+ All Categories
Home > Documents > LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek...

LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek...

Date post: 16-Mar-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
62
LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek Kolman Institute of Thermomechanics The Czech Academy of Sciences, Prague Michal Mraˇ cko, Alena Kruisov´ a, Anton Tkachuk An ECCOMAS Advanced Course on Computational Structural Dynamics June 4 – 8, 2018 Prague, Czech Republic
Transcript
Page 1: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

LECTURE 17DIRECT TIME INTEGRATION

IN DYNAMICS

Radek KolmanInstitute of Thermomechanics

The Czech Academy of Sciences, Prague

Michal Mracko, Alena Kruisova, Anton Tkachuk

An ECCOMAS Advanced Course on Computational Structural DynamicsJune 4 – 8, 2018

Prague, Czech Republic

Page 2: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Contents

• FEM in dynamics, formulation of dynamic problems

• Introduction into direct time integration

• Basic methods - Newmark method and central differ-ence method

• Solving of nonlinear time-depend problems

• Time step size estimates

•Mass scaling

Page 3: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Basic literature

Belytschko T., Hughes T.J.R. Computational Methods for Transient Analysis. North-Holland:Amsterdam, 1983.

Bathe K.J. Finite Element Procedures, Prantice-Hall, Englewood Cliffs, New York, 1996.

Hughes T.J.R. The Finite Element method: Linear and Dynamic Finite Element Analysis. DoverPublications: New York, 2000.

Har J., Tamma K. Advances in Computational Dynamics of Particles, Materials and Structures.John Wiley: New York, 2011.

Wu S.R., Gu. L. Introduction to the Explicit Finite Element Method for Nonlinear TransientDynamics. John Wiley: New York, 2012.

Felippa C. Introduction to Finite Element Methods, lecture notes, Department of AerospaceEngineering Sciences, University of Colorado at Boulder, 2017.

Page 4: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

1. Finite element method in linear dynamics,formulation of dynamic problems

Page 5: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Governing equations for solid mechanics

Strong form:ρ ui = σij,j + bi in Ω× [t0, T ]

ui = gi on ΓD × [t0, T ]

σijnj = hi on ΓN × [t0, T ]

ui(x, t0

)= u0i (x) for x ∈ Ω

ui(x, t0

)= u0i (x) for x ∈ Ω

Hooke’s law: σij = Cijklεkl

Theory of small deformation:εkl =

1

2

(∂uk∂xl

+∂ul∂xk

)ui - the component of displacement vector u(x, t);x ∈ Ω - the position vector;Ω - the domain of interest with the boundary Γσij - the Cauchy stress tensor (symmetric tensor); εkl - the infinitesimal strain tensor;Cijkl - elasticity tensor; ρ - mass density;bi - the component of volume (body) intensity vector b;ni - the component of the outward normal vector n on Γ;gi - the component of prescribed boundary displacement vector g;hi - the component of prescribed traction vector h;u0i and u0i - the components of the initial displacement and velocity fields.

Page 6: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

FEM recapitulation

Approximation of displacement field via shape functions N

uh = N q

where q is vector of generalized nodal quantities (displacements/rotations, etc.).

Approximation of velocity and acceleration fields

uh = N q uh = N q

Infinitesimal strain tensor

ε = Duh,

where D is the differential operator. Then

ε = DN q = B q

where B is the strain-displacement matrix. In elasticity problems, stress is given as

σ = D ε

where D is the elasticity matrix.

Page 7: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

FEM recapitulation

Energy balance (principle of virtual work):

δEk + δU = δP ,

after definition of kinetic energy Ek, potential (strain) energy U and work of ex-

ternal forces P , it yields∫Ω

δuT %u dΩ +

∫Ω

δεT σ dΩ =

∫Ω

δuT b dΩ +

∫ΓN

δuT h dΓ

Using discretization of kinematic quantities we have

δqT[∫

Ω

%NTNq dΩ +

∫Ω

BT σ dΩ−∫

Ω

NT b dΩ−∫

ΓN

NT h dΓ

]= 0.

