+ All Categories
Home > Documents > LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Date post: 11-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
94
LC-MS AND BOTTOM UP PROTEOMICS JOELLE VINH JOELLE .VINH@ESPCI .FR SMBP ESPCI, CNRS USR 3149, PARIS SPECTROMÉTRIE DE MASSE BIOLOGIQUE ET PROTÉOMIQUE
Transcript
Page 1: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

LC-MS AND BOTTOM UPPROTEOMICSJOELLE VINH

[email protected]

SMBP ESPCI, CNRS USR 3149, PARIS

SPECTROMÉTRIE DE MASSE BIOLOGIQUE ET PROTÉOMIQUE

Page 2: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Summary

SMBP CNRS/ESPCI USR 3149 2

• Omics and Mass spectrometry• Why study the proteome?• Bottom-up proteomics: an LC-MS story• DIA and HRM• Quantification

Page 3: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

The interface betweenChemistry/Biology is essential

SMBP CNRS/ESPCI USR 3149 3

A NA LY T I CA L B I OCH E M I S T RY: A D Y NA M I C A ND E V OLV I NG F I E LD

1. Protein measurement with the folin phenol reagent. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. Biol. Chem. 193, 265–275 (1951). (305 148 citations)

2. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Laemmli, U. K. Nature 227, 680–685 (1970). (213 005 citations)

3. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Bradford, M. M. Anal. Biochem. 72, 248–254 (1976). (155 530 citations)

Two of the three most cited papers of all time report analytical chemistry techniques to study biological systems

To understand a biological process we often need a better comprehension of the associated chemical environment

R. Van Noorden, B. Maher and R. Nuzzo, Nature, 2014, 514, 550–553

Page 4: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Omics or Omix

SMBP CNRS/ESPCI USR 3149 4

A NA LY T I CA L B I OCH E M I S T RY: A D Y NA M I C A ND E V OLV I NG F I E LD

2 divergent lines of enquiry with regard to ‘omic’ sciences and systems biology :

(1) how can analytical chemistry be improved to better answer key biological questions?

(2) are the right questions being asked that take advantage of the tools at our disposal?

‘Omic’ sciences are perhaps the best example of a successful integration of chemistry and biology. D.J. Hare and E.J. New, Chem. Commun., 2016, 52, 8918

The ‘omic’ revolution has been driven by advances in analytical chemistry, from DNA microarray technology to mass spectrometry.

GENOMIXTRANSCRIPTOMIX

PROTEOMIX

Page 5: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

The example of Mass Spec

SMBP CNRS/ESPCI USR 3149 5

A NA LY T I CA L B I OCH E M I S T RY: A D Y NA M I C A ND E V OLV I NG F I E LD

A. Doerr, J. Finkelstein, I. Jarchum, C. Goodman and B. Dekker, Nature Milestones: Mass Spectrometry, Nature Publishing Group, 2015.

1. How much ?2. How deep?3. How fast?4. What flexibility?

Part of the Calutron mass spectrometer first used for preparative MSYergey, A.L. & Yergey, A.K. Preparative scale mass spectrometry: A brief history of the calutron J Am Soc Mass Spectrom (1997) 8: 943.

Page 6: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Summary

SMBP CNRS/ESPCI USR 3149 6

• Omics and Mass spectrometry• Why study the proteome?• Bottom-up proteomics: an LC-MS story• DIA and HRM• Quantification

Page 7: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Proteome : The pool of PROteins isoforms expressed by one genOME of a cell or a tissue at one given time in one givenenvironment.

Objective 1 : Exhaustivity ????

Proteomic Analysis : Dynamic and quantitative analysis of the regulationof expression of genes products for a givenbiological process in order to decipher molecularinteraction mechanisms.

Objective 2 : Quantitative Analysis !!!!

Proteomics

SMBP CNRS/ESPCI USR 3149 7

Anderson et Anderson, Electrophoresis, 1998

Wilkins et al., Biotechnol Gene Eng Rev, 1995

Page 8: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

phosphorylation, acetylation,oxidation, glycosylation, lipoylation

1 gene = 1 protein ??

From DNA to proteins

SMBP CNRS/ESPCI USR 3149 8

1 gene = several proteins

Page 9: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

No apparent correlation between the size of the genome and the complexity of the organism

SMBP CNRS/ESPCI USR 3149 9

Organism # Chromosom

Genome size (pb)

Human 2x23 3.2 E9

Mus musculus (mouse) 2x20 2.7 E9

Drosophila melanogaster (Fly) 2x4 1.4 E8

Tobacco 2x24 4.8 E9

Zea mays (corn) 2x10 3.9 E9

Saccharomyces cerevisiae (yeast) 17 1.5 E7

E Coli (bacteria) 1 4.64 E5

Phage λ 1 4.85 E4

Allium cepa (onion) 2x8 1.5 E10

Amoeba dubia (amibae) 2x6 6.7 E11

Lysandra atlantica (blue lycaenid butterfly)

250 N/A

Ophioglossum reticulatum 2x630 1.6 E11

P R OT E IN – C O D I N GH UM AN G E N E S

2001: 300002004: 250002012: 210652013: 207742014: 19000

Kelly Rae Chi, The dark side of the human genome Nature 538, 275–277 (2016)

Page 10: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Schwanhäusser et al, Nature, 2011

Correlation with mRNA

SMBP CNRS/ESPCI USR 3149 10

• Lower stability of mRNA (lowerhalf-life)

• Largerdistribution of abundance of protein

Page 11: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Why study the proteome ?

SMBP CNRS/ESPCI USR 3149 11

S A ME G EN O ME B U T D IF F ER EN T PR O TEO ME

Genome is static butStructures change just as the caterpillar develops into a butterfly

Page 12: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Taxonomy of OmicsC H A LLE NG E S OF PROT E I N P T M A NA LY S I S B Y M S

Genomics Transcriptomics Proteomics Metabolomics

Gene sequences mRNA sequences& expression level

Proteins isoformssequences & expression

levels

Metabolites as productsor substrate of enzymes

PTMomics

Proteoforms sequences& expression levels

Proteins and Proteoforms: New SeparationChallenges Regnier FE and Kim JH, Anal Chem. 2018

How many human proteoforms are there? Aebersold R et al Nat Chem Biol. 2018

Let’s focus

SMBP CNRS/ESPCI USR 3149 12

Page 13: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Summary

SMBP CNRS/ESPCI USR 3149 13

• Omics and Mass spectrometry• Why study the proteome?• Bottom-up proteomics: an LC-MS story• DIA and HRM• Quantification

Page 14: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Bottom-up proteomics workflow

SMBP CNRS/ESPCI USR 3149 14

= AGO_DROME2. 3.1.1.

= R2D2_DROME

= …

4.

