+ All Categories
Home > Documents > Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and...

Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and...

Date post: 03-Jan-2017
Category:
Upload: han-yi
View: 212 times
Download: 0 times
Share this document with a friend
15
Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from UPb ages and Hf isotopes of detrital zircons Tadashi Usuki a, , Ching-Ying Lan a , Kuo-Lung Wang a , Han-Yi Chiu b a Institute of Earth Sciences, Academia Sinica, Nankang, Taipei 115, Taiwan b Department of Geosciences, National Taiwan University, Taipei 106, Taiwan abstract article info Article history: Received 21 September 2012 Received in revised form 11 November 2012 Accepted 14 November 2012 Available online 27 November 2012 Keywords: UPb age Hf isotope Detrital zircons Gondwana margin Indochina Truong Son Belt To constrain the paleoposition of Indochina within Gondwana during the Early Paleozoic, we performed in-situ UPb and Hf isotope analyses on detrital zircons from three river sediment samples in the Truong Son Belt of the Indochina block. The age distributions yield dominant Neoarchean (~2.5 Ga), Mesoproterozoic (1.71.4 Ga), Grenvillian (~0.95 Ga), and Pan-African (0.650.5 Ga) age groups and minor Paleo- to Meso-archean zircons. Hf isotope compositions of zircons for each age group exhibit large ranges of εHf (T) , suggesting that the zircon host rocks have diverse sources. The oldest Hf model ages for zircons of Neoarchean, Grenvillian, and Pan-African age group yield ~3.7 Ga or older, while those of Mesoproterozoic age group show ~3.3 Ga. The remarkable similarity of age distribution and Hf isotope compositions among detrital zircons of Indochina and those of Tethyan Himalaya, western Cathaysia, and Qiangtang suggests that Indochina was located outboard of Qiangtang and south of South China in the Indian margin of Gondwana during the Early Paleozoic. Our results are consistent with the paleontological correlations of east Gondwana margin during the Early Paleozoic. © 2012 Elsevier B.V. All rights reserved. 1. Introduction The Indochina block is one of the largest continental blocks in SE Asia and occupies most of the Indochina peninsula. During the Early Paleozoic the Indochina block is considered to have been proximal to Gondwana, as well as other continental blocks in SE Asia (Metcalfe, 1998, 2006, 2011a, 2011b). Constraining the paleopositions of these blocks during the Early Paleozoic is critical for understanding the geodynamic (e.g., rifting, orogenesis) development of pericratonic Gondwana margins (e.g., Cawood et al., 2007; Metcalfe, 1998, 2011a, 2011b; Wang et al., 2010; Zhu et al., 2011, in press). In previous studies, Early Paleozoic reconstructions of these blocks are primarily based on pa- leomagnetic data, paleobiogeography, and stratigraphic correlations (e.g., Metcalfe, 1998). The Early Paleozoic paleopositions of the Indochina block differ widely which is partially related to the different methods used for the reconstructions. For example, Torsvik and Cocks (2009) con- siders that both Indochina and South China were not a part of the Gondwana margin and existed as isolated blocks during the Early Paleo- zoic. Metcalfe (1998, 2006, 2011a, 2011b) maintains a long-standing in- terpretation placing these terranes on the India-Australian margin of Gondwana. This inconsistency mainly comes from paucity of constraints on the paleopositions of SE Asian terranes. Especially, for Indochina, there is no reliable paleomagnetic data (Li et al., 2004) and there are few pale- ontologic indicators (Metcalfe, 1998) in Early Paleozoic. One way to over- come this difculty is by introducing a new approach. Recently, an integrated method of UPb ages and Hf isotope compo- sitions for detrital zircons was successfully applied to constrain the paleopositions of SE Asian continental blocks such as South China, Lhasa, and Qiangtang (Duan et al., 2011; Yu et al., 2008; Zhu et al., 2011). Of these studies, Zhu et al. (2011) showed that the presence or absence of younger (~950 Ma) or older (~1170 Ma) Grenvillian detrital zircons is useful to discriminate whether the blocks were derived from the Indian or the Australian margins. Therefore we can expect that the application of detrital zircon studies to the Indochina block may be able to shed light on the true paleoposition of Indochina. This study pre- sents new in-situ UPb age and Hf isotope data of detrital zircons collect- ed from river sediments in the Truong Son Belt (TSB) of the Indochina block in order to constrain the paleoposition relative to the other Gond- wana derived terranes. 2. Geological background of the sample sites The Indochina block occupies the largest portion of the Indochina peninsula (Fig. 1A). It is divided from South China by the Song Ma Suture in the north and from the Sibumasu by the Sukhothai Arc and the Paleo-Tethys Suture Zone (Metcalfe, 2011a; Sone and Metcalfe, 2008) in the west. The eastern margin of the Indochina (North-Central Vietnam and eastern Laos) is composed of the Truong Son Belt (TSB) and Kontum massif. The TSB is mainly composed of Precambrian to Mesozoic sedi- mentary rocks intruded by plutonic rocks (Tran and Nguyen, 1989; Tran et al., 2008, Fig. 1B). These rocks were metamorphosed along narrow NW- to W-trending shear zones (Lepvrier et al., 1997). The Kontum massif is mainly composed of high grade metamorphic rocks and plutonic Tectonophysics 586 (2013) 145159 Corresponding author. Tel.: +886 227839910; fax: +886 227839871. E-mail address: [email protected] (T. Usuki). 0040-1951/$ see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tecto.2012.11.010 Contents lists available at SciVerse ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto
Transcript
Page 1: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

Tectonophysics 586 (2013) 145–159

Contents lists available at SciVerse ScienceDirect

Tectonophysics

j ourna l homepage: www.e lsev ie r .com/ locate / tecto

Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence fromU–Pb ages and Hf isotopes of detrital zircons

Tadashi Usuki a,⁎, Ching-Ying Lan a, Kuo-Lung Wang a, Han-Yi Chiu b

a Institute of Earth Sciences, Academia Sinica, Nankang, Taipei 115, Taiwanb Department of Geosciences, National Taiwan University, Taipei 106, Taiwan

⁎ Corresponding author. Tel.: +886 227839910; fax:E-mail address: [email protected] (T. Usuki).

