+ All Categories
Home > Documents > Lecture 3: Bacterial Swimming - SJTU

Lecture 3: Bacterial Swimming - SJTU

Date post: 03-Feb-2022
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
40
Lecture 3: Bacterial Swimming Introduc6on Bacterial swimming Near surface accumula6on Circular trajectories near interface Trapping of swimming bacteria at the air- water interface Jay X Tang, Brown University 1
Transcript
Page 1: Lecture 3: Bacterial Swimming - SJTU

Lecture3:BacterialSwimming

•  Introduc6on•  Bacterialswimming•  Nearsurfaceaccumula6on•  Circulartrajectoriesnearinterface•  Trappingofswimmingbacteriaattheair-waterinterface

Jay X Tang, Brown University 1

Page 2: Lecture 3: Bacterial Swimming - SJTU

Abundanceofmicrobesattheinterface

Biofilm: Bacteria mats near Grand Prismatic Spring in Yellowstone � www.wikipedia.org

Steps flagellated bacteria take to form biofilm Watnick and Kotler, 2000.

Jay X Tang, Brown University 2

Page 3: Lecture 3: Bacterial Swimming - SJTU

Various species of motile bacteria

Jay X Tang, Brown University 3

Page 4: Lecture 3: Bacterial Swimming - SJTU

4

Bacterialmo6ondrivenbyrota6onofflagellarmotor

Biochemistry, 3rd Ed., 1999, Voet & Voet, John Wiley & Sons

Jay X Tang, Brown University

Swimming direction

Google images

Page 5: Lecture 3: Bacterial Swimming - SJTU

5

LifecycleofCaulobactorcrescentus

Swarmercell

Stalkedcell

Yves Brun, Indiana University Jay X Tang, Brown University 5

Page 6: Lecture 3: Bacterial Swimming - SJTU

From swimming to attachment and adhesion

•  Body parts –  Cell body –  Flagellum –  Pilli –  Holdfast –  Stalk

•  Physics

–  Swimming hydrodynamics (H. Berg, PNAS, 1995; Magariyama, BJ, 2005; G. Li & J. X. Tang, BJ, 2006; J. Hill, et al., Phys Rev Lett, 2007; G. Li & J. X. Tang, Phys. Rev. Letts., 2009)

–  Electrostatics (DLVO) (Jucker et. al., 1998; Vigeant et al., App. Env Microbio., 2002; G. Li, LK Tam & J. X. Tang, PNAS, 2008)

Jay X Tang, Brown University 6

Page 7: Lecture 3: Bacterial Swimming - SJTU

7

Areversiblemotorpowersbacterialswimming

Biochemistry, 3rd Ed., Voet & Voet, John Wiley & Sons

Jay X Tang, Brown University

Page 8: Lecture 3: Bacterial Swimming - SJTU

8

Uni-flagellatedbacteriaareefficientswimmers

C. crescentus, movies taken by Guanglai Li , Brown Univ.

G. Li & J. X. Tang, Biophys J., 2006, 91:2726G. Li, LK Tam & J. X. Tang, PNAS, 2008, 105:18355G. Li & J. X. Tang, Phys Rev Lett, 2009, 103:078101

Jay X Tang, Brown University

Page 9: Lecture 3: Bacterial Swimming - SJTU

Theessen6alphysicsofbacterialswimming

•  Theretwoessen6alproper6esofabacterialflagellum:– Arotaryflagellarmotor– Ahelicalflagellarfilament

•  Thenexttwoslidesexplainthebasichydrodynamicsthatenableswimmingofflagellatedbacteria.