1 : P r o t e i n sExtraction, purification of proteinsProteolysis to generate peptides

2 : P e p t i d e sComplex mixturesSeparation and purification

3 : M a s s s p e c t r o m e t r yPeptide massesPeptide sequences

4 : D a t a p r o c e s s i n gRaw data analysis

Page 15: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Shotgun Proteomics

SMBP CNRS/ESPCI USR 3149 15

Unknown organization

Spare parts inventory

Identification of original composition

Potential modifications

False positive identification Artifacts

Page 16: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

0 missed cleavage: R, EMINDER, ATTEACTIVITYK, FTR,YPSINK, PEPTIDEBNDS

R EMINDER ATTEACTIVITYK FTR YPSINK PEPTIDEBNDS

Generate tryptic peptides whose sequencing in tandem mass spectrometry is favored by the basic residue at C-ter

1 missed cleavage: R, EMINDER, ATTEACTIVITYK, FTR,YPSINK, PEPTIDEBNDS,REMINDER,EMINDERATTEACTIVITYK, ATTEACTIVITYKFTR,FTRYPSINK, YPSINKPEPTIDEBNDS

Example: trypsin, which cleaves after the carboxyl moiety. of lysine (K). of arginine (R) (except when followed by proline)

Endoproteolysis

SMBP CNRS/ESPCI USR 3149 16

Page 17: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Separation and purification

SMBP CNRS/ESPCI USR 3149 17

Elution : organic solvent gradient (acetonitrile, methanol, …)

Compatible with mass spectrometry

Charge → ion exchange Polarity → HILIC Hydrophobicity → reverse phase chromatography

= AGO_DROME2. 3.1.1.

= R2D2_DROME

= …

4.

Conventional Nano

Chip-LC/MS

Page 18: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

• Liquid chromatography aims at the separation of molecules according totheir physico-chemical properties using various stationary and mobilephases

• From people in the separation sciences we need a detector and

> A mass spectrometer is one of them, that allows the m/zmeasurement of eluted species.

• Separation of proteins or peptides ?

• Which phase, which columns?

• Which ion source?

LC-MS is a Gold standard for bottom-up proteomics

18SMBP CNRS/ESPCI USR 3149

Page 19: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic tools

19

Separation : IEC, SEC, affinity

Mix of proteins Mix of peptides

Fractions collection

Separation : IEC, RP

1D Gel

Digestion

MS and MS/MS

SMBP CNRS/ESPCI USR 3149

Page 20: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic separation mode

20

Chromatographic methods

Size/steric exclusion chromatography

Properties of proteins

• Size (MW)

Elution Order: large molecules first

SMBP CNRS/ESPCI USR 3149

Porous material?

Page 21: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic methods

Size/steric exclusion chromatographyAffinity chromatography

Properties of proteins

• Size (MW) • Activity (affinity)

Elution: Ionic strenght gradientpH gradient competitive elution

Chromatographic separation mode

21SMBP CNRS/ESPCI USR 3149

Page 22: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic methods

Size/steric exclusion chromatographyAffinity chromatography

Ion exchange chromatography

Properties of proteins

• Size (MW) • Activity (affinity)• Charge (pI)

Elution: Ionic strenght gradientpH gradient

Anions exchange: amino moietyCations exchange : sulfonic/phospho/carboxylicmoiety

pH > pI : -pH < pI : +

Chromatographic separation mode

22SMBP CNRS/ESPCI USR 3149

Page 23: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic methods

Size/steric exclusion chromatographyAffinity chromatographyIon exchange chromatography

Normal phase chromatography

Properties of proteins

• Size (MW) • Activity (affinity)• Charge (pI)• Polarity

Elution : organic solvent gradient (Hexane, toluene,…)

Chromatographic separation mode

SMBP CNRS/ESPCI USR 3149 23

Page 24: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic methods

Size/steric exclusion chromatographyAffinity chromatographyIon exchange chromatographyNormal phase chromatographyHydrophilic interaction chromatography(HILIC)

Properties of proteins

• Size (MW) • Activity (affinity)• Charge (pI)• Polarity

Elution : aqueous phase gradient

Chromatographic separation mode

24

Easy LC-MS interface

SMBP CNRS/ESPCI USR 3149

Page 25: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Chromatographic methods

Size/steric exclusion chromatographyAffinity chromatographyIon exchange chromatographyNormal phase chromatographyHydrophilic interaction chromatography (HILIC)Reversed phase chromatography (RP)

Properties of proteins

• Size (MW) • Activity (affinity)• Charge (pI)• Polarity

• Hydrophobicity

Elution : organic solvent gradient (acetonitrile, methanol, …)Easy LC-MS interface

Chromatographic separation mode

25SMBP CNRS/ESPCI USR 3149

Page 26: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Selection of column dimension

26

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Size and nature of particules

Van Deemter equation

uCuBAH *++=

A: Convection diffusion (φstationnaire)

B: Longitudinal diffusion (φmobile)

C: Mass transfer resistance (φstationnaire /φmobile )

SMBP CNRS/ESPCI USR 3149

Page 27: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Selection of column dimension

27

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Size and nature of particules

uCuBAH *++=

Van Deemter equation

SMBP CNRS/ESPCI USR 3149

Page 28: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Selection of column dimension

28

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Pore size/ grafted alkyle chain

peptides

proteins

dpore > 500 Å macroporous20 Å < dpore < 500 Å mesoporousdpore < 20 Å microporous

SMBP CNRS/ESPCI USR 3149

Page 29: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Column lenght

Selection of column dimension

29

ω1/2 = 0.28 min

ω1/2 = 0.47 min

3h with 15cm lenght

3h with 50cm lenght

Sample : Kidney Biopsy (S. Liuu et al)

LTQ - FT Ultra (ThermoFisher Scientific)

0

50

100

150

200

3h 50cm 3h 15cm

194150

Nom

bre

de p

roté

ines

iden

tifié

es

)2.( eqHLN =

SMBP CNRS/ESPCI USR 3149

Page 30: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Selection of column dimension

30

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Gradient duration/slope

LTQ - FT Ultra (ThermoFisher Scientific)

7881092 1031 1035 909

0

200

400

600

800

1000

1200

1h 3h 5h 10h 15h

# Peptides (FDR<1%)

34945588 5963

7710 7899

0

2000

4000

6000

8000

10000

1h 3h 5h 10h 15h

# MS/MS

73

111 99 10083

0

20

40

60

80

100

120

1h 3h 5h 10h 15h

# Proteins (3 pep./prot.)

Sample : Kidney Biopsy (S. Liuu et al)

SMBP CNRS/ESPCI USR 3149

Page 31: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Selection of column dimension

31

• Column selection is a function of the analytes of interest, nature, complexity and abundance.

Column internal diameter and flow rate

Increased sensitivity (ESI signal concentration dependant)

Diamètre interne Nomenclature Débit Quantité

4 mm Conventionnel LC 1ml/min 1-200 μg (10pmol)

2 mm Narrowbore LC 200µl/min 2-50 μg (5pmol)

1 mm Micro LC 40µl/min 0,05-10 μg (1pmol)

300 µm Capillaire LC 4µl/min 1 ng-1μg (500 fmol)

75 µm NanoLC 300nl/min 0,02-0,05 ng (1 fmol)

SMBP CNRS/ESPCI USR 3149

Page 32: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

• The conventional ESI interfaces operate at high flow rates: typically,1−1000μL.min−1 is a typical concentration-sensitive technique. Within this range,increasing the flow rate does not normally increase the signal.