0040-1951/$ – see front matter © 2012 Elsevier B.V. Allhttp://dx.doi.org/10.1016/j.tecto.2012.11.010

a b s t r a c t

a r t i c l e i n f o

Article history:Received 21 September 2012Received in revised form 11 November 2012Accepted 14 November 2012Available online 27 November 2012

Keywords:U–Pb ageHf isotopeDetrital zirconsGondwana marginIndochinaTruong Son Belt

To constrain the paleoposition of Indochina within Gondwana during the Early Paleozoic, we performed in-situU–Pb and Hf isotope analyses on detrital zircons from three river sediment samples in the Truong Son Belt ofthe Indochina block. The age distributions yield dominant Neoarchean (~2.5 Ga), Mesoproterozoic (1.7–1.4 Ga), Grenvillian (~0.95 Ga), and Pan-African (0.65–0.5 Ga) age groups and minor Paleo- to Meso-archeanzircons. Hf isotope compositions of zircons for each age group exhibit large ranges of εHf(T), suggesting thatthe zircon host rocks have diverse sources. The oldest Hf model ages for zircons of Neoarchean, Grenvillian,and Pan-African age group yield ~3.7 Ga or older, while those of Mesoproterozoic age group show ~3.3 Ga.The remarkable similarity of age distribution and Hf isotope compositions among detrital zircons of Indochinaand those of Tethyan Himalaya, western Cathaysia, and Qiangtang suggests that Indochina was located outboardof Qiangtang and south of South China in the Indianmargin of Gondwana during the Early Paleozoic. Our resultsare consistent with the paleontological correlations of east Gondwana margin during the Early Paleozoic.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Indochina block is one of the largest continental blocks in SE Asiaand occupiesmost of the Indochinapeninsula. During the Early Paleozoicthe Indochina block is considered to have been proximal to Gondwana,as well as other continental blocks in SE Asia (Metcalfe, 1998, 2006,2011a, 2011b). Constraining the paleopositions of these blocks duringthe Early Paleozoic is critical for understanding the geodynamic(e.g., rifting, orogenesis) development of pericratonic Gondwanamargins (e.g., Cawood et al., 2007; Metcalfe, 1998, 2011a, 2011b;Wang et al., 2010; Zhu et al., 2011, in press). In previous studies,Early Paleozoic reconstructions of these blocks are primarily based onpa-leomagnetic data, paleobiogeography, and stratigraphic correlations(e.g.,Metcalfe, 1998). The Early Paleozoic paleopositions of the Indochinablock differ widely which is partially related to the different methodsused for the reconstructions. For example, Torsvik and Cocks (2009) con-siders that both Indochina and South China were not a part of theGondwana margin and existed as isolated blocks during the Early Paleo-zoic. Metcalfe (1998, 2006, 2011a, 2011b) maintains a long-standing in-terpretation placing these terranes on the India-Australian margin ofGondwana. This inconsistency mainly comes from paucity of constraintson the paleopositions of SEAsian terranes. Especially, for Indochina, thereis no reliable paleomagnetic data (Li et al., 2004) and there are few pale-ontologic indicators (Metcalfe, 1998) in Early Paleozoic. Oneway to over-come this difficulty is by introducing a new approach.

+886 227839871.

rights reserved.

Recently, an integrated method of U–Pb ages and Hf isotope compo-sitions for detrital zircons was successfully applied to constrain thepaleopositions of SE Asian continental blocks such as South China,Lhasa, and Qiangtang (Duan et al., 2011; Yu et al., 2008; Zhu et al.,2011). Of these studies, Zhu et al. (2011) showed that the presence orabsence of younger (~950 Ma) or older (~1170 Ma) Grenvillian detritalzircons is useful to discriminate whether the blocks were derived fromthe Indian or the Australian margins. Therefore we can expect that theapplication of detrital zircon studies to the Indochina block may beable to shed light on the true paleoposition of Indochina. This study pre-sents new in-situU–Pb age andHf isotope data of detrital zircons collect-ed from river sediments in the Truong Son Belt (TSB) of the Indochinablock in order to constrain the paleoposition relative to the other Gond-wana derived terranes.

2. Geological background of the sample sites

The Indochina block occupies the largest portion of the Indochinapeninsula (Fig. 1A). It is divided from South China by the SongMa Suturein the north and from the Sibumasu by the Sukhothai Arc and thePaleo-Tethys Suture Zone (Metcalfe, 2011a; Sone and Metcalfe, 2008) inthe west. The eastern margin of the Indochina (North-Central Vietnamand eastern Laos) is composed of the Truong Son Belt (TSB) and Kontummassif. The TSB is mainly composed of Precambrian to Mesozoic sedi-mentary rocks intruded by plutonic rocks (Tran and Nguyen, 1989;Tran et al., 2008, Fig. 1B). These rocksweremetamorphosed alongnarrowNW- to W-trending shear zones (Lepvrier et al., 1997). The Kontummassif ismainly composed of high grademetamorphic rocks and plutonic

Page 2: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

104° E

20° N

18°

16°

108°106°

Song Ma suture

Tam Ky-Phouc Son fault

South China Sea

N

South China Block

Hoi An

Song Ca

50km

Da Nang

Ha Tinh

LEGEND

Precambrian Fm.

Up. Ordovician-Silurian Fm.

Cambrian-Low. Ordovician Fm.

Triassic Fm.

Carboniferous - Permian Fm.

Devonian Fm.

Neogene - Quaternary Fm.

Quaternary basalt

Granitic rocks

Sutures and Faults

Sample locality

River

Song Ca fault

Vinh

Quang Tri

Ly Hoa

B

LAOS

M03-24B

M03-21BVNTS1

Bu Khang dome

Kim Cuonggranites

Wuy

ishan

Nanling

Yunkai

ECYan

gtze

SOUTH CHINA

INDOCHINA

SIBU-MASU

VIETNAM

LAOS

THAILAND

Song Ma S.

Pearl R.

Mekong R.

South China Sea

Fig.1B

TSB

KM

Tam Ky-Phuoc Son F.

KAMPUCHEA

CHINAA

WC

PTSZ

Ailaoshan S.

Sukh

otha

i arc

Klaeng F.

Red River F.

Sra Kaeo S.

Jinghong S.