The previous equation should be valid for an arbitrary δq and, then the discretized

equations of motion have the form

Mq = f ext − f int

Page 8: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

FEM recapitulation

Discretized equations of motion:

Mq = f ext − f int

Consistent mass matrix:

M =

∫Ω

%NTN dΩ

Vector of internal forces:

f int =

∫Ω

BT σ dΩ

Vector of external forces:

f ext =

∫Ω

NT b dΩ +

∫ΓN

NT h dΓ + fsingular

In impact-contact problems, equations of motion have the form

Mq = f ext − f int − f contact

Page 9: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

FEM for linear problems

The continuous Galerkin-Bubnov approximation method.Finite element approximation of the displacement field u:

uh(x, t) =NDOF∑I=1

NI(x)uI(t), δuh(x, t) =NDOF∑I=1

NI(x)δuI(t)

where uI are unknown nodal displacements.Discrete equations of motion for linear elasticity problems:

Mu + Ku = f ext

+ nodal Dirichlet boundary conditions.Internal forces are given as

f int = Ku

with the stiffness matrix defined as

K =

∫Ω

BTDB dΩ

General linear problems:

Mu(t) + Cdampingu(t) + Ku(t) = f ext(t) (1)

with the damping matrix C. Remark: Rayleigh damping matrix: Cdamping = aM + bK

Page 10: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

2. Introduction into direct time integration

nodal displacement vector: u(t)nodal velocity vector : u(t) = v(t)nodal acceleration vector : u(t) = a(t)

Page 11: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Solutions of discretized equations of motion

• modal superposition (LECTURE 15)

• direct time integration

System of second order ordinary differential equations:

Mu(t) + Cu(t) + Ku(t) = f ext(t)− f contact(t) (2)

In direct time integration,

approximation of quantities

at discrete time tn

u(tn) ≈ uh(tn) = un

Temporal discretization:

t = 0, t1, t2, t3, . . . , T

Time step size:

∆ti = ti+1 − tiFor constant time step size ∆t:

tn = n∆t, n = 0, 1, 2, . . . , N

Page 12: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Solutions of discretized equations of motion

Mathematical methods for numerical solution of

the first-order system

y = f (y, t),y = (u, u)T − state space

• The forward Euler method

• The backward Euler method

• The generalized trapeziodal method

• The midpoint method

• Methods of the Runge-Kutta type

• The central difference method

• Linear multi-step methods

• Other methods

the second-order system

u = f (u, u, t)

• The Newmark method

• The Houbolt method

• The Wilson θ method

• The Midpoint method

• The Central difference method

• The HHT method

• The Generalized-α method

• Other methods

Page 13: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

A predictor/multi-corrector formof time scheme

The generalized-α method [Chung, Hulbert 1993]

Start

Predictori = 0

Stop

i = i+ 1

Correctorai+1n+1 = ain+1 + ∆a

∥∥Rin+1

∥∥ ≤ ε∥∥R0

n+1

∥∥Test

?Yes

NodRi

dan+1

∆a = −Rin+1

din+1 = dn + ∆tvn +(∆t)2

2

((1− 2β)an + 2βain+1

)ain+1 =(γ − 1)

γan

vin+1 = vn

vi+1n+1 = vin+1 + γ∆t∆a

di+1n+1 = din+1 + β (∆t)2 ∆a

din+αf= dn + αf (d

in+1 − dn)

vin+αf= vn + αf (d

in+1 − dn)

ain+αm= ain+1 + αm(ain+1 − an)

Rin+1 = R(din+αf

,vin+αf, ain+αm

)

Page 14: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Direct time integration methods in FEM

Implicit methods:

• Methods of the Newmark’s family [Newmark 1959]

• The HHT method [Hilber, Hughes, Taylor 1977]

• The midpoint method [Simo 1991]

• The generalized-α method [Chung, Hulbert 1993]

Explicit methods:

• The central difference method [Krieg 1973, Dokainish & Subbaraj 1989, in each FEM book]

• Methods on the next slide.

Implicit-explicit methods:

• Methods of authors: Belytschko, Mullen, Liu, Hughes, Fellipa, K.C. Park, Combescure,

Farhat, Tezaur, and others.

Other methods:

• Asynchronous, symplectic or variational time integrations.