• NanoESI-MS, at low flow rates (typically, 300-50 nL.min−1), exhibits superior masssensitivity, with a high ionization efficiency.

• Max Concentration = K/(Volume colonne)

decrease the column diameter optimization of the flow rate for nanoESI mode

Advantage of low flow rates

32

Cmax =mN1/2

2π 1/2𝐕𝐕𝟎𝟎(1 + k)

• Cmax : eluted analyte concentration• m : absolute abundance• N : column efficiency• V0 : column volume• k : retention factor

Gel 2D et ses limites Outils chromatographiques

SMBP CNRS/ESPCI USR 3149

Page 33: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Which ion source ?

33

• ESI : Compatibility with liquid phase

• MALDI : Fraction collection

• Complementarity:– Ion mode => different ion nature– Advantages MALDI: Off-line analysis– Advantages ESI: Speed

Addition of matrixOutput nanoLC

SMBP CNRS/ESPCI USR 3149

Page 34: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Gel 2D et ses limites Outils chromatographiques

TriVersa NanoMate (Advion)

34

ESI Chip

Combination Autosampler/ion source- Fraction collector- Sample cooling- “Spray sensing”

4 operation modes- direct infusion - LC Coupling- Fraction collector- LESA (Liquid Extraction Surface Analysis)

SMBP CNRS/ESPCI USR 3149

Page 35: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Other interfaces nano-ESI

35

EASY-Spray Chip Cube Interface

୭ Reduction of dead volumes (extra-column, leaks, etc.)୭ Robustness ease of use୭ Costs

SMBP CNRS/ESPCI USR 3149

Page 36: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Pics des contaminants de PEG

micro pumpACN gradient

waste

samplesyringe

Analytical column(RP)

ESI-FTMS

loading pump100% solvent A

Following the samples … and others

36SMBP CNRS/ESPCI USR 3149

Page 37: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Following the samples … and others

37

With

Without

Hesse et al., J. Chrom. A, 1189 (2008)

Gain in sensitivité

Peaks of PEG contaminants

micro pumpACN gradient

waste

samplesyringe

Analytical column(RP)

ESI-FTMS

Purification cartridge

loading pump100% solvent A

SMBP CNRS/ESPCI USR 3149

Page 38: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Optimization of peptides analysis in NanoLC-MS/MS

38

• In all cases: Duration of gradient according to sample complexity Duration of dynamic exclusion according to peak width

• ESI : duty cycle Scan time (best ratio quality/time) # of MS/MS per MS

• MALDI : time is not (?) an issue … Fraction collection MS/MS (energy, # laser shots) # de MS/MS per spot

SMBP CNRS/ESPCI USR 3149

Page 39: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Elution gradient0 => 50 % B in 180 min then 90% B for 15 min @300nl/minA = 98% water/ 2% ACN/ 0,1% AF (v:v:v) ; B = 10% water/ 90% ACN/ 0,1% AF(v:v:v)

Automatic edition of a precursor list with their fragments

39

Instruments : Ultimate 3000 RSLC (Dionex), Qexactive (ThermoFisher Scientific)

MS MS/MS MS/MS MS/MS MS/MS MS/MS MS/MS MS/MS MS/MS MS/MS MS/MS

0.25s 0.37s 0.49s 0.61s 0.73s 0.85s 0.97s 1.09s 1.21s 1.33s 1.45s0.00

Automated dynamic exclusion

1 FT full scan R 70,000

10 FT MS/MS scan

R 17,500

NanoLC-MS with sequential MS/MS and MS

SMBP CNRS/ESPCI USR 3149

Page 40: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Example of LC MS profileThyroid biopsy

SMBP CNRS/ESPCI USR 3149 40

Condition LC: RSLC, column C18, 5µ, 300A, 75µm id, 50 cm, 35°C, 300nL/min, 200bar Condition MS: Qexactive, DDA scan top 10, resm/z300 MS 50000, resm/z300 MS/MS 17500

Page 41: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Zoom on 2D map: dynamic range challenge

SMBP CNRS/ESPCI USR 3149 41

Zoom 50-55min, m/z 500-900, peak width=30s, sampling time MS 0,6s and MS/MS < 120ms

Page 42: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Raw data processing

SMBP CNRS/ESPCI USR 3149 42

D:\Data_Projets\...\QE131207_1765_c_chg 07-Dec-13 7:39:31 PM mix 1 tmt ikavirRSLC Sophie Colonne Chiara 50 cmRT: 0.00 - 66.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65Time (min)

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

29.23631.39

25.97596.35

23.41559.35

32.65500.96 46.53

914.4824.85

654.98 30.33555.32 34.48

688.61 44.25903.98

48.00629.6942.73

776.8438.86

485.3234.99

531.3319.17

446.7820.72

628.3549.03

829.0218.47

400.2549.87

719.0855.83

675.4016.90477.62

56.88733.94

14.70436.24

60.86865.45

62.29567.33

11.71445.12

4.72445.12

5.87445.12

2.97445.12

NL:1.52E10TIC MS QE131207_1765_c_chg

QE131207_1765_c_chg #9434 RT: 32.09 AV: 1 NL: 9.98E7T: FTMS + p NSI Full lock ms [400.00-2000.00]

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000m/z

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

631.32z=4

841.42z=3681.41

z=2

813.50z=1407.26

z=2 559.83z=2532.37

z=1694.06

z=3918.67

z=4

618.60z=4

753.39z=?

953.14z=3

1224.56z=3

1261.62z=2

1095.91z=3

1041.09z=2

861.63z=?

1148.84z=3

1771.33z=?

1573.97z=?

1901.14z=?

1855.73z=?

1368.71z=?

1728.30z=?

QE131207_1765_c_chg #9435 RT: 32.09 AV: 1 NL: 2.81E6T: FTMS + p NSI d Full ms2 [email protected] [77.67-1165.00]

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150m/z

0

10

20

30

40

50

60

70

80

90

100

Rela

tive

Abun

danc

e

559.83z=2

128.13z=1

962.52z=1

86.10z=? 533.33

z=1230.17z=?

175.12z=?

130.14z=1

964.53z=1

944.53z=1

717.41z=1

505.33z=1

790.44z=1

691.37z=1

376.27z=?

336.20z=?

272.13z=?

112.09z=?

586.33z=?

158.09z=?

830.49z=?

889.49z=?

215.10z=?

412.22z=?