Mae

Yua

n F.

Nan

S.

Fig. 1. A: Tectonic framework of SE Asia. Heavy lines indicate main sutures or faults (after Sone and Metcalfe, 2008; Metcalfe, 2011a). The boundary between Yangtze and Cathaysiablocks is adapted from Xu et al. (2007). B: Simplified geological map of the Truong Son Belt (TSB) (Tran and Nguyen, 1989; Tran et al., 2008), central Vietnam, showing samplelocalities of this study. PTSZ: Paleo-Tethys Suture Zone, KM: Kontum massif, EC: Eastern Cathaysia, WC: Western Cathaysia.

146 T. Usuki et al. / Tectonophysics 586 (2013) 145–159

rocks. Recent geochronological studies using zircon U–Pb methodsrevealed that metamorphic and plutonic rocks in the TSB and Kontummassif were formed in both ~450 Ma and ~250 Ma events (Carter et al.,2001; Lan et al., 2003; Nagy et al., 2001; Nam et al., 2001; Roger et al.,2007; Usuki et al., 2009).

Zircons in three modern river sediment samples from the TSB wereobtained for this study. Two samples, M03-21B (N18°26′5″ E105°13′15″) and M03-24B (N18°30′37″ E105°24′4″) (Fig. 1B), were collectedfrom a tributary of the Song Ca (Ca River). In the Song Ca area, UpperOrdovician–Silurian formations are widely distributed (Fig. 1B), whichare characterized by a sequence of terrigenous flysch, cherty shale con-taining radiolarians, and black shale containing graptoliteswith interbedsof limestone. The catchment area of the Song Ca is restricted in the east ofthe Truong Son range which is the border with Laos. Therefore, samplesM03-24B and M03-21B are most likely derived from outcrops along theSong Ca in Vietnamese territory. The Kim Cuong granite body occursfurther upstream from samples M03-21B and M03-24B along theVietnam–Laos border. The granitic pluton consists mainly of biotitegranodiorite and biotite granite from where Devonian to Late PermianK–Ar biotite ages and a Late Permian TIMS U–Pb zircon age are reported(Tran and Vu, 2011). A third sample, VNTS1 (N18°12′28″ E106°7′1″,Fig. 1B), was collected from a stream southeast of Ha Tinh city.Upper Ordovician–Silurian and Triassic sedimentary rocks exposeupstream of the sampling site. Small granitic bodies intrude these UpperOrdovician–Silurian and Triassic sedimentary rocks.

3. Analytical procedure

3.1. Sample preparation

Several kg of river-sediment was panned to collect heavy mineralconcentrates. Zircons were separated from the heavy mineral concen-trates using conventional heavy liquid and magnetic techniques andextracted by hand-picking under a binocularmicroscope. Representativezircon grainsweremounted in epoxy and polished to approximately halfthe mean grain thickness. The internal structures of the zircons and thepresence of inclusions were checked by using transmitted and reflectedoptical microscopy. Cathodoluminescence (CL) images of zircons weretaken using a panchromatic CL imaging system (GatanMini-CL) attachedto a scanning electron microscope (JEOL JSM-6360LV) at the Institute ofEarth Sciences, Academia Sinica, Taipei, for examining the internal struc-tures of zircon grains and selecting optimum spot locations for in-situU–Pb dating and Hf isotopic analysis. Representative CL images of ana-lyzed zircons are shown in Fig. 2.

3.2. U–Pb dating

In-situ zircon U–Pb isotopic analyses were carried out at the Depart-ment of Geosciences, National Taiwan University, Taipei, using laser abla-tion inductively coupled plasma mass spectrometry (LA-ICP-MS). AnAgilent 7500 s quadrupole ICP–MS equipped with a New Wave UP213

Page 3: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

147T. Usuki et al. / Tectonophysics 586 (2013) 145–159

laser ablation system is used. A detail description of the instrumental per-formance and analytical procedures are documentedbyChiu et al. (2009).Laser diameter was 30 μm. The 207Pb/206Pb, 206Pb/238U, 207Pb/235Uand 208Pb/232Th ratios were calculated using the GLITTER 4.0 software(Macquarie University), and were then corrected using the GJ-1(Jackson et al., 2004) as external calibrant. The Harvard zircon 91500(207Pb/206Pb age at 1065.4±0.6 Ma (2σ) and 206Pb/238U age at1062.4±0.8 Ma (2σ), Wiedenbeck et al., 1995) and Mud Tank (MT)zircon (U–Pb concordia age of 732±5 Ma, Black and Gulson, 1978)are used as reference zircons and were measured periodically. Duringthe analysis of this study, Harvard and Mud Tank zircons yielded theconcordia age of 1069.4±2.8 Ma (2σ, n=40) and 732.7±2.9 Ma(2σ, n=39), respectively. Common lead corrections were carried outusing the procedure of Andersen (2002). We use 207Pb/206Pb agesand 206Pb/238U ages for >1000 Ma and b1000 Ma zircons, respectively(Griffin et al., 2004). Concordia plots and age probability plots weremade using ISOPLOT (ver. 3.0) (Ludwig, 2003).

3.3. Hf isotope analyses

Hf isotopes were analyzed using a Nu Plasma multi-collector ICP–MS attached to a NewWave UP213 laser-ablation microprobe housedat the Institute of Earth Science, Academia Sinica, Taipei, documentedin Lan et al. (2009). The analytical procedure follows that described inGriffin et al. (2000, 2004). The Hf isotope was measured on the datedspots of individual zircons to minimize zoning effect but the laser ab-lation size is 55 μm, slightly larger than that of preexisting spots by the

A: VNTS1-70

29

Younger (<0.5 Ga) zircons

100um

440

C: M03-21B-30

246

B: M03-21B-49

J: M03-21B-31

2521

1

H: M0

E: M0D: M03-21B-20

531

Fig. 2. Representative cathodoluminescence images of zircons of this study (A–C: zircons wiU–Pb dating.

