $ossin*   =   ⇒  θ  µ  tan*=

     ).1# Ca/cu/ation of Necessar< Force in =iHerent Conditions.

    If   0 weight of the body' θ  0 angle of fri$tion' ==   θ  µ  tan $oeT$ient of fri$tionthen we $an $al$ulate ne$essary for$e for dior the $ondition of e-uilibriu%

    α $os*F  =   and α sin*. R   −=  Ey substituting these &alue in RF    µ =

    !sin($os   α  µ α    *. *   −=  

    ⇒  !sin($ossin$os   α 

    θ θ α    *. *   −=   6"s θ  µ  tan= 7

    ⇒ !($os

    sin

    θ α 

    θ 

    −=  . 

    *

    (*! Minimum 9us8in force P at an an/e from t8e 8orionta/

    Ey esol&ing * in horiontal and &erti$al dire$tion (as shown in the Agure!

    >or the $ondition of e-uilibriu%

    α $os*F  =   and α sin*. R   +=  Ey substituting these &alue in RF    µ =  

    ⇒  !sin($os   α  µ α    *. *   +=

    ⇒  !sin($ossin$os   α 

    θ 

    θ α    *. *   +=   6"s θ  µ  tan= 7

    ⇒  !($os

    sin

    θ α 

    θ 

    +=  . 

    *

    (,! Minimum 9u//in force P to moe t8e 0od< u9 an inc/ined 9/ane

    Ey esol&ing * in the dire$tion of the plane and perpendi$ular to the plane (as shown in the

    Agure!

    >or the $ondition of e-uilibriu%

    λ α  $ossin   . *R   =+∴  α λ  sin$os   *. R   −=

    and   α λ  $ossin   *. F    =+∴  λ α  sin$os   . *F    −=

    Ey substituting these &alues in   RF    µ =  and sol&ing we get

    !($os

    !(sin

    θ α 

    λ θ 

    −+

    = . 

    *

    (.! Minimum force on 0od< in downward direction a/on t8e surface of inc/ined 9/ane to

    start its motion

    Ey esol&ing * in the dire$tion of the plane and perpendi$ular to the plane (as shown in the

    Agure!

    >or the $ondition of e-uilibriu%

    *

    α 

    R

    * sinα 

    * $osα F 

     

    *

    α 

    R

    * sinα 

    * $osα F 

     

    λ 

    *

    α 

    λ 

    R O * sinα 

      $osλ λ 

    F  O   sinλ 

    * $osα 

    λ 

    *

    α 

    λ 

    F R O * sinα 

    * $osα  O

    sinλ   

    $osλ 

    λ  

  • 8/21/2019 Laws of Motion1

    46/65

    4, Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    λ α  $ossin   . *R   =+

     

    α λ  sin$os   *. R   −=

    and λ α  sin$os   . *F    +=

    Ey substituting these &alues in RF    µ =  and sol&ing we get

    !($os

    !sin(

    θ α 

    λ θ 

    −−

    = . 

    *

    (2! Minimum force to aoid s/idin a 0od< down an inc/ined 9/ane

    Ey esol&ing * in the dire$tion of the plane and perpendi$ular to the plane (as shown in the

    Agure!

    >or the $ondition of e-uilibriu%

    λ α  $ossin   . *R   =+

    ∴   α λ  sin$os   *. R   −=  

    and λ α  sin$os   . F *   =+

    ∴   α λ  $ossin   *. F    −=

    Ey substituting these &alues in RF    µ =  and sol&ing we get

    +−

    =!($os

    !(sin

    α θ 

    θ λ . *

    (9! Minimum force for motion and its direction

    Let the for$e * be applied at an angleα with the horiontal)Ey resol&ing * in horiontal and &erti$al dire$tion (as shown in Agure!

    >or &erti$al e-uilibriu%

    mg*R   =+   α sin

    ∴   α sin*mgR   −= R)(i!

    and for horiontal %otion

    F *   ≥α $osi.e.   R*   µ α  ≥$os R)(ii!