MS/MS

Full scan MS

D:\2014\...\QE130925_1221_i_ssh 9/25/2013 5:49:08 PM Thyroide sain-malade TMT BOUNDRSLC Sophie Colonne Shakir 50cm

RT: 19.84 - 130.39

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130Time (min)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Relative

Abunda

nce

66.15474.79

56.30584.31

96.37593.34

34.70681.67

48.84629.07

35.98449.91 61.39

583.3339.66445.57

45.79603.37 52.59

424.88 87.36957.4745.51

555.8059.74

519.78

68.72826.14

70.83783.41

64.88517.25

33.82662.33

102.44749.71

75.77432.25 83.43

671.68 105.69815.44

80.36680.3472.92

935.4988.81

637.8795.83

612.34 114.78493.40 115.98

831.1097.54

445.2527.00

468.7628.68

485.26112.55749.90

117.03746.48

123.89445.12

25.12630.28

125.48445.12

NL:2.54E9TIC MS QE130925_1221_i_ssh

LC

Page 43: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Peptide sequencing: Example of one MS/MS spectra

SMBP CNRS/ESPCI USR 3149 43

Two ladders are superimposed in opposite direction

Identification of sequence HYQLNQQWER

y8

y1y4

y7

y6

y5

y9

y3y2

R E W Q Q N L Q Y H

z8

a1a2

b2

b3 b4b1 b5 b6b7 b9

H Y Q L N Q Q WE R

Page 44: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

High accuracy/high resolution effecton a peptidic mix

SMBP CNRS/ESPCI USR 3149 44

F040223_0127_i_pjm #1-17 RT: 0.00-0.06 AV: 17 NL: 9.86E5T: FTMS + p NSI Full ms [ 300.00-1500.00]

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

dan

ce

684.38

718.38

558.82

488.28

631.82455.33

566.30

504.79

433.35

673.36

381.13

1442.351385.451273.631048.51

793.41

839.47

955.01

761.72

898.96 1131.09969.51 1082.54

989.17 1229.961152.93

682.3562 682.8394

887.47

85

90

95

100

Rel

ativ

e A

bund

ance

684.3847

683.8880

684.8847

685.3854

685.8870

684.2017

686.6917 687.0317

685.2107

686.3806

F040223_0127_i_pjm #1-17 RT: 0.00-0.06 AV: 17 NL: 9.86E5T: FTMS + p NSI Full ms [ 300.00-1500.00]

682.5 683.0 683.5 684.0 684.5 685.0 685.5 686.0 686.5 687.0 687.5 688.0m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

R : 12500

VLDTGGPISVPVG

Page 45: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

High accuracy/high resolution effecton a peptidic mix

SMBP CNRS/ESPCI USR 3149 45

F040223_0114_i_pjm #1 RT: 0.00 AV:1 NL: 4.11E4T: FTMS + p NSI Full ms [ 300.00-1500.00]

683.8 684.0 684.2 684.4 684.6 684.8 685.0 685.2 685.4 685.6 685.8 686.0 686.2m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Rela

tive

Abun

danc

e

683.89

684.39

685.38684.93684.66 685.22684.22

684.88

684.34684.35684.36684.37684.38684.39684.40684.41684.42684.43684.44684.45684.46m/z

05

1015

202530354045

50556065

707580859095

100

Rela

tive

Abun

danc

e

Exp 684.3898Th 684,3870

Exp 684.3800Th 684,3777

684.3962

R : 400 000

INVIGEPIDER1st isotope VLDTGGPISVPVG

2d isotope

VLDTGGPISVPVG1st isotope

Page 46: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Elution Gradient0 => 50 % B in 35 min then 100% B for 10 minA = 98% water/ 2% ACN/ 0,1% AF (v:v) ; B = 10% water/ 90% ACN/ 0,085%AF (v:v)

Automatic editionof a precursor listwith theirfragments

Instruments : Ultimate 3000 (Dionex), LTQ FT (ThermoFisher Scientific)

NanoLC-MS with parallel IT MS/MS and FT MS

46SMBP CNRS/ESPCI USR 3149

Page 47: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Hela digest in 30 min gradient by nanoLC LTQ MS/MS FTICR MS

SMBP CNRS/ESPCI USR 3149 47

821 822 823 824 825 826 827m/z

0

50

1000

50

1000

50

100

Rel

ativ

e Ab

unda

nce

0

50

1000

50

100 822.9703822.4714

823.4708

823.9736824.4779 825.4529 826.1323 827.4516821.9266820.4102 821.4129

822.9763822.4759

823.4768

823.9777824.4784 825.7949825.1147 826.5428821.9374 827.5451821.4026820.4494

822.9742822.4738

823.4749

823.9758824.4763 825.4493 826.1310 826.5419 827.5451821.9346821.4951820.4175

822.4720822.9732

823.4726

823.9740824.4738 825.7937 826.5397821.9327 827.5446821.4389820.3575

822.4732822.9748

823.4764

823.9781 825.1088 825.7942 826.5410821.4941 821.9946 827.7689820.9124

NL: 1.08E6g180330_0318_h_jlv#9113-9300 RT: 61.17-62.21 AV: 25 T: FTMS + p NSI Full ms [400.00-2000.00]

NL: 1.21E6g180330_0319_h_jlv#8716-8858 RT: 61.27-62.06 AV: 18 T: FTMS + p NSI Full ms [400.00-2000.00]

NL: 1.04E6G180330_0317_h_jlv#8080-8220 RT: 61.24-62.03 AV: 19 T: FTMS + p NSI Full ms [400.00-2000.00]

NL: 7.07E5g180330_0320_h_jlv#7941-8068 RT: 61.18-61.87 AV: 8 T: FTMS + p NSI Full ms [400.00-2000.00]

NL: 2.21E5g180330_0321_h_jlv#7409-7542 RT: 61.28-62.07 AV: 9 T: FTMS + p NSI Full ms [400.00-2000.00]

R = 12500

R = 25000

R = 50000

R = 100000

R = 200000

At m/z 400

Page 48: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Hela digest in 30 min gradient by nanoLC LTQ MS/MS FTICR MS

SMBP CNRS/ESPCI USR 3149 48

RT: 20.07 - 71.38

25 30 35 40 45 50 55 60 65 70Time (min)

0

50

100

0

50

100

0

50

100

Rel

ativ

e Ab

unda

nce

0

50

100

0

50

100

66.27966.5884457.54

655.8536449.42

894.4654546.48

652.35901 66.14966.58820

66.37966.58795

52.52895.9469643.57

917.4603939.82

500.7863837.53

450.2809132.49656.2866228.73

576.2873523.89

479.9190166.27

966.5948546.43652.36273

49.48894.47064

57.53655.8571242.33

590.8159859.80

851.4599640.26831.49701 66.38

966.5938136.36

425.7675530.74516.8026128.77

576.2900423.80479.78922

57.46655.8557746.37

652.3615166.22

966.5912549.50477.30560 56.63

902.9776063.62

903.7870545.20

472.7698768.12

872.4147336.32425.76691

42.23590.8149430.67

516.8017628.67576.2889423.78

479.7883966.27

966.5892366.38

966.5892352.64

895.9495266.09

966.5898457.50655.85461

46.45652.3603542.32

817.4143740.18831.49365

36.32425.76645

30.56516.80096

28.75576.2881523.80

479.7876666.27

966.5910650.07495.29297 55.55

1108.5422442.25

590.8146440.20

831.4946346.38

652.3615165.98

886.1171357.60

655.8554736.52425.7667528.83

576.2887025.23630.54181

NL:1.38E8TIC MS g180330_0318_h_jlv

NL:9.71E7TIC MS g180330_0319_h_jlv

NL:9.08E7TIC MS G180330_0317_h_jlv

NL:7.00E7TIC MS g180330_0320_h_jlv

NL:3.78E7TIC MS g180330_0321_h_jlv

RT: 58.02 - 65.61

58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5 63.0 63.5 64.0 64.5 65.0 65.5Time (min)