U–Pb dating. Data were normalized to 179Hf/177Hf=0.7325, using anexponential correction for mass bias. 176Hf/177Hf results of Mud Tankand Harvard zircon standards during analysis of this study are 0.282530±0.000050 (2σ, n=63) and 0.282314±0.000088 (2σ, n=22),respectively. Epsilon Hf values and model ages used in the figureswere calculated using the decay constant (1.865×10−11 per year) pro-posed by Scherer et al. (2001). Calculated model ages (TDMC ) are basedon two-stage model assuming 176Lu/177Hf of average continental crustis 0.015 (Griffin et al., 2004).

4. Results

4.1. Zircon U–Pb dating

One hundred and eighty four zircons from three samples were se-lected for U–Pb dating. The results of U–Pb dating are given in Table 1and concordia plots are shown in Fig. 3. Most analyses of the zirconsfrom the three samples fall on or near the concordia line with a verywide range from the Archean (3226 Ma) to Cenozoic (25 Ma). Amongthem, 20–50% of analyzed zircons are younger than 500 Ma (Fig. 3).The younger zircons (mostly ~450 Ma, ~250 Ma, and ~30 Ma) are col-orless with euhedral to subhedral, and sometimes angular morphology(Fig. 2A–C), and show clear oscillatory zoning in CL imaging. Th/Uratio of these zircons is high (>0.3, Table 1), suggesting magmatic ori-gins (Hoskin and Schaltegger, 2003). All three samples consistentlyhave ~250 Ma and ~450 Ma zircons (Fig. 3A–C), although M03-24Band M03-21B contain more ~450 Ma zircons than those of VNTS1. The

Older (>0.5 Ga) zircons

L: M03-24B-10

3226100um

589

3-24B-35

K: VNTS1-49

2526

F: VNTS1-40

975994

G: VNTS1-42

586

3-24B-47

I: M03-21B-18

1608

th b0.5 Ga ages, D–L: zircons with >0.5 Ga ages). Circles indicate the spot positions for

Page 4: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

Table 1Summary of U–Pb–Th analyses.

Ratios Ages (Ma) Disc % Color in optical Shape Analyzed domainTh (ppm) U (ppm) Th/U

207Pb/206Pb ±1 σ 207Pb/235U ±1 σ 206Pb/238U ±1 σ 208Pb/232Th ±1 σ 207Pb/206Pb ±1 σ 206Pb/238U ±1 σ