Page 15: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

A review of explicit time integration methods in FEM

• the central difference method [Krieg 1973, Dokainish & Subbaraj 1989, in each FEM book]

• the Verlet method [Verlet 1967] (molecular dynamics)

• the Trujillo method [Trujillo 1977]

• the Park variable-step central difference method [K.C. Park & Underwood 1980]

• the Chung and Lee method [Chung & Lee 1994]

• the explicit form of the generalized-α method [Hulbert & Chung 1996]

• the Zhai method [Zhai 1996]

• the Tchamwa–Wielgosz method [Tchamwa & Conway & Wielgosz 1999]

• the explicit predictor/multi-corrector method [Hughes 2000]

• the Tamma et al. method [Tamma et al. 2003]

• the Chang pseudo-dynamic method [Chang 2008]

• the semi-explicit modified mass method [Doyen et al. 2011]

• the Yin method [Yin 2013]

• the two-time step Bathe method [Noh & Bathe 2013]

• the multi-time step Park method [Park et al. 2012, Cho et al. 2013, Kolman et al. 2016]

• survey and comparative papers [Fung 2003, Rio 2005, Nsiampa 2008, Maheo 2013].

Page 16: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Numerical errors, properties of time integrators

Numerical errors:

• dispersion (distortion of pulse), anisotropy and diffraction, polarization errors

• spurious oscillations, parasitic modes

• numerical dissipation and attenuation

• period elongation and amplification

Requirements and properties of explicit methods:

• diagonal mass and damping matrices

• second-order accuracy

• symplectic and energy and momentum conserving

• unconditionally/conditionally stability, time step size estimator

• numerical dissipation controlled by a parameter

• the numerical dissipation should affect higher modes; lower modes should not be affected

• an effective evaluator of RHS, underintegration of linear FEs or Hourglass controlling.

Page 17: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Numerical methods for wave problems

• finite difference method (FDM) in time and space

• finite element method (FEM)

• boundary element method (BEM)

• finite volume method (FVM)

• spectral methods

• pseudo-spectral method

• collocation methods

• wavelet-based methods

• mass-spring approximations

• smooth particle hydrodynamics method

• discontinuous Galerkin (DG) method and more others.

Page 18: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

3. Basic methods - The Newmark method

Nathan M. Newmark, 1910 – 1981University of Illinois at Urbana-Champaign

Page 19: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The Newmark method

• Newmark, N.M.: A method of computation for structural dynamic. Journal of

the Engineering Mechanics Division, 85, pp 67–94, 1959.

Kinematic quantities:

ut+∆t = ut + ∆t ut +∆t2

2

((1− 2β) ut + 2β ut+∆t

)ut+∆t = ut + ∆t

((1− γ) ut + γ ut+∆t

)Newmark’s parameters γ and β.

Equations of motion at time t + ∆t:

Mut+∆t + Kut+∆t = f t+∆text

Discrete operator (displacement form)

Keffut+∆t = f t+∆t

eff

where

Keff = K + a0M, f t+∆teff = f t+∆t

ext + M(a0u

t + a1ut + a2u

t)

a0 = 1/(β∆t2

), a1 = 1/ (β∆t) , a2 = 1/ (2β)− 1

Page 20: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Newmark method - predictor/corrector form

Kinematic quantities:

ut+∆t = ut + ∆t ut +∆t2

2

((1− 2β) ut + 2β ut+∆t

)ut+∆t = ut + ∆t

((1− γ) ut + γ ut+∆t

)Predictor phase:

ut+∆t = ut + ∆tvt +∆t2

2(1− 2β) at

vt+∆t = vt + ∆t (1− γ) at

Equations of motion at time t + ∆t for update acceleration:(M + β∆t2K

)at+∆t = f t+∆t

ext −Kut+∆t

Corrector phase:

ut+∆t = ut+∆t + β∆t2at+∆t

vt+∆t = vt+∆t + γ∆t at+∆t

Advantage: in memory only ut+∆t, vt+∆t, at+∆t

Page 21: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The Newmark method

Special cases:

• The average acceleration method: β = 14, γ = 1

2

• The linear acceleration method: β = 16, γ = 1

2

• The Fox-Goodwin method: β = 112, γ = 1

2

• The central difference method: β = 0, γ = 12

Unconditional stability (time step can be chosen arbitrary)

2β ≥ γ ≥ 1

2

The Newmark parameters for conditional stability must satisfy:

γ ≥ 1

2, β <

1

2γ, Ω ≤ Ωcrit

where Ω = ωh∆t

Ωcrit = (γ/2− β)−12

Page 22: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The Newmark method with β = 14, γ = 1

2

Requirements:

• Consistent mass matrix

• An efficient and performance linear solver

Properties:

• implicit method, so-called the constant-average-acceleration method

• unconditionally stable (time step can be chosen arbitrary)

• second order accuracy

• conserves of total energy

• no amplitude decay

• period elongation

• for 5% relative period error is ∆t.= 0.125Tmin, where Tmin = 2π/ωmax is

minimal period vibration.