50

100

50

100

0

50

100

Relat

ive A

bund

ance

50

100

50

100

59.72851.45587 61.70

822.4715060.73

911.40155 63.53903.78479

58.46710.37671

64.29851.06219

59.31830.45020

64.63880.4094262.35

653.9986663.24

903.78540

59.80851.45996 61.64

822.4760160.76864.13947

59.61807.9572858.64

792.8830663.56

903.7901662.11

743.4120562.48

770.8985064.43

851.0675064.73

880.41571

63.62903.7870559.77

851.4580761.61

822.4735760.74

911.4055258.48

710.3791564.28

851.0654963.38

903.7870559.51

807.45599 64.67880.41309

61.94889.43768

60.79911.40356

64.38851.06384

61.57822.47198 63.42

903.7853462.17771.92828

64.81880.4108359.72

807.45404 63.12916.51239

60.01884.97296

64.17822.46161

59.34830.45135

58.061088.56445

64.37851.06537

61.96889.43683 64.79

880.4122363.52

903.7868060.28

670.9061962.36

654.0008561.66

822.4730859.69

807.4552658.70797.41077

65.01880.41229

NL:6.74E7TIC MS g180330_0318_h_jlv

NL:6.20E7TIC MS g180330_0319_h_jlv

NL:4.95E7TIC MS G180330_0317_h_jlv

NL:2.93E7TIC MS g180330_0320_h_jlv

NL:1.76E7TIC MS g180330_0321_h_jlv

R = 12500

R = 25000

R = 50000

R = 100000

R = 200000

Top 7

Top 15

RT: 42.34 - 60.31

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60Time (min)

50

100

50

100

50

100

Rel

ativ

e Ab

unda

nce

50

100

50

100

57.54655.8536446.48

652.3590150.07

495.2914452.52

895.9469649.15714.34393

59.59807.95306

56.87839.4657646.02

706.3973453.54

713.3653050.39

703.8601742.39

817.41248

46.47652.36279

57.53655.8571250.20

495.2938552.62

895.9534949.56

477.3065545.05737.92542 59.80

851.4599656.71

902.9796853.38

830.4547744.16

599.8394252.15

818.9524555.68

697.38000

57.46655.8557746.37

652.36151 50.00495.2931845.01

737.9236549.07

714.3469252.51

895.9512359.55

807.4556356.63

902.9776043.59

917.4656450.76

640.3675555.63

697.37866

57.50655.8546146.45

652.3603552.64

895.9495250.06495.29254 53.53

713.3667649.11

714.3455252.02

818.9490445.00

737.92230 59.63807.45435

56.67902.97577

42.39817.41443

50.07495.29297

52.55895.95074

46.38652.36151 57.52

655.8555949.11

714.34631 52.19799.88635

45.02737.92316

55.63697.37823

42.42817.41559

59.69807.45526

53.09528.27454

47.25765.90204

NL: 1.89E7Base Peak F: FTMS + p NSI Full ms [400.00-2000.00] MS g180330_0318_h_jlv

NL: 1.62E7Base Peak F: FTMS + p NSI Full ms [400.00-2000.00] MS g180330_0319_h_jlv

NL: 1.81E7Base Peak F: FTMS + p NSI Full ms [400.00-2000.00] MS G180330_0317_h_jlv

NL: 5.57E6Base Peak F: FTMS + p NSI Full ms [400.00-2000.00] MS g180330_0320_h_jlv

NL: 4.57E6Base Peak F: FTMS + p NSI Full ms [400.00-2000.00] MS g180330_0321_h_jlv

Page 49: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

SMBP CNRS/ESPCI USR 3149 49

R = 12500

R = 25000

R = 50000

R = 100000

R = 200000

Hela digest in 30 min gradient by nanoLC LTQ MS/MS FTICR MS

10ppm

5ppm

4ppm

2ppm

Accuracy increases with resolution

Page 50: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Hela digest in 30 min gradient by nanoLC LTQ MS/MS FTICR MS

SMBP CNRS/ESPCI USR 3149 50

D: A 122 Search ID: D58

Search ID: E

62

48

41

86

823

scot (A5)

332

Identifying Node: Mascot (D5)

206

Identifying Node: Mascot (E5)

169

218

175

180

1872

Peptide inferencesProtein inferences

target<5% 10ppm 5ppm

Reso Peptides decoy FDR Proteins Peptides decoy FDR Proteins12500 4014 87 2.17 825 3636 115 3.16 53025000 4168 95 2.28 821 4143 108 2.61 53150000 3856 88 2.28 852 3887 123 3.16 556

100000 3863 110 2.85 844 3918 138 3.52 572200000 3801 105 2.76 870 3822 125 3.27 600

R =200000R =50000

R =12500

For the records: 3740 proteins, 19587 peptides in 120 min gradient on a Q Exactive HF

Page 51: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Challenges in LC-MS

52

• A biological sample is always complex !!– Thousands of analytes to identify within a large dynamic range….

• A biological sample is always contaminated !!– Constitutive engogenous contaminations– Exogenous contaminations

• MS : simple mix

Solution : Increase peak capacity in MS and in LC

PROTEIN OF INTEREST

KERATIN

POLYMERES

PROTEIN OF INTEREST

© E. Demey, 2009

SMBP CNRS/ESPCI USR 3149

Page 52: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Multidimensionnal separation If 2 orthogonal dimensions

Golden rule: 2DPc = 1Pc x 2Pc

peak capacity

dynamic range

Peak capacity

53

Max number of resolved compounds using a given analytical method in given analytical conditions.

Stoll et al., J. Chrom. A, 1168 (2007)

Increased separation of peptides

Increased sequence coverage

Increased sequenced peptides

Increased proteome coverage

Giddings, Anal. Chem. 39 (1967)

SMBP CNRS/ESPCI USR 3149

Page 53: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Fractionation column(SCX)

Waste

micro pump 2Solvent A

Waste

loading pump 2Waste

micro pump 1salt gradient

Sample

Syringe

Trap

col.

1

Trap

col.