M03-24B1 168 22 7.70 0.09178 0.00097 3.21458 0.07743 0.25404 0.00527 0.08109 0.00244 1463 20 1459 27 0.3 Colorless Rounded Bright2 339 340 1.00 0.07835 0.00302 2.02965 0.10788 0.18789 0.00394 0.05631 0.00110 1156 71 1110 21 4.3 Pink Subhedral Oscillatory3 1255 341 3.68 0.07040 0.00068 1.02443 0.02270 0.10555 0.00215 0.02445 0.00076 940 20 647 13 32.8 Pink Rounded Dark4 90 179 0.50 0.05104 0.00058 0.29971 0.00761 0.04259 0.00088 0.01305 0.00045 243 28 269 5 −11.0 Pink Euhedral Oscillatory5 76 220 0.34 0.11121 0.00121 2.58311 0.06433 0.16847 0.00332 0.04866 0.00095 1819 20 1004 18 48.3 Colorless Angular Oscillatory6 145 145 1.00 0.05136 0.00076 0.27360 0.00841 0.03864 0.00082 0.01223 0.00043 257 36 244 5 5.0 Colorless Angular Oscillatory7 104 117 0.88 0.05191 0.00067 0.30355 0.00844 0.04241 0.00088 0.01357 0.00048 281 29 268 5 5.0 Colorless Angular Homogeneous8 160 90 1.77 0.05598 0.00134 0.27081 0.01144 0.03509 0.00080 0.01129 0.00043 452 55 222 5 51.7 Orange Euhedral Oscillatory9 439 199 2.20 0.05538 0.00055 0.56836 0.01291 0.07444 0.00152 0.02303 0.00063 428 24 463 9 −8.5 Colorless Angular Homogeneous10 751 519 1.45 0.25658 0.00237 22.96629 0.48131 0.64925 0.01319 0.16881 0.00464 3226 14 3225 52 0.0 Purple Rounded Dark11 98 129 0.76 0.18257 0.00170 13.30478 0.28131 0.52859 0.01078 0.14597 0.00412 2676 14 2736 45 −2.7 Purple Rounded Dark12 97 40 2.41 0.05970 0.00080 0.78437 0.02260 0.09530 0.00201 0.02994 0.00088 593 28 587 12 1.1 Pink Rounded Sector13 327 211 1.55 0.09643 0.00091 3.58595 0.07689 0.26972 0.00551 0.08053 0.00237 1556 17 1539 28 1.2 Pink Rounded Dark14 205 96 2.13 0.06494 0.00065 1.18873 0.02739 0.13278 0.00274 0.04032 0.00122 772 23 804 16 −4.3 Pink Rounded Homogeneous15 232 208 1.12 0.06848 0.00066 1.47859 0.03256 0.15662 0.00322 0.04830 0.00150 883 21 938 18 −6.7 Pink Rounded Dark16 932 381 2.45 0.05562 0.00054 0.56529 0.01269 0.07372 0.00152 0.02318 0.00074 437 21 459 9 −5.0 Colorless Angular Dark17 369 101 3.65 0.06343 0.00078 0.77472 0.02110 0.08860 0.00188 0.02827 0.00094 723 26 547 11 25.3 Colorless Rounded Oscillatory18 24 30 0.81 0.07767 0.00087 2.04129 0.05177 0.19063 0.00402 0.06002 0.00214 1138 22 1125 22 1.3 Pink Rounded Sector19 186 79 2.37 0.05595 0.00069 0.56121 0.01523 0.07275 0.00153 0.02288 0.00081 450 30 453 9 −0.5 Colorless Euhedral Oscillatory20 187 127 1.47 0.05500 0.00061 0.54319 0.01368 0.07164 0.00150 0.02176 0.00079 412 25 446 9 −8.5 Pink Euhedral Oscillatory21 47 15 3.25 0.09900 0.00106 3.48691 0.08481 0.25548 0.00523 0.08155 0.00232 1605 19 1467 27 9.7 Colorless Rounded Bright22 155 64 2.40 0.05691 0.00065 0.65428 0.01665 0.08339 0.00168 0.02789 0.00080 488 26 516 10 −6.0 Pink Rounded Oscillatory23 127 98 1.29 0.08308 0.00077 2.27651 0.04816 0.19877 0.00394 0.06288 0.00182 1271 19 1169 21 8.8 Pink Rounded Dark24 338 226 1.49 0.09922 0.00089 3.85387 0.07862 0.28175 0.00555 0.08736 0.00255 1610 18 1600 28 0.7 Pink Rounded Dark25 429 175 2.45 0.15914 0.00143 9.53443 0.19480 0.43459 0.00857 0.12827 0.00382 2447 16 2326 39 5.9 Purple Rounded Dark26 176 90 1.95 0.16036 0.00145 10.06899 0.20737 0.45547 0.00901 0.13251 0.00404 2459 15 2420 40 2.0 Pink Rounded Dark27 138 109 1.26 0.05095 0.00069 0.27531 0.00786 0.03920 0.00080 0.01300 0.00042 239 34 248 5 −4.0 Colorless Euhedral Oscillatory28 38 231 0.16 0.23203 0.00210 19.73249 0.40700 0.61686 0.01219 0.17290 0.00558 3066 15 3097 49 −1.3 Purple Rounded Dark29 209 183 1.14 0.07273 0.00068 1.66829 0.03557 0.16639 0.00331 0.05260 0.00173 1006 21 992 18 1.5 Pink Rounded Dark30 623 2076 0.30 0.06080 0.00056 0.83511 0.01747 0.09963 0.00197 0.03272 0.00110 632 18 612 12 3.3 Purple Subhedral Dark31 251 139 1.80 0.14335 0.00381 5.32366 0.23313 0.26935 0.00627 0.07585 0.00167 2268 45 1538 32 36.1 Colorless Subhedral Oscillatory32 483 200 2.42 0.07019 0.00066 1.50202 0.03260 0.15522 0.00310 0.04960 0.00175 934 19 930 17 0.4 Purple Rounded Dark33 331 90 3.68 0.07330 0.00070 1.80239 0.03934 0.17836 0.00360 0.05534 0.00158 1022 19 1058 20 −3.8 Purple Rounded Oscillatory34 225 280 0.80 0.07196 0.00066 1.73259 0.03644 0.17463 0.00350 0.05498 0.00160 985 20 1038 19 −5.8 Purple Rounded Dark35 153 86 1.78 0.09814 0.00092 3.89292 0.08302 0.28772 0.00581 0.08568 0.00253 1589 19 1630 29 −2.9 Pink Rounded Oscillatory36 48 53 0.91 0.05747 0.00081 0.56827 0.01676 0.07172 0.00150 0.02320 0.00076 510 29 447 9 12.8 Colorless Euhedral Homogeneous37 70 66 1.06 0.16114 0.00150 10.34552 0.21957 0.46567 0.00943 0.13211 0.00409 2468 17 2465 41 0.2 Colorless Rounded Homogeneous38 117 794 0.15 0.07151 0.00066 1.58278 0.03351 0.16054 0.00324 0.05015 0.00160 972 20 960 18 1.4 Purple Rounded Dark39 172 170 1.01 0.05740 0.00059 0.54373 0.01280 0.06871 0.00141 0.02197 0.00072 507 20 428 9 16.0 Pink Rounded Dark40 230 118 1.96 0.09974 0.00095 3.90829 0.08480 0.28423 0.00578 0.08875 0.00295 1619 17 1613 29 0.5 Pink Rounded Dark41 431 278 1.55 0.16537 0.00156 10.81202 0.23229 0.47425 0.00964 0.13747 0.00468 2511 17 2502 42 0.5 Pink Rounded Dark42 124 61 2.04 0.05675 0.00076 0.59912 0.01713 0.07658 0.00161 0.02432 0.00087 482 29 476 10 1.3 Pink Angular Sector43 99 97 1.02 0.05253 0.00079 0.30074 0.00927 0.04153 0.00088 0.01328 0.00050 309 32 262 5 15.3 Colorless Euhedral Homogeneous44 223 204 1.09 0.11507 0.00111 5.47668 0.12062 0.34521 0.00707 0.10039 0.00372 1881 18 1912 34 −1.9 Pink Rounded Dark45 28 155 0.18 0.07019 0.00067 1.57433 0.03438 0.16269 0.00332 0.05018 0.00160 934 20 972 18 −4.4 Pink Rounded Dark46 67 119 0.56 0.07117 0.00069 1.53703 0.03411 0.15665 0.00321 0.04653 0.00143 962 20 938 18 2.7 Pink Rounded Sector47 89 16 5.62 0.05766 0.00190 0.75636 0.03926 0.09515 0.00216 0.02992 0.00095 517 71 586 13 −14.0 Colorless Rounded Oscillatory48 108 251 0.43 0.07131 0.00067 1.64206 0.03537 0.16702 0.00340 0.05348 0.00170 966 20 996 19 −3.3 Pink Rounded Dark49 258 116 2.22 0.09882 0.00093 3.96457 0.08539 0.29101 0.00593 0.08806 0.00284 1602 18 1647 30 −3.1 Pink Rounded Dark50 161 140 1.15 0.05908 0.00062 0.58867 0.01417 0.07227 0.00149 0.02386 0.00080 570 23 450 9 21.8 Colorless Euhedral Oscillatory51 68 25 2.73 0.15086 0.00581 9.50079 0.56326 0.45677 0.01197 0.12799 0.00308 2356 73 2425 53 −3.6 Pink Rounded Oscillatory52 292 71 4.09 0.09883 0.00095 3.93901 0.08681 0.28909 0.00590 0.08866 0.00313 1602 17 1637 30 −2.5 Pink Rounded Dark53 238 272 0.88 0.06026 0.00059 0.82350 0.01835 0.09913 0.00202 0.03164 0.00116 613 22 609 12 0.6 Pink Rounded Dark