Page 23: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

One-dimensional stress wave in a bar

Linear (classical) wave equation

∂2u

∂t2= c2

0

∂2u

∂x2

u - displacement, x - position, t - time, c0 =√E/ρ - wave speed

L

xF(t)A,E,r

Scheme of a free-fixed bar under an impact loading.

Loading

σ(0, t) = −σ0H(t)

σ is the stress, H is the Heaviside step function.

Analytical solution

σ(x, t) = −σ0H(c0t− x)

KF Graff. Wave motion in elastic solids. Oxford University Press, 1975

Page 24: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

One dimensional wave propagation test

The time step size defined by the Courant number C0 = ∆tc0H , H is the finite

element length.

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, linear FEM, CMM, Co = 0.1

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, linear FEM, CMM, Co = 0.5

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, linear FEM, CMM, Co = 1.0

Page 25: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

One dimensional wave propagation test

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, quadratic FEM, CMM, Co = 0.1

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, quadratic FEM, CMM, Co = 0.5

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

Newmark’s method, quadratic FEM, CMM, Co = 1.0

Page 26: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

4. Basic methods - Central difference method

Page 27: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The central difference method

Dokainish M.A., Subbaraj K. A survey of direct time-integration methods in com-

putational structural dynamics - I. Explicit methods. Comput. & Struct., 32(6),

1371–1386, 1989.

Equations of motion at the time t:

Mut = f ext − f int − f cont

Approximation of time derivatives - Central difference scheme in time:

ut ≈ ut+∆t − ut−∆t

2∆tut ≈ ut+∆t − 2ut + ut−∆t

∆t2

Page 28: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The central difference method

The Newmark method with β = 0, γ = 1/2.

Kinematic quantities:

ut+∆t = ut + ∆t ut +∆t2

2ut

ut+∆t = ut +∆t

2

(ut + ut+∆t

)Equations of motion at the time t:

Mut + Kut = f text

Approximation of velocity and acceleration by the central differencies:

ut ≈ 1

2∆t

(ut+∆t − ut−∆t

)ut ≈ 1

∆t2(ut+∆t − 2ut + ut−∆t

)

Page 29: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Implementation I

F teff = F t

ext −[K − 2

∆t2M]ut − 1

∆t2Mut−∆t

Meff =1

∆t2M

ut+∆t = M−1eff F

teff

In memory: displacements ut+∆t, ut, ut−∆t

The rest of quantities are computed if they are needed.

Page 30: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Implementation II -

Solve time t = 0:

Evaluate force residual: r0 = fext(t = 0)−Ku0

Compute acceleration: u0 = M−1r0

for n = 1...N (time steps)

Evaluate force residual: rn = fnext −KunCompute nodal accelerations: un = M−1rn

Update nodal velocities: un+1/2 = un−1/2 + ∆tun

Update nodal displacements: un+1 = un + ∆tun+1/2

end for

In memory: displacements ut+∆t, velocities ut+∆/2, accelerations ut

Page 31: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Implementation III -Predictor-corrector form

Predictorun+1 = un + ∆tun +

∆t2

2un

˙un+1

= un +∆t

2un

¨un+1

= 0

Solve equations of motion at the time tn+1 = tn + ∆t

MƬun+1

= fext(tn+1)− fint(t

n+1, un+1, ˙un+1

)− fcont(tn+1, un+1, ˙u

n+1)

Correctorun+1 = un+1

un+1 = ˙un+1

+∆t

2Ƭu

n+1

un+1 = Ƭun+1

Advantage: in memory only ut+∆t, vt+∆t, at+∆t

Page 32: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Central difference method

Requirement:

• for efficient computations, it is needed the inversion of M

• lumped (diagonal) mass matrix - no required a linear solver

Properties:

• explicit method

• conditionally stable (time step can not be chosen arbitrary)

• second order accuracy

• conserving of total energy in the limit ∆t→ 0, energy oscillations in sense of

the shadow Hamiltonian

• no amplitude decay

• period shortening

• the best choice for the time step size is the critical time step, so ∆t = α∆tcr,

where α = 0.9

Page 33: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

One dimensional wave test

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

CDM, linear FEM, LMM, Co = 0.1

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

CDM, linear FEM, LMM, Co = 0.5

0 0.2 0.4 0.6 0.7 0.8 1−1.5

−1

−0.5

0

0.5

x/L

σ/σ 0

CDM, linear FEM, LMM, Co = 1.0

Page 34: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

5. Lumping techniques for mass matrices

See Lecture 8.