2

Analytical column(RP)

ESI-FTMS

Elution valve V1

Collection valve V2= sampler

Injection valve

Purification cartridge 1

loading pump 1

Waste

Purif

icatio

n ca

rtridg

e2

External valve

Cartouche 1

Cartouche 2 Tampon

on-line 2DLC

54

Hesse et al., J. Chrom. A, 1189 (2008)

Cartouche 1

Cartouche 2 Tampon

SMBP CNRS/ESPCI USR 3149

Page 54: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Fractionation column(SCX)

Waste

micro pump 2ACN gradient

Waste

loading pump 2Waste

micro pump 1salt gradient

loading pump 1

Waste

Sample

Syringe

Trap

col.

1

Analytical column(RP)

ESI-FTMS

Purification cartridge 1

Purif

icatio

n ca

rtridg

e 2

Elution of peptides from trap column 2towards MS

ESI-FTMSTr

apco

l. 2

Collection valve V2= sampler

External valve Injection valve

Fractionation of eluate from 1st on trap column 1

Elution valve V1

Gel 2D et ses limites Outils chromatographiques RPLC-MS/MS 2DLC-MS/MS

on-line 2DLC

55SMBP CNRS/ESPCI USR 3149

Page 55: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

No relationship between retention times of 1st

and 2d dimension

Orthogonality

Peak capacity 2DLC x MS/MS2DMS/MSPc=2DPc xMS/MSPc

2DMS/MSPc=1Pc x2Pc x MS/MSPc2DMS/MSPc= 12 x 80 x 20 = 18000

Gel 2D et ses limites Outils chromatographiques RPLC-MS/MS 2DLC-MS/MS

56

on-line 2DLC

SMBP CNRS/ESPCI USR 3149

Page 56: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Fractionation column(SCX)

micro pump 2ACN gradient

Waste

loading pump 1

Waste Syringe

Analytical column(RP)

Purif

icatio

n ca

rtridg

e 2

Elution of peptidesFrom fractions towards MS

ESI-FTMS

Trap

col.

External valveInjection valve

Fractionation of 1ère dimension eluate

Waste

Waste

Needle

micro pump 1Tampon A

off-line 2DLC

57

Gel 2D et ses limites Outils chromatographiques RPLC-MS/MS 2DLC-MS/MS

SMBP CNRS/ESPCI USR 3149

Page 57: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

2DLC : off-line vs on-line

58

Example : Skin Proteome

Bias against hydrophobic peptides

Bias against hydrophilic peptides

On-line

PC=792 PC=777

2/3 de protéines communes

1/3 de peptides communs

33% of Keratins 25% of Keratins

2D Off-line 2D On-line

1D

2D Off-line 2D On-line

1D1

1648

31

51

1

1

1648

31

51

1

572

1640

167

87

107

686

442

572

1640

167

87

107

686

442

60% of Keratins

Proteinsinferences

Peptides inferences

Off-line

SMBP CNRS/ESPCI USR 3149

Page 58: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

2D on-line ESI2D off-line ESI

1D long ESI

409324

1331

940

250804

416

2D on-line ESI2D off-line ESI

1D long ESI

2D on-line ESI2D off-line ESI

1D long ESI

409324

1331

940

250804

416

2D off-line ESI

1D ESI

2D on-line ESI

572 1640

167

87

107

686

442

2D off-line ESI

1D ESI

2D on-line ESI2D off-line ESI

1D ESI

2D on-line ESI

572 1640

167

87

107

686

442

Gradient 1DLC plus long simple setup Robust Separation Large peaks

Alternatives

59

Detection MALDI-MS Different Ionization Mode Separation time stopped Longer acquisition time

Complementarity of analytical strategies

2D off-line ESI

2D off-line MALDI

2D on-line ESI

382 902

566

339

109

44

265

2D off-line ESI

2D off-line MALDI

2D on-line ESI2D off-line ESI

2D off-line MALDI

2D on-line ESI

382 902

566

339

109

44

265

RP/RP MS/MS is also a good solutionSMBP CNRS/ESPCI USR 3149

Page 59: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Summary

SMBP CNRS/ESPCI USR 3149 60

• Omics and Mass spectrometry• Why study the proteome?• Bottom-up proteomics: an LC-MS story• DIA and HRM• Quantification

Page 60: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Co-eluted peptidesAlves G, Ogurtsov A, Kwok S et al. Detection of co-eluted peptides using database search methods. Biol. Direct3(1), 1–16 (2008).

In most cases the most intense peptides are selected in DDA MS/MS

Minor co-eluted are ignored and information is lost

Example of 9393 proteins from Saccharomyces Cerevisiae after tryptic digestion (2 miscleav. 771753 peptides)

SMBP CNRS/ESPCI USR 3149 61

Page 61: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Other analytical strategies

DIA: Data Independant AcquisitionSWATHTM

MSE

AIF (All ion Fragmentation)

HRM: Hyper Reaction MonitoringMultiplex SRM (Selected Reaction Monitoring)Pseudo SRMPRM (Parallel reaction monitoring)

SMBP CNRS/ESPCI USR 3149 62

Page 62: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Data Independent Acquisition (DIA)

SMBP CNRS/ESPCI USR 3149 63

Page 63: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Fourier transform-all ion reactionmonitoring FT ARM

• Based on accurate peptide fragment mass measurements

• All ions fragmented in every scan

A) TIC B) Complex fragmentation spectrum of all ions. C) Hypotheticalfragmentation spectrum of one peptide D) Dot product of the 2 spectra, and Score Chromatogram.

Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. J Proteome Res. Mar 2, 2012; 11(3): 1621–1632.

SMBP CNRS/ESPCI USR 3149 64

Page 64: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Fourier transform-all ion reactionmonitoring FT ARM Weisbrod CR, Eng JK, Hoopmann MR, Baker T, Bruce JE. J

Proteome Res. Mar 2, 2012; 11(3): 1621–1632.

http://brucelab.gs.washington.edu/

SMBP CNRS/ESPCI USR 3149 65

Page 65: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Spectral library: 2D-LC-MSMS, enrichment, cellular fractionation, long LC gradient

Quantitative analysis with a large number of conditions: untreatedsamples

SMBP CNRS/ESPCI USR 3149 66

Page 66: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

SIM/tMS2 for Data Independent Protein Quantification

OrbitrapR=240,000

Linear Ion Trap

SIM 400 - 600 amu

SIM 600 - 800 amu

SIM 800 -1000 amu

------- ------- -------

406m/z

418m/z

574m/z

586m/z

598m/z

606m/z

618m/z

774m/z

786m/z

798m/z

806m/z

818m/z

974m/z

986m/z

998m/z

17 sequential CID MS/MSscans with 12 Daisolation Windows

3.6 s cycles, covering 1000 m/z

17 sequential CID MS/MSscans with 12 Daisolation Windows

17 sequential CID MS/MSscans with 12 Daisolation Windows

SMBP CNRS/ESPCI USR 3149 67

Page 67: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

DIA Workflow on Orbitrap Fusion Tribrid

Quantitation using SIM at 240KXIC of 613.317+613.818 (Heavy GISNEGQNASIK)