148T.U

sukietal./

Tectonophysics586

(2013)145

–159

Page 5: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

54 46 46 0.99 0.08598 0.00087 2.73833 0.06362 0.23100 0.00475 0.07086 0.00272 1338 20 1340 25 −0.2 Pink Rounded Homogeneous55 267 106 2.52 0.06956 0.00070 1.44946 0.03330 0.15115 0.00309 0.04875 0.00190 915 20 907 17 1.0 Pink Rounded Dark56 67 21 3.22 0.16160 0.00166 10.41374 0.24539 0.46743 0.00984 0.14077 0.00572 2472 17 2472 43 0.0 Pink Rounded Bright57 267 269 0.99 0.05544 0.00061 0.48961 0.01210 0.06405 0.00130 0.02181 0.00076 430 24 400 8 7.2 Pink Rounded Dark58 246 253 0.97 0.17499 0.00161 11.84227 0.24842 0.49083 0.00977 0.14429 0.00510 2606 14 2574 42 1.5 Purple Rounded Dark59 373 260 1.44 0.16229 0.00151 10.37782 0.22014 0.46381 0.00927 0.13957 0.00514 2480 16 2456 41 1.1 Purple Rounded Dark60 580 301 1.93 0.05561 0.00055 0.55367 0.01255 0.07221 0.00145 0.02401 0.00093 437 22 449 9 −3.0 Pink Euhedral Dark61 136 119 1.14 0.05707 0.00065 0.56859 0.01444 0.07226 0.00148 0.02435 0.00100 494 25 450 9 9.3 Pink Euhedral Sector

M03-21B1 800 839 0.95 0.16783 0.00210 8.96189 0.24607 0.38729 0.00797 0.10741 0.00217 2536 20 2110 37 19.7 Purple Rounded Dark2 431 218 1.98 0.06870 0.00063 1.40481 0.02944 0.14832 0.00293 0.04403 0.00119 890 18 892 16 −0.2 Pink Rounded Dark3 486 507 0.96 0.06024 0.00055 0.84757 0.01765 0.10205 0.00201 0.03082 0.00085 612 20 626 12 −2.4 Purple Rounded Dark4 238 257 0.93 0.05633 0.00060 0.50513 0.01215 0.06505 0.00131 0.02026 0.00059 465 25 406 8 13.1 Pink Euhedral Dark5 218 178 1.22 0.06095 0.00058 0.88445 0.01926 0.10525 0.00209 0.03070 0.00089 637 20 645 12 −1.3 Pink Rounded Dark6 94 74 1.28 0.04966 0.00088 0.27273 0.00923 0.03983 0.00082 0.01277 0.00040 179 46 252 5 −41.4 Colorless Euhedral Oscillatory7 295 99 2.96 0.05693 0.00088 0.31578 0.00991 0.04023 0.00084 0.01298 0.00040 489 36 254 5 48.9 Colorless Euhedral Oscillatory8 174 52 3.33 0.10660 0.00101 4.36571 0.09466 0.29705 0.00592 0.08353 0.00259 1742 19 1677 29 4.3 Pink Rounded Oscillatory9 193 55 3.51 0.16155 0.00151 10.19759 0.21781 0.45787 0.00911 0.12521 0.00398 2472 14 2430 40 2.0 Colorless Rounded Oscillatory10 256 166 1.54 0.05045 0.00060 0.27611 0.00719 0.03970 0.00080 0.01230 0.00041 216 26 251 5 −16.6 Colorless Euhedral Oscillatory11 470 226 2.09 0.06473 0.00060 1.14234 0.02412 0.12800 0.00253 0.04005 0.00108 766 19 776 14 −1.5 Purple Rounded Dark12 173 89 1.94 0.05579 0.00063 0.52952 0.01340 0.06885 0.00139 0.02115 0.00059 444 26 429 8 3.5 Colorless Euhedral Oscillatory13 139 139 1.00 0.04985 0.00061 0.26967 0.00722 0.03924 0.00079 0.01201 0.00035 188 31 248 5 −32.6 Colorless Euhedral Oscillatory14 202 314 0.64 0.08964 0.00082 3.04584 0.06378 0.24648 0.00488 0.06901 0.00198 1418 18 1420 25 −0.2 Pink Rounded Oscillatory15 166 191 0.87 0.16092 0.00147 9.41475 0.19602 0.42437 0.00841 0.11873 0.00347 2465 14 2280 38 8.9 Pink Rounded Dark16 232 314 0.74 0.05605 0.00054 0.55315 0.01214 0.07159 0.00143 0.02234 0.00068 454 23 446 9 2.0 Colorless Euhedral Oscillatory17 95 81 1.18 0.07026 0.00069 1.44470 0.03269 0.14915 0.00300 0.04731 0.00147 936 20 896 17 4.6 Purple Rounded Oscillatory18 148 65 2.29 0.09912 0.00094 3.86153 0.08427 0.28257 0.00567 0.08212 0.00260 1608 19 1604 28 0.2 Colorless Rounded Oscillatory19 46 58 0.79 0.06821 0.00071 1.33225 0.03178 0.14167 0.00287 0.04344 0.00146 875 21 854 16 2.6 Colorless Rounded Sector20 378 234 1.62 0.05998 0.00059 