Page 35: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Mass lumping (diagonalization)

Row sum method: meii =

n∑j=1

meij

The row sum method produces negative diagonal terms for higher-order FEM.The HRZ (Hinton-Rock-Zienkiewicz) method:A scaling method for conserving of total element mass. Procedure is as follows.

1. For each coordinate direction, select the DOFs that contribute to motion in that direction.From this set, separate translational DOF and rotational DOF subsets.

2. Add up the CMM diagonal entries pertaining to the translational DOF subset only. Callthe sum S.

3. Apportion Me to DLMM entries of both subsets on dividing the CMM diagonal entriesby S.

4. Repeat for all coordinate directions.

The HRZ method can be used for higher-order FEM or FEM with rotation DOFs (beams, plates,shells).

• Hinton, E., Rock, T.A. & Zienkiewicz, O.C.: A note on mass lumping and related processesin the finite element method. Int. J. Earthquake Eng. Struct. Dyn., 4, pp 245–249, 1976.

Page 36: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Direct inversion of mass matrix of consistent type

In explicit time integration, we need to solve

u = M-1(f ext − f int − f contact

)The aim is to take the direct inversion of the mass matrix M-1 from the consistent mass Mwithout a lumping so that M-1 satisfies following properties

• It should accurately keep both low and intermediate-frequency response components;

• Except for discontinuous wave propagation problems, its numerically stable explicit inte-gration step size should be much larger than employing the standard mass matrix.

• Its inverse should be inexpensive to generate, preferably without factorization computations.

This issue is still an open problem.

Page 37: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

6. Solving of nonlinear time-depend problems

Page 38: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Solving of nonlinear time-depend problems

Vector of internal forces:

fint =

∫Ω

BT σ(deformation tensor, strain-rate, time, temperature, internal variables) dΩ

Often, vector local internal forces are evaluated by one-point Gauss integration (only one inte-

gration point taken place in the centroid of a finite element) and the tress tensor σ are kept as

an internal state variable.

Algorithm:Initial conditions and initialization, time t = 0.Set initial velocity u0, σ0 and initial values of other internal material variablesSet initial displacement u0, n = 0, compute M or M-1

Evaluate internal force fnint, Evaluate external force fnext, Evaluate contact force fncontEvaluate force residual: rn = fnext − fnint − fncontCompute accelerations un = M−1rn

Time update: tn+1 = tn + ∆tn+1/2, tn+1/2 = 12(tn + tn+1)

Update nodal velocities un+1/2 = un + (tn+1/2 − tn)un

Enforce velocity boundary conditionsUpdate nodal displacements un+1 = un + ∆tn+1/2un+1/2

Evaluate internal force fn+1int for un+1

Compute force residual rn+1 at tn+1 and accelerations un+1

Update nodal velocities un+1 = un+1/2 + (tn+1 − tn+1/2)un+1

Check energy balance at the time step n+ 1Update counter n = n+ 1Goto to STEP TIME UPDATE

Page 39: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

7. Stability of time schemes

Page 40: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Stability theory - modal transformation

Eigen-value problem:KΦ = ω2MΦ

Modal transformation:u = ΦX,

with propertiesΦTKΦ = I, ΦTMΦ = Ω2

Ω is the diagonal matrix.Equation of motion after modal transformation:

X(t) + Ω2X(t) = ΦTR(t),

We have an independent equation

Xi(t) + ω2iXi(t) = (ΦTR)i(t),

For analysis of stability, it is sufficient to study

X(t) + ω2maxX(t) = r(t),

Page 41: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Stability theory

In direct time integration, the recursive relationship in time stepping process has a form[ut+∆t

ut+∆t

]= A

[ut

ut

]+ Lt+ν(r), (3)

where A marks the amplification operator, which dictates stability behaviour of the method.We define the spectral radius of A

ρ (A) = maxi=1,2,...,n

|λi| , (4)

where λi denotes the i-the eigen value of the operator AStability criterion yields:

1. if all eigenvalues are distinct, it must be satisfied ρ (A) ≤ 1 whereas

2. If A contains multiple eigenvalues, we require that all such eigenvalues |λi| < 1.

Page 42: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Stability theory - The Newmark method

The Newmark method with β = 1/2 and γ = 1/4

A = (1 + ω2∆t2/4)

[1− ω2∆t2

4 , ∆t

−ω2∆t, 1− ω2∆t2

4

](5)

eigen-values

λ1,2 =−(

1− ω2∆t2

4

)± iω∆t

1 + ω2∆t2

4

(6)

with propertiesρ (A) = 1. (7)

It means that the Newmark method with β = 1/2 and γ = 1/4 is unconditionally stable.