Peptide sequence confirmation using spectral library

MS/MS of 12 amu wide window

SMBP CNRS/ESPCI USR 3149 68

Page 68: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

SRM « Selected Reaction Monitoring » (QqQ)

PRM « Parallel Reaction Monitoring » (QqOrbitrap)

PRM vs SRM

69

Peterson A.C. et al., Mol Cell Proteomics. 2012 Nov;11(11):1475-88

Fragmentation Simultaneous fragment detection at high resolution

SelectionPeptides Mix Superposition post-acquisition of

transitions

Peptides MixFragmentation Sequential detection of

fragmentsSelection Superposition of

transitions

SMBP CNRS/ESPCI USR 3149

Page 69: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Targeted analysis: sample sampling

SMBP CNRS/ESPCI USR 3149 70

Inte

nsité

rela

tive

(%)

trtr

20s

H

10% H

Cycle time: Time required to record all transtions

from co-eluted species

minimum 8 - 10 points per peak

Q Exactive (Thermo Scientific)

Up to 31 peptides / cycle (R=17 500 at m/z 200, 64ms/acquisition)

quisitiontemps d'acycletemps de c#peptides=

Page 70: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Group of diseasesExtracellular deposit (aggregate) of insoluble

misfolded proteinsHereditary (genetic mutation) or senile (aging)Life-threatening organ failure

ex: myocardial wall thickening

Complex mechanisms

The case of amyloidoses

71

Native precursor protein β-sheets richstructure

Amyloïd fibrills Amyloid deposits

Common components:GlycosaminoglycansSerum amyloid P-component (SAMP)Apolipoprotein E (APOE)

Kisilevsky R., Amyloid. 2000 ,7(1):23-5Grateau G., Médecine/Sciences 2005 ; 21 : 627-33Ren R. et al. J Bio Chem, 2010, 285 (4) 37672-82

50µm

ex: Serum amyloïd A (SAA)

Sophie Liuu, Emmanuelle DemeyGilles Grateau, David Buob (Hop Tenon)

SMBP CNRS/ESPCI USR 3149

Page 71: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

DDA MS/MS mode : automatedhierarchical clustering

SMBP CNRS/ESPCI USR 3149 72

Patients Controls

Data processingMaxquant/Perseus

Intensity scale of peptides (area)3 technical replicates

Page 72: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Targeted vs non targeted analysis

SMBP CNRS/ESPCI USR 3149 73

Mar

queu

rs

amyl

ose

Cla

ssifi

cate

urs

amyl

ose

Cla

ssifi

cate

urs

amyl

ose

Intensity scale of peptides (area)

Page 73: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Summary

SMBP CNRS/ESPCI USR 3149 74

• Omics and Mass spectrometry• Why study the proteome?• Bottom-up proteomics: an LC-MS story• DIA and HRM• Quantification

Page 74: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Why Quantitative Proteomics ?

SMBP CNRS/ESPCI USR 3149 75

Most biological issues cannot be solved by the identification of one protein.

In most cases the variation of the abundance of a protein together with its modification state is required.

Wasinger VC, Zeng M, Yau Y. Int J Proteomics. 2013;2013:180605.

Page 75: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Mass spectrometry is not quantitative

• Due to non uniform instrumental response mass spectrometrycannot be used directly for quantitation of macrobiomolecules

• The intensity of a peptide is not a direct mesure of its abundance

• Comparison of chemically identical species :

• Two peptides with a different isotopic composition withinone single run:

Isotopic labelling

• The same peptide detected in 2 different runs:Label free quantification

SMBP CNRS/ESPCI USR 3149 76

Page 76: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Quantification bottom-up

SMBP CNRS/ESPCI USR 3149 77

• Technologicallimitations to detect and differentiatethe isotopiclabels

• Bioinformaticsand statisticslimitation to process the data with a correct normalization

S-E Ong & M Mann; Nature Chemical Biology 1, 252 - 262 (2005)M Bantscheff, M Schirle, G Sweetman, J Rick & B Kuster; Anal Bioanal Chem 389( 4), 1017-1031 (2007)

Page 77: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

In vivo Metabolic Labeling Stable Isotope Labeling by Amino Acid in Cell Culture (SILAC)

78Ong et al., J Proteome Res. 2003, 2:173-181SMBP CNRS/ESPCI USR 3149

Page 78: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Possibilité d’enrichissement des peptides marqués

Reporter ion relative quantification

79

TMT (Tandem Mass Tag)iTraq

SMBP CNRS/ESPCI USR 3149

Page 79: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

10 and 11-plex TMT: high resolutionMS/MS required

SMBP CNRS/ESPCI USR 3149 80

QE160706_1320_c_jlv 08/07/2016 12:25:44 Sanofi TMT1-10 windows 2Darslc shakir col. sanofi 50

QE160706_1320_c_jlv #35734 RT: 124.17 AV: 1 NL: 6.12E5T: FTMS + p NSI d Full ms2 [email protected] [90.00-1960.00]

128.115 128.120 128.125 128.130 128.135 128.140 128.145 128.150m/z

05

10

1520

25

3035

40

4550

55

6065

70

7580

85

9095

100

105110

115

120125

Relat

ive A

bund

ance

128.13

128.13

1025.53796

230.16989

b₂³⁺159.09158

b₂²

b₁³⁺121.08423

y₁₆²b₁

b₁₁⁺1408.71460

y₈b₁₂²b₁₀⁺

1294.67664b₅²

b₄²⁺347.18237

b₂

b₉⁺1223.64539

b₇²⁺527.27332

b₈⁺1166.62061

b₃

y₉⁺1226.75562b₄

b₆²⁺453.73868

y₆⁺945.57971

y₄⁺731.48584

y₃⁺618.40234

y₅⁺846.51312

y₂⁺505.31793

b₇⁺1053.53748

y₁⁺376.27521

b₆⁺906.46985

b₅⁺807.40118

500 1000 1500 2000 2500m/z

0

20

40

60

80

100

120

140

160

Inte

nsity

[cou

nts]

(10^

3)

QE161003_1802_c_jlv.raw #49866 RT: 150.2897 min FTMS, [email protected], z=+3, Mono m/z=878.83008 Da, MH+=2634.47568 Da, Match Tol.=0.02 Da

QE160706_1320_c_jlv #35734 RT: 124.17 AV: 1 NL: 6.12E5T: FTMS + p NSI d Full ms2 [email protected] [90.00-1960.00]

126.0 126.5 127.0 127.5 128.0 128.5 129.0 129.5 130.0 130.5 131.0m/z

0

10

20

30

40

50

60

70

80

90

100

110

Rel

ativ

e A

bund

ance

128.13126.13

127.12

129.13

130.13

131.14

129.10

Page 80: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

81SMBP CNRS/ESPCI USR 3149

Page 81: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Targeted analysisimproves the S/N

Intensity-measurementincertainty correlation

82SMBP CNRS/ESPCI USR 3149

Page 82: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

PTMomics and relative quantificationC H A LLE NG E S OF PROT E I N P T M A NA LY S I S B Y M S

• Sample 1 vs. Sample 2

• Modified vs. unmodified

• PTM1 vs. PTM2

• Absolute titration

What do we want to know?