Jay X Tang, Brown University 9

Page 10: Lecture 3: Bacterial Swimming - SJTU

10

Asymmetricdragandvectoranalysis

BiologicalPhysics,byPhilipNelson,2004,W.H.FreemanG.Li&J.X.Tang,PRE,2004;

G.Li,Q.Wen&J.X.Tang,J.Chem.Phys,2005

Jay X Tang, Brown University

Page 11: Lecture 3: Bacterial Swimming - SJTU

Ahelicalpropeller

Jay X Tang, Brown University 11

Page 12: Lecture 3: Bacterial Swimming - SJTU

Specifictopics•  I.Nearsurfacesaccumula6on

–  stericconfinement&effectsofcollision–  nearsurfacedrag,lubrica6onforce

•  II.Nearsurfaceswimmingpath–  observa6onandanalysisofcirculartrajectories–  couplingbetweenBrownianmo6onand

hydrodynamics

•  ***Swimmingpathattheair/waterandoil/waterinterface–  trappedatthesurface–  effectsofsurfacetension,surfaceviscosity,and

hydrophobicityImplications: chemotaxis, bacterial adhesion, differentiation, biofilm formation, etc.

Jay X Tang, Brown University 12

Page 13: Lecture 3: Bacterial Swimming - SJTU

TopicI.Nearsurfaceaccumula6onofmicro-swimmers

Berkeetal.2008,PhysRevLe`(Lauga)

E.coli

Rothschild,1963,Nature

Bullsperm

0 50 100 150 200

0.00

0.05

0.10

0.15

0.20

0.25

Pro

babi

lity

Den

sity

Distance (µm)

Red:Caulobacter

Li&Tang,2009,PhysRevLe`

Jay X Tang, Brown University 13

Page 14: Lecture 3: Bacterial Swimming - SJTU

Visualizinghowbacteriahitasurface

Ming-ming Wu, Cornell Univ.

Jay X Tang, Brown University 14

Page 15: Lecture 3: Bacterial Swimming - SJTU

Whathappensaheraswimmerhitsasurface

X

Jay X Tang, Brown University 15

Page 16: Lecture 3: Bacterial Swimming - SJTU

Howfasttobecomeparalleltosurface

Vx�

Forceandtorquebalance

Hydrodynamicforceandtorqe

Results

Jay X Tang, Brown University 16

Page 17: Lecture 3: Bacterial Swimming - SJTU

Simula6ngamicroswimmerconfinedinathinlayer

Equa6onsofMo6onSimplifiedModel

SimulatedPath Densitydistribu6on

Jay X Tang, Brown University 17

Page 18: Lecture 3: Bacterial Swimming - SJTU

ComparisonwithExperiments

10rad2/s

10.1 0.0001

Guanglai Li & J. X. Tang, Phys Rev Lett, 2009, 103:078101Jay X Tang, Brown University 18

Page 19: Lecture 3: Bacterial Swimming - SJTU

SummaryofTopicI

Surfacesetsini-alangle

Swimmingundertheinfluenceofrota-onalBrownianmo-on

Jay X Tang, Brown University 19

Page 20: Lecture 3: Bacterial Swimming - SJTU

SpecificTopicIINearsurfaceswimmingpath

•  Observa6onandanalysisofcirculartrajectories

•  CouplingbetweenBrownianmo6onandhydrodynamicsImplica-onson–  chemotaxis–  bacterialadhesion–  differen6a6on–  biofilmforma6on