0.71049 0.01595 0.08592 0.00173 0.02692 0.00090 603 21 531 10 12.4 Colorless Rounded Dark21 151 77 1.96 0.09830 0.00095 3.67666 0.08121 0.27129 0.00546 0.08086 0.00279 1592 19 1547 28 3.2 Pink Rounded Dark22 81 691 0.12 0.07108 0.00067 1.58063 0.03438 0.16130 0.00323 0.05098 0.00183 960 20 964 18 −0.5 Purple Rounded Oscillatory23 346 90 3.84 0.05622 0.00061 0.64838 0.01587 0.08365 0.00169 0.02699 0.00081 461 24 518 10 −12.8 Pink Rounded Oscillatory24 108 55 1.97 0.12949 0.00394 5.96148 0.30072 0.33391 0.00842 0.09499 0.00220 2091 48 1857 41 12.9 Colorless Rounded Sector25 102 438 0.23 0.10225 0.00094 3.75096 0.07838 0.26607 0.00529 0.07764 0.00240 1665 16 1521 27 9.7 Pink Rounded Dark26 1216 1347 0.90 0.07123 0.00065 1.62434 0.03402 0.16541 0.00329 0.05320 0.00166 964 18 987 18 −2.5 Pink Angular Dark27 546 219 2.50 0.06660 0.00063 1.23151 0.02664 0.13411 0.00268 0.04264 0.00136 825 18 811 15 1.8 Pink Rounded Dark28 271 124 2.19 0.13900 0.00455 6.69082 0.33789 0.34910 0.00822 0.09861 0.00218 2215 57 1930 39 14.9 Pink Rounded Oscillatory29 83 90 0.92 0.09756 0.00226 3.46592 0.14882 0.25765 0.00620 0.07543 0.00171 1578 41 1478 32 7.1 Pink Rounded Oscillatory30 72 53 1.37 0.05922 0.00083 0.57680 0.01688 0.07065 0.00146 0.02306 0.00082 575 28 440 9 24.3 Colorless Angular Oscillatory31 667 378 1.76 0.16630 0.00155 11.09580 0.23665 0.48393 0.00965 0.13401 0.00469 2521 17 2544 42 −1.1 Pink Rounded Dark32 335 268 1.25 0.06837 0.00065 1.33191 0.02920 0.14130 0.00283 0.04490 0.00162 880 21 852 16 3.4 Pink Rounded Dark33 84 134 0.63 0.05648 0.00061 0.54188 0.01322 0.06958 0.00141 0.02351 0.00089 471 26 434 8 8.3 Colorless Rounded Oscillatory34 139 584 0.24 0.16586 0.00160 11.14174 0.24682 0.48722 0.00983 0.15012 0.00596 2516 16 2559 43 −2.0 Pink Rounded Dark35 88 226 0.39 0.07064 0.00065 1.55639 0.03284 0.15980 0.00319 0.05040 0.00145 947 19 956 18 −1.0 Pink Rounded Dark36 218 142 1.54 0.15301 0.00141 9.38378 0.19751 0.44481 0.00893 0.13179 0.00379 2380 15 2372 40 0.4 Pink Rounded Dark37 1612 682 2.36 0.16111 0.00147 10.11223 0.20908 0.45525 0.00907 0.12966 0.00375 2467 16 2419 40 2.4 Pink Rounded Dark38 610 177 3.45 0.07088 0.00066 1.55186 0.03327 0.15880 0.00319 0.04983 0.00147 954 17 950 18 0.4 Pink Rounded Dark39 1135 1439 0.79 0.15962 0.00146 10.28224 0.21374 0.46723 0.00933 0.13627 0.00410 2452 16 2471 41 −1.0 Purple Rounded Dark40 281 194 1.45 0.10098 0.00094 3.93832 0.08320 0.28287 0.00567 0.08807 0.00272 1642 17 1606 28 2.5 Pink Rounded Dark41 179 1200 0.15 0.06938 0.00064 1.36391 0.02871 0.14260 0.00286 0.04567 0.00145 910 18 859 16 6.0 Purple Rounded Dark42 319 303 1.05 0.05654 0.00055 0.56431 0.01253 0.07239 0.00146 0.02411 0.00079 474 21 451 9 5.1 Pink Angular Dark43 24 49 0.48 0.16178 0.00153 10.43016 0.22479 0.46763 0.00947 0.13470 0.00460 2474 15 2473 42 0.1 Colorless Rounded Homogeneous44 671 319 2.10 0.10388 0.00097 4.36204 0.09323 0.30458 0.00613 0.10056 0.00343 1695 16 1714 30 −1.3 Pink Rounded Dark45 462 280 1.65 0.09276 0.00087 3.23225 0.06969 0.25274 0.00510 0.07997 0.00281 1483 18 1453 26 2.3 Pink Rounded Dark46 281 460 0.61 0.16190 0.00152 10.26376 0.22086 0.45981 0.00928 0.13434 0.00485 2476 17 2439 41 1.8 Pink Rounded Dark47 193 35 5.48 0.16609 0.00155 11.06754 0.23473 0.48333 0.00980 0.13875 0.00395 2519 16 2542 43 −1.1 Pink Rounded Sector48 586 214 2.74 0.07259 0.00068 1.59006 0.03387 0.15888 0.00320 0.05056 0.00145 1003 19 951 18 5.6 Pink Rounded Dark