SMBP CNRS/ESPCI USR 3149 83

Page 83: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Cysteine redoxome: a case study for quantification

C H A LLE NG E S OF PROT E I N P T M A NA LY S I S B Y M S

THE CASE OF REVERSIBLE OXIDATION OF CYS

Reactive oxygen and nitrogen species (ROS/RNS)

From Antiox. & Redox Signal., 26(7), 2017

Michel Toledano, CEAJean-Marc Ghigo, Nicolas Barraud Inst. PasteurClotilde Policar, Nicolas Delsuc ENS

Different redox states of protein cysteines

Sophie Vriz, Alain Jolliot, Collège de France

Cell. 2002 Nov 15;111(4):471-81

• Low concentrations• regulation physiological processes,

• reversible

• High concentrations: • Deleterious process (~burning, rusting); e.g. ageing

• irreversible damage to DNA, proteins and lipids

SMBP CNRS/ESPCI USR 3149 84

Page 84: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Differential labelling of Cys residues

Enrichment of oxidized Cys residues

SHS

S

S-A1S

S

S-A1SH

SH

S-A1S-A2

S-A2

LC-MS/MS

Enrichment ABanti-TMT

iodoTMT

Elution (acidic)LC-MS/MS

McDonagh B et al. J Proteomics. 2009

Enrichment streptavidin

Biotin HPDP

Elution (dTT)

Redox proteomics strategiesC H A LLE NG E S OF PROT E I N P T M A NA LY S I S B Y M S

OxICAT and ICAT based strategies (Leichert PNAS 2008, Fu MCP 2009, Garcia-Santamarina Nat Protoc 2014)

CysTMT, iodoTMT and OxiTMT (Behring FASEB 2014, Murray MCP 2012, Shakir Anal Bio Chem 2017)

OcSILAC (Chiappetta HUPO 2011, Shakir submitted )

SMBP CNRS/ESPCI USR 3149 85

Page 85: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

OxiTMT: Label-based relative quantification

C H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

TMT2/TMT4: protein fold change

TMT1/TMT3: oxidized Cys fold change

Shakir Anal Bio Chem 2017SMBP CNRS/ESPCI USR 3149 86

Page 86: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

PTMs quantification specificitiesC H A LLE NG E S OF PROT E I N P T M A NA LY S I S B Y M S

1 single peptide

Modification or expression level?

TMT2/TMT4: protein fold change

TMT1/TMT3: oxidized Cys fold change

All proteolytic peptides

1% to 3% or 30% to 90% ????

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1

𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1

= 2𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1

= 2

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1

𝑋𝑋𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2

= 1

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1

= 3 𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1 = 6

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1𝑋𝑋

𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = 0.5

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1 = 3

𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1

= 1

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝2𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝1𝑋𝑋

𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1𝐼𝐼𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = 3

SMBP CNRS/ESPCI USR 3149 87

Page 87: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Label based site occupancyC H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

TMT1/TMT2: oxidized CYS site occupancySAMPLE 1

TMT3/TMT4: oxidized CYS site occupancySAMPLE 2

TMT2/TMT4: protein fold change

TMT1/TMT3: oxidized Cys fold change

Shakir Anal Bio Chem 2017

Site Occupancy

𝑁𝑁 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑁𝑁 𝑝𝑝𝑚𝑚𝑝𝑝𝑡𝑡𝑡𝑡 𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝

Olsen J.V.& Mann M., Sci. Signal. 2010Sharma K et al. Cell Rep. 2014

SMBP CNRS/ESPCI USR 3149 88

Page 88: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

E. Coli redox proteomics analysis by OxiTMT

C H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

E.Coli model before (1) and after (2) 30min 1mM H2O2

Quantification: 1229 iodoTMT Cys, 580 proteins• bound fraction: 886 pept (1019 Cys),

487 proteins (172 specific).• unbound fraction: 834 peptides (893 Cys),

408 proteins (93 specific)

25 up-regulated proteins in H2O2 treated cells • oxidoreduction and generation of

precursor • metabolites and energy pathways

18 down-regulated oxidized fraction

Araki K. J. Proteome Res 2016Dardalhon M Free Radical Bio Med. 2012

SMBP CNRS/ESPCI USR 3149 89

Page 89: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Considering some risks…C H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

Where do the biases come from?

• Sample preparation (biological replicates)• Sampling• LC-MS (separation, ionization, matrix effects)• MS sampling and scan events• Quantification of each peptide from runs• Quantification of proteins from peptides

SMBP CNRS/ESPCI USR 3149 90

y=x

y=2.4356 x+0.27

Page 90: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Bias from peptide to peptideC H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

SMBP CNRS/ESPCI USR 3149 91

Page 91: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Mini signals, mini resultsC H A L L E N G E S O F P R O T E I N P T M A N A LY S I S B Y M S

Error increase for low abundanceShift of experimental ratios towards higher values

Biased quantification of low abundance species.

Co-isolation of peptides is less frequent

Specific challenge of ion reporter PTM quantification compared to protein quantification

SMBP CNRS/ESPCI USR 3149 92

Oxidized unabundant cysteine reporter ions are more affected than total cysteine reporter ions

Page 92: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Protein coverage: Sampling and specificity

SMBP CNRS/ESPCI USR 3149 93

protein1

protein1 protein1

protein2protein2

protein2

Bottom up partial characterization of the species of interest might lead to misinterpretation…

Page 93: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Top-down or Bottom-up?

SMBP CNRS/ESPCI USR 3149 94

T W O PA RA LLE L A ND COM PLE M E NTA RY T E CH NI QU E S

• Bottom-up approach : sequential processes each providing necessary information to describe a whole.

• identification of proteins, sequencing and PTM characterization from proteolytic peptides

• Top-down approach : processes starting from the raw material aiming to transform and modify it to simplify its description.

• identification of proteins and global structural analysis (sequence, PTMs) without proteolysis

B.T. Chait, Science (2006) 314:65-66

We known how to purify, fragment and sequence peptides with high sensitivity and high throughput (like « pros »! )

For intact proteins, we are still beginners…

Page 94: LC-MS AND BOTTOM UP PROTEOMICS - École Polytechnique

Acknowledgments• SMBP / ESPCI

• Giovanni Chiappetta• Shakir Shakir• Massamba Ndiaye• Martha Zoupoulaki• Nicolas Eskenazi

• Emmanuelle Demey-Thomas• Yann Verdier• Iman Haddad

• Sophie Liuu• Anne Marie Hesse• Sega Ndiaye

Oxidative Stress & Cancer Lab CEAMichel TOLEDANOAlise PONSERO

Applied StatisticsESPCIIsabelle RIVALS

• €

SMBP CNRS/ESPCI USR 3149 95


Recommended