Page 43: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Stability theory - Central difference method

A =

[2− ω2∆t2, −1

1, 0

], (8)

with eigen-values

λ1,2 =2− ω2∆t2

2±√

(2− ω2∆t2)2

4− 1. (9)

0 0.5 1 1.5 2 2.5 30

1

2

3

4

5

ω ∆ t

ρ(A)

central difference methodNewmark method

The central difference method is conditionally stable.Stability limit for the central difference method

∆tω ≤ 2 (10)

It yields the stability formula for the time step size ∆t as

∆t ≤ 2

ωmax(11)

where ωmax is the maximum eigen value of the discretized system.

Page 44: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

8. Time step size estimations for FEM

Belytschko, T., Liu, W. K., Moran, B., Elkhodary, K. (2013). Nonlinear finite elements forcontinua and structures. II edition. John Wiley & Sons.

Wu, S. R., Gu, L. (2012). Introduction to the explicit finite element method for nonlineartransient dynamics. John Wiley & Sons.

Benson (1998). Stable time step estimation for multi-material Eulerianhydrocodes. CMAME

Belytschko, Smolinski, Liu (1985). Stability of multi-time step partitioned integrators for first-order finite element systems. CMAME

Kulak (1989). Critical time step estimation for three-dimensional explicit impact analysis: Struc-tures under Shock and Impact, ed, Bulson: 155-163, Elsvier, Amsterdam

Page 45: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

We define the Courant number:

Co =∆tc1

H

∆t - time step size, c1 is wave speed of longitudinal wave, H - characteristic length

(length of finite element edge)

The non-dimensional angular velocity:

ω =ωH

c1

The critical time step size for the cetral difference method

∆tcr =2

ωmax

Then, the critical time step size is given

Cocr =∆tcrc1

H=

2

ωmax

Page 46: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Wave speeds in elastic solids under small deformation theory

3D longitudinal wave: c1 =√

(Λ + 2G)/ρ

3D shear wave: c2 =√G/ρ

2D longitudinal wave under plane strain state: c1 =√

(Λ + 2G)/ρ

2D shear wave under plane strain state: c2 =√G/ρ

2D longitudinal wave under plane stress state: c1 =

√E

(1− ν2) ρ

2D shear wave under plane stress state: c2 =√G/ρ

1D longitudinal wave under uniaxial strain state: c =

√(1− ν)E

(1 + ν)(1− 2ν) ρ

1D longitudinal wave under uniaxial stress state: c =√E/ρ

Page 47: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Stability limit for the central difference method ∆t ≤ ∆tcr = 2ωmax

Methods of time step size estimations

• global methods (computation or estimation of ωmax, KΦ = ω2MΦ )

- ωmax can be computed or estimated using global mass and stiffness matrices.

• element based methods (computation or estimation of ωemax on elemental

level,

KeΦe = ω2eM

eΦe

- respecting the element eigenvalue inequality ωmax ≤ maxi ωei over all finite

elements.

The highest eigenvalue of dissassembled system is higher than the highest

eigenvalue of the assembled system.

• nodal based methods - ωmax can be estimated from nodal stiffness and

mass properties based on the Gershgorin’s theorem

- estimation of maximum eigenvalue of system (M-1K− ω2I)Φ = 0

Page 48: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Global methodsPower iteration:

AΦ = λΦ A = M−1K

Algorithm:

1. Initialize eigenvector Φ0, e.g. randon in range [-1,1], i = 0

2. i=i+1

3. Compute Ψi+1 = KΦi or as internal force Ψi+1 = fint(Φi)

4. Compute χi+1 = M-1Ψi

5. Compute estimate of eigenvalue λmaxi+1 = ‖χi+1‖

6. Update eigenvector Φi+1 = χi+1/λmaxi+1

7. If |λmaxi+1 /λmaxi − 1| > ε or i < N iter go to STEP 2.

8. Finish

Page 49: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Element based methodsUsing the eigenvalue inequality ωmax ≤ maxi ω

ei

1. Power iteration of elemental level

2. Upper bound for eigenfrequency for 2D four-noded quadrilateral or 3D eight-

noded brick solid elements

ωmax ≤ maxiωei ≤

√∑k,j

BkjBkj

with longitudinal wave speed c1 and strain-displacement matrix B

Flanagan, Belytschko (1981). A uniform strain hexahedron and quadrilateral with

orthogonal hourglass control. International Journal for Numerical Methods in En-

gineering

Page 50: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Element based methods

3. Upper bound for eigenfrequency

ωmax ≤ maxiωei ≤

c1

lewith longitudinal wave speed c and characteristic length of element le.

How to choose le?1

l2De =Aelement

lmaxl3De =

VelementAmax

4. CFL (Courant-Friedrichs-Lewy 2) condition ∆t ≤ α lec1

, α depends on element

type, integration type, order, shape, mass matrix, mass scaling, etc.1LS-DYNA manual2Courant, R., Friedrichs, K., Lewy, H., 1967, On the partial difference equations of mathematical physics

Page 51: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Critical Courant number -bilinear elements

Linear 1D FEM with the lumped mass matrix

ωhmax =2c0

H, ωhmax = 2, Cocr =

∆tcr c0

H=

2

ωhmax= 1

Linear 1D FEM with the consistent mass matrix

ωhmax =

√12c0

H, ω =

√12, Cocr =

∆tcr c0

H=

2

ωhmax= 1/√

3 ≈ 0.577

Square linear 2D and 3D FEM the with diagonal mass matrix

Cocrit =∆tcrit c1

H= 1

Serendipity quadratic (eight-noded) 2D and 3D FEM with the lumped mass by the

HRZ method

Cocrit =∆tcrit c1

H≈ 0.2

Page 52: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Critical Courant number -bilinear elements

Numerical experiment with bilinear FEM, diagonal mass matrix, free boundary

conditions, plain strain problem

mesh density ωmax Cocrit1× 1 2.3905 0.83662× 2 2.0723 0.96514× 4 2.0327 0.98398× 8 2.0199 0.9901

16× 16 2.0179 0.991132× 32 2.0176 0.991264× 64 2.0176 0.9912

infinity mesh 2.0 1.0

ω =ωH

c1, Co =

∆t c1

H, Cocrit =

2

ωmax

Page 53: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Nodal based methods

Gershgorin circle theorem3 based method: For a given square matrix A (complex

n× n matrix) the Gershgorin’s circle which belongs to the i-th diagonal entry Aii

is defined as

Si(Aii,Ri =n∑

j=1,i 6=j| Aij |), i = 1, ..., n

where Si defines a circle with radius Ri and position around x-axis at the posi-

tion Aii.

Gershgorin’s circle: D(Aii, Ri) Ri =n∑

j=1,i 6=j| Aij |

Example: A =

3 −0.5 0.4−0.75 4 −0.5

0 −0.7 1

row-wise column-wiseD(3, 0.9) D(3, 0.75)D(4, 1.25) D(4, 1.2)D(1, 0.7) D(1, 0.9)

3Gerschgorin, S., 1931, Uber die Abgrenzung der Eigenwerte einer Matrix

Page 54: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Nodal based methods

Application for FEM with lumped mass matrix4:

ω2max ≤ max

i

n∑j=1

| Kij |

Mii

This method respects Dirichlet boundary conditions.

Application for FEM with lumped mass matrix in contact-impact problems using

penalty formulation

ω2max ≤ max

i

n∑j=1

| Kij | +Kpi

Mii

where Kp is the corresponding penalized stiffness matrix.

4Kulak, R., F., 1989, Critical Time Step Estimation for Three-Dimensional Explicit Impact Analysis

Page 55: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Example: fix-free bar.