    Substituting &alue of R fro% (i! in (ii!

    !sin($os   α  µ α    *mg*   −≥

    α  µ α 

     µ 

    sin$os   +≥

      mg* R)(iii!

    >or the for$e * to be %ini%u% !sin($os   α  µ α  +  %ust be %a@i%u% i.e.

    G7sin6$os   =+   α  µ α α d

    d  ⇒  G$ossin   =+−   α  µ α   

    ∴   µ α  =tan

    or fri$tionofangle!(tan ==   −  µ α 

    i.e. Fo"  %ini%u% &alue of * its angle fro% the horiontal should be e-ual to angle of fri$tion

    "s  µ α  =tan  so fro% the Agure *sin

     µ 

     µ α 

    +=  and *

    $os

     µ α 

    +=

    Ey substituting these &alue in e-uation (iii!

    λ 

    F O * 

    $osα 

    R O * sinα 

      sinλ    λ    $osλ  

    R O * sinα 

    * $osα F 

    mg

    *

    α 

    λ 

    α *

  • 8/21/2019 Laws of Motion1

    47/65

    Newton’s Laws of Motion 4-genius PHYSICS by Pradeep Kshetrapal

    *

    *

    *

     µ 

     µ 

     µ 

     µ 

    ++

    +

    ≥  mg

    *  *   µ 

     µ 

    +≥

      mg

    ∴   *%in   µ  µ +

    =   mg*  

    Sample problems based on orce against riction

     P roblem . hat is the %a@i%u% &alue of the for$e F  su$h that the blo$B shown in the arrange%ent'

    does not %o&e ( ,*H= µ  !

    [II"67&& '*creenin( 2##3%

    (a! *G ! 

    (b! G ! 

    ($! * !

    (d! 2 !

    Solution 4 (a! >ri$tional for$e R&    µ =

    ⇒  !9Gsin(9G$os   F . F    +=  µ 

    ⇒  ( )9Gsin,,*

    9G$os   F gF    +=

    ⇒  !F  *G= )

    P roblem 1#. " blo$B of %ass m rests on a rough horiontal surfa$e as shown in the Agure) CoeT$ient of 

    fri$tion between the blo$B and the surfa$e is  µ ) " for$e F  0 %g a$ting at angle θ  with the&erti$al side of the blo$B pulls it) In whi$h of the following $ases the blo$B $an be pulled

    along the surfa$e

    (a!   µ θ  ≥tan

    (b!   µ θ  ≥$ot

    ($!   µ θ    ≥*Htan

    (d!   µ θ    ≥*H$ot

    Solution 4 (d! >or pulling of blo$B & * ≥⇒  Rmg   µ θ   ≥sin  ⇒  !$os(sin   θ  µ θ    mgmgmg   −≥

    ⇒  !$os(sin   θ  µ θ    −≥

    ⇒     

      ≥

    *sin*

    *$os

    *sin* *

     θ  µ 

    θ θ  ⇒   µ 

    θ ≥ 

      

      *

    $ot

     ).11 Acce/eration of a 5/oc; Aainst Friction.

    (! Acce/eration of a 0/oc; on 8orionta/ surface

    hen body is %o&ing under appli$ation of for$e *' then Bineti$ fri$tion opposes its %otion)

    Let a is the net a$$eleration of the body

    >ro% the Agure

    k F *ma   −=

    α 

     µ 

    *   µ +

    *F k 

    mg

    ma 

    9Go

    F  m 8

    √ ,kg

    θ m

    mg 0 F 

    +

    F  $os 9G& 

    F sin 9G

    +m

    cos mg sin θ  

    0 p

    mg

  • 8/21/2019 Laws of Motion1

    48/65

    4 Newton’s Laws of Motiongenius PHYSICS by Pradeep Kshetrapal

    ∴m

    F *a   k 

    −=


Recommended