Jay X Tang, Brown University 20

Page 21: Lecture 3: Bacterial Swimming - SJTU

Swimmingincirclesnearasurfaceboundary

Frymier,PNAS1995 Goto,Biophys.2005E.coli Vibio.alginoly<cus

C.crescentus Li,PNAS2008 H.pylori Celli,PNAS2009

Jay X Tang, Brown University 21

Page 22: Lecture 3: Bacterial Swimming - SJTU

Thehydrodynamicbasisofcirculartrajectoryofnearsurfaceswimming

22

Swimming direction

Dragforce

Jay X Tang, Brown University

Page 23: Lecture 3: Bacterial Swimming - SJTU

TrajectoriesObservedbyTIRF

Jay X Tang, Brown University 23

Page 24: Lecture 3: Bacterial Swimming - SJTU

ForceandTorqueAnalysis

+ + =+

dlvo(Derjaguin,Landau,VerweyandOverbeekTheory) Jay X Tang, Brown University 24

Page 25: Lecture 3: Bacterial Swimming - SJTU

CurvatureandSwimmingSpeedvsDistance-ComparisonbetweenMeasuredandSimulatedData

MeasuredbyTIRFmicroscopy

Simulated

Jay X Tang, Brown University 25

Page 26: Lecture 3: Bacterial Swimming - SJTU

RoleofBrownianMo6ononForaging

Guanglai Li, LK Tam & J. X. Tang, PNAS, 2008, 105:18355

Jay X Tang, Brown University 26

Page 27: Lecture 3: Bacterial Swimming - SJTU

27

OpenPuzzle:Whyarecircularpathnotedonlyforbackwardswimmers?

A schematic comparison between forward and backward swimming near a surface

Jay X Tang, Brown University

Page 28: Lecture 3: Bacterial Swimming - SJTU

SummaryofTopicII

Brownianmo-onvariesdistancetosurface

Dragsensi-vetodistance

Jay X Tang, Brown University 28

Page 29: Lecture 3: Bacterial Swimming - SJTU

TopicIII:Swimmingattheair/waterinterface

MikeMorse,Huang,Li,Maxey&Tang,Biophys.J.(2013),105:21-28

29

Page 30: Lecture 3: Bacterial Swimming - SJTU

Analysisoftrajectoriesattheairsurface

Twotypesofswimmingtrajectoriesattheliquid/airinterface:~40%straightswimmers&~60%circularswimmers

10 20 30 40 50 60 70-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Speed (µm/s)

Cur

vatu

re (1

/µm

)

-0.20-0.10

0.000.10

0.200.30

0.400.50

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Curvature (1/µm)

Dis

tribu

tion

Straight Swimmers ~40% Circular Swimmers

~60%

30 Jay X Tang, Brown University

Page 31: Lecture 3: Bacterial Swimming - SJTU

Manipula6onofswimmingattheair/waterinterface

-0.20-0.10

0.000.10

0.200.30

0.400.50

0.000.020.040.060.080.100.120.140.160.180.20

00.00010.0010.010.050.1

Curvature (1/µm)

Dis

trib

utio

n

0 0.0001 0.001 0.01 0.05 0.10.0000

0.1000

0.2000

0.3000

0.4000

0.5000

0.6000

0.7000

0.8000

0.9000

1.0000

StraightCircular

Percent Surfactant

Fra

ctio

n of

Tra

ject

orie

s

Hypothesis: bacteria tend to get trapped at the air/water surface due to its large surface tension. Adding surfactant, which reduces the surface tension, might release them from the surface. Experiment: Add Triton, a non-ionic surfactant and observe!

31 Jay X Tang, Brown University

Page 32: Lecture 3: Bacterial Swimming - SJTU

MolecularLayerofTritonontotheSurfaceLeadstoFullReleaseofTrappedBacterialSwimmersfromtheLiquid-WaterInterface

Chemical Structure of Triton-100: Molecular weight: 625 Dalton Molecular Length: ~3 nm

32 Jay X Tang, Brown University

Ref for the blue curve: Danov, K.D. and P.A. Kralchevsky, Colloidal J., 2012

Page 33: Lecture 3: Bacterial Swimming - SJTU

Swimmingcellsaretrappedattheairsurfaceofgrowthmediumbutnotminimalsaltsolu6on

Jay X Tang, Brown University 33

Orange data: minimal salt solution Blue data: growth medium containing Bactotrypton and Yeast Extract

Page 34: Lecture 3: Bacterial Swimming - SJTU

Effectsofselectedorganicmaterialsingrowthmediumontrappingoftheswimmingcellsatthesurafce

Minimal salt solution 4.0+-2.4 Growth medium 59.7+-5.9 Growth medium + surfactant 6.8+-1.3

Minimal salts +Yeast Extract 15.9+-1.6 Minimal salts+Bactotrypton 25.6+-2.3

Percentage of trapped cells

34 Jay X Tang, Brown University

Page 35: Lecture 3: Bacterial Swimming - SJTU

Circulartrajectoriesofoppositehandednessattheair/liquidsurface

Jay X Tang, Brown University 35

ContradictaryrecentreportsonE.coli•  Lemelle,Pallierne,Chatre&Place,J.