L = 10m A = 0.1m2

ρ = 7850 kg ·m−3 E = 210GPanumber of elements = 6 le = see table below

Different meshes with corresponding element lengths le [m]

Regular 1.667 1.667 1.667 1.667 1.667 1.667Irregular 1 1.68 1.65 1.67 1.65 1.67 1.68Irregular 2 1 0.5 3 1.5 2 2Irregular 3 0.5 1 1.5 2 2 3Irregular 4 3 2 2 1.5 1 0.5

Graphical representation of FE meshes:

Page 56: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Time step size estimations for FEM

Comparison of the dimensionless estimated eigen-frequencies for free-free bar:

ωdimless =ωestωnom

Local GlobalMesh max 2c

leGer. Eig Ger. Eig Nominal value [Hz]

Regular 1.000 1.000 1.000 1.000 1.000 987.8Irregular 1 1.010 1.010 1.010 1.038 1.000 988.0Irregular 2 1.706 1.706 1.706 1.207 1.000 1929.8Irregular 3 1.202 1.202 1.202 1.202 1.000 2738.4Irregular 4 1.202 1.202 1.202 1.202 1.000 2738.4

Comparison of the dimensionless estimated eigen-frequencies for fix-free bar:

Local GlobalMesh max 2c

leGer. Eig Ger. Eig Nominal value [Hz]

Regular 1.009 1.009 1.009 1.009 1.000 979.4Irregular 1 1.019 1.019 1.019 1.013 1.000 978.8Irregular 2 1.814 1.814 1.814 1.171 1.000 1815.6Irregular 3 1.916 1.916 1.916 1.106 1.000 1718.7Irregular 4 1.202 1.202 1.202 1.202 1.000 2738.4

Page 57: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

9. Mass scaling

Motivation: change frequency spectrum of FEM model via modification of mass

matrix, affect maximum eigen-frequency of FE system so that the critical time step

is larger and computations is efficient.

Smaller maximum eigen-value ⇒ larger time step size

Modification of mass matrix as

Mo = M + λo

where λo is the artificial added mass matrix.

Page 58: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

Mass scaling

Methods of mass scaling in FEM

• convential mass scaling - adding artificial mass in diagonal terms of mass

matrix

mλe =

ρAle2

[1 0

0 1

]mo

e = me + αmλe

- preserving the diagonal structure of mass matrix

- increasing element inertia - applied only to a small number of element -

applied to structural finite element (beam, shell, solid-like shell, applied only

on rotation degrees of freedom)

Frequency spectrum:

Page 59: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

• selective mass matrix5 - adding artificial mass so so that translation inertia

is preserving.

mλe = β

ρAle2

[1 −1

−1 1

]mo

e = me + βmλe

- only selected modes are affected

- off-diagonal mass matrix structure ⇒ using the reciprocal mass matrix

Frequency spectrum:

5Olovsson Etal. (2005) Selective Mass Scaling for explicit Finite Element Analyses, IJNME 63

Page 60: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

General form for preserving of translation inertia6

moe =

∆m

n− 1(I−

n∑i=1

oioT

i )

For example for 2D, rigid body modes for a four-noded element are chosen as

o1 =[

1 0 1 0 1 0 1 0]T

o2 =[

0 1 0 1 0 1 0 1]T

General form for elimination of selected eigen-modes with corresponding modal

vectors Φl7

moe = αPemeP

T

e

where

Pe = I−Φl[ΦT

lΦl]-1Φl

6Olovsson, et al. (2005) Selective Mass Scaling for explicit Finite Element Analyses, IJNME7J. Gonzalez, et al. (2018) Inverse Mass Matrix via the Method of Localized Lagrange Multipliers IJNME.

Page 61: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The Taylor test

x

y

z

ØD0

L

v0

rigid wall

Geometry: bar radius R = 3.2 [mm]length L = 32.4 [mm]

Impact velocity L = 227.0 [m/s]3D problemElastic and mass parameters of copper:

E = 117 [GPa]

ν = 0.35 [-]

ρ = 8.93 [kg/m3]

Simo J2 finite plasticity theory

Bilinear stress-strain curve

Isotropic hardening

Yield strength σY = 400 [MPa]

Plastic modulus E ′ = 100 [MPa]

The proposed method with θ = 0.5.

Taylor GI. The use of flat ended projectiles for determining yield stress. I. Theoretical consider-

ations. Proceedings of the Royal Society A , 194, 289–299, 1948.

Page 62: LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek …shortcourse2018.it.cas.cz/im/data/my/2018_Lecture_17.pdf · 2018-06-06 · LECTURE 17 DIRECT TIME INTEGRATION IN DYNAMICS Radek

The Taylor test

Distributions of σekv at the time t = 80 µs.

Thank you for you attention!


Recommended