Bacteriology,192:6307,2010. •  CWandCCWcircles•  Condi6on:growthmedium

•  Leonardo,Dell’sArciprete,Angelani&

Iebba,PRL,106:038101,2011.•  CWcirclesonly,oppositetonearsolidsurface

•  Condi6on:mo6litybuffer

Take home message: SURFACE CHEMISTRY MATTERS

Page 36: Lecture 3: Bacterial Swimming - SJTU

Observa6onofswimmingatthewater/oilinterface

Unpublished work-M. Morse & J. X. Tang

• Theforwardswimmersmovein-ght,clockwisecircles(radiusunder2um)

• Theytendtobeterminallytrapped

• Thestrainsthatswitchmotorrota-ondirec-onscanescapewhilebackingoff

36 Jay X Tang, Brown University

Page 37: Lecture 3: Bacterial Swimming - SJTU

Flagellarmotorswitchingisafirstpassage6meprocess

37

Morse, Bell, Li & Tang, Phys. Rev. Lett., 2015

Page 38: Lecture 3: Bacterial Swimming - SJTU

ConcludingRemarks• Swimming microbes tend to accumulate near a confining surface subsequent to collision.

•  The accumulation facilitates biological functions such as nutrient foraging, adhesion, and biofilm formation.

•  Adsorption of large organic molecules at the air/water interface causes the swimming microbes to be trapped. The trapped swimmers can be released by surfactants, which some microbes secrete.

•  Detailed experiments and analysis of low Reynold # hydrodynamics and surface physics/chemistry are required to explain various bacterial properties at interfaces. 38 Jay X Tang, Brown University

Page 39: Lecture 3: Bacterial Swimming - SJTU

Acknowledgements•  Dr.GuanglaiLi,formerpostdocandseniorassociate,Brown

University

•  Collaborators:Prof.YvesBrunandassociates,IndianaUniversity;ProfsMar6nMaxeyandThomasPowers,BrownUniversity

•  PhDstudents:MichaelMorse&JordanBell•  Undergraduatestudents:LK Tam (Yale Univ), Lauren Francis, Robert Kim (Vanderbilt Univ.), Jesse Mahautmr, Daniel Munger, Katrina Wilson, Tatiana Lopes, James Bensson, Liana Nishimova, Serin Seckin, Athena Huang, Marianna Neubaeur, Yokun Gao, Erica Khan, Jeffrey Commons, Nathan Johnson, Sha Sha…

•  FundingfromNIHandNSFPhys&NSFCBET

39 Jay X Tang, Brown University

Page 40: Lecture 3: Bacterial Swimming - SJTU

KeyRefs•  Li,G.,L.K.Tam,andJ.X.Tang,AmplifiedeffectofBrownianmo<onin

bacterialnear-surfaceswimming.ProcNatlAcadSciUSA,2008.105(47):p.18355-9.

•  Li,G.andJ.X.Tang,Accumula<onofmicroswimmersnearasurfacemediatedbycollisionandrota<onalBrownianmo<on.PhysRevLe`,2009.103(7):p.078101.

•  Morse,M.,Huang,A.,Li,G.,Maxey,M.R.,andTang,J.X.,Molecularadsorp6onsteersbacterialswimmingattheair/waterinterface,BiophysicalJournal,2013,105:21.

•  Morse,M.,J.Bell,G.Li,andJ.X.Tang,FlagellarMotorSwitchinginCaulobacterCrescentusObeysFirstPassageTimeSta<s<cs.PRL,2015.115(19):p.198103.

Jay X Tang, Brown University 40


Recommended