(continued on next page) 149T.U

sukietal./

Tectonophysics586

(2013)145

–159

Page 6: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

Table 1 (continued)

Ratios Ages (Ma) Disc % Color in optical Shape Analyzed domainTh (ppm) U (ppm) Th/U

207Pb/206Pb ±1 σ 207Pb/235U ±1 σ 206Pb/238U ±1 σ 208Pb/232Th ±1 σ 207Pb/206Pb ±1 σ 206Pb/238U ±1 σ

49 233 116 2.01 0.05201 0.00068 0.27894 0.00785 0.03890 0.00081 0.01287 0.00038 286 30 246 5 14.2 Colorless Euhedral Oscillatory50 398 173 2.30 0.05803 0.00057 0.70628 0.01586 0.08828 0.00179 0.02768 0.00082 531 22 545 11 −2.8 Pink Rounded Dark

VNTS11 114 949 0.12 0.16721 0.00155 8.11622 0.17260 0.35204 0.00694 0.09333 0.00385 2530 15 1944 33 26.8 Purple Rounded Dark2 320 197 1.62 0.05891 0.00060 0.85285 0.01983 0.10500 0.00210 0.03442 0.00145 564 21 644 12 −14.9 Purple Rounded Dark3 115 116 0.99 0.04937 0.00095 0.27712 0.00992 0.04071 0.00085 0.01303 0.00060 165 46 257 5 −56.6 Colorless Angular Oscillatory4 187 217 0.86 0.11653 0.00233 4.24187 0.14927 0.26400 0.00571 0.07590 0.00158 1904 32 1510 29 23.2 Pink Rounded Oscillatory5 480 265 1.81 0.15867 0.00153 10.21567 0.22596 0.46696 0.00937 0.13900 0.00638 2442 16 2470 41 −1.4 Purple Rounded Dark6 102 254 0.40 0.05105 0.00064 0.28455 0.00777 0.04043 0.00083 0.01312 0.00066 243 26 255 5 −5.2 Orange Euhedral Oscillatory7 108 198 0.54 0.05273 0.00072 0.29401 0.00851 0.04044 0.00084 0.01301 0.00067 317 32 256 5 19.8 Colorless Angular Oscillatory8 131 241 0.55 0.05092 0.00077 0.29500 0.00917 0.04202 0.00089 0.01343 0.00072 237 35 265 6 −12.1 Colorless Euhedral Oscillatory9 133 73 1.83 0.16405 0.00177 10.44378 0.25721 0.46175 0.00975 0.13731 0.00726 2498 18 2447 43 2.4 Pink Rounded Oscillatory10 135 131 1.03 0.05125 0.00085 0.28399 0.00925 0.04019 0.00084 0.01312 0.00051 252 40 254 5 −0.8 Colorless Angular Sector11 316 289 1.09 0.05188 0.00060 0.28426 0.00734 0.03974 0.00081 0.01281 0.00050 280 26 251 5 10.5 Pink Euhedral Oscillatory12 88 165 0.53 0.05044 0.00075 0.28106 0.00853 0.04042 0.00083 0.01315 0.00058 215 34 255 5 −19.0 Pink Euhedral Oscillatory13 157 135 1.17 0.05121 0.00084 0.28692 0.00928 0.04063 0.00084 0.01278 0.00055 250 37 257 5 −2.6 Colorless Rounded Oscillatory14 142 224 0.64 0.05309 0.00107 0.25273 0.00937 0.03453 0.00074 0.01167 0.00057 333 47 219 5 34.8 Colorless Rounded Dark15-1 63 32 1.99 0.06455 0.00155 0.75972 0.03148 0.08537 0.00184 0.02853 0.00136 760 56 528 11 31.8 Colorless Euhedral Oscillatory15-2 63 147 0.43 0.05118 0.00058 0.28522 0.00713 0.04042 0.00079 0.01300 0.00040 249 26 255 5 −2.7 Colorless Euhedral Oscillatory16 158 156 1.02 0.05895 0.00055 0.73164 0.01580 0.09002 0.00174 0.02893 0.00080 565 22 556 10 1.8 Pink Rounded Dark17 204 153 1.33 0.05751 0.00056 0.56349 0.01256 0.07106 0.00138 0.02367 0.00067 511 23 443 8 13.9 Pink Rounded Sector18 307 146 2.10 0.15955 0.00142 10.22211 0.20634 0.46472 0.00896 0.13458 0.00381 2451 15 2460 39 −0.5 Pink Rounded Dark19 337 473 0.71 0.14750 0.00185 8.02062 0.21826 0.39438 0.00826 0.11076 0.00230 2317 24 2143 38 8.8 Purple Rounded Dark20 268 289 0.93 0.05616 0.00196 0.62321 0.03168 0.08048 0.00178 0.02505 0.00050 459 81 499 11 −9.1 Pink Rounded Oscillatory21 130 220 0.59 0.05203 0.00054 0.28270 0.00664 0.03941 0.00077 0.01310 0.00041 287 24 249 5 13.4 Colorless Angular Homogeneous22 650 431 1.51 0.15141 0.00136 3.66577 0.07510 0.17561 0.00340 0.12502 0.00386 2362 15 1043 19 60.3 Colorless Angular Homogeneous23 1661 525 3.17 0.05275 0.00051 0.28120 0.00625 0.03867 0.00076 0.01270 0.00040 318 23 245 5 23.6 Colorless Rounded Homogeneous24 150 197 0.76 0.06987 0.00065 1.56942 0.03329 0.16291 0.00317 0.05179 0.00170 925 19 973 18 −5.6 Purple Rounded Oscillatory25 299 84 3.55 0.05846 0.00064 0.77973 0.01925 0.09675 0.00193 0.03132 0.00105 547 23 595 11 −9.2 Pink Rounded Homogeneous26 340 331 1.03 0.07590 0.00260 1.81420 0.08864 0.17335 0.00369 0.05213 0.00103 1092 71 1031 20 6.1 Pink Rounded Homogeneous27 96 67 1.44 0.08304 0.00080 2.49897 0.05502 0.21828 0.00430 0.06692 0.00237 1270 18 1273 23 −0.2 Colorless Rounded Dark28 197 178 1.11 0.05592 0.00054 0.56308 0.01252 0.07304 0.00144 0.02455 0.00069 449 23 454 9 −1.2 Colorless Angular Oscillatory29 92 82 1.12 0.10548 0.00096 4.65895 0.09664 0.32038 0.00631 0.09703 0.00273 1723 17 1792 31 −4.6 Pink Rounded Dark31 137 295 0.47 0.05203 0.00053 0.28207 0.00659 0.03933 0.00078 0.01298 0.00040 287 24 249 5 13.6 Pink Euhedral Sector

M03-21B

150T.U

sukietal./

Tectonophysics586

(2013)145

–159

Page 7: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

32 98 216 0.45 0.05053 0.00054 0.27840 0.00674 0.03997 0.00080 0.01331 0.00042 219 28 253 5 −15.4 Pink euhedral Oscillatory33 1401 746 1.88 0.06066 0.00056 0.86082 0.01800 0.10294 0.00203 0.03310 0.00100 627 20 632 12 −0.7 Purple Rounded Dark34 124 157 0.79 0.05208 0.00061 0.28907 0.00747 0.04026 0.00081 0.01347 0.00044 289 26 254 5 12.2 Colorless Angular Sector35 102 158 0.65 0.05048 0.00060 0.27895 0.00729 0.04008 0.00081 0.01342 0.00045 217 26 253 5 −17.0 Colorless Euhedral Oscillatory36 83 196 0.42 0.05233 0.00058 0.28725 0.00717 0.03982 0.00080 0.01356 0.00048 300 24 252 5 16.4 Orange Angular Oscillatory38 129 202 0.64 0.05243 0.00058 0.29519 0.00737 0.04084 0.00083 0.01349 0.00049 304 26 258 5 15.5 Pink Rounded Oscillatory39 117 169 0.70 0.05176 0.00061 0.28527 0.00745 0.03998 0.00082 0.01313 0.00049 275 27 253 5 8.2 Colorless Rounded Homogeneous40 239 81 2.94 0.07163 0.00072 1.51032 0.03460 0.15294 0.00309 0.04820 0.00137 975 20 917 17 6.4 Colorless Angular Oscillatory41 428 185 2.31 0.04512 0.00341 0.02645 0.00254 0.00425 0.00010 0.00143 0.00005 −13 169 27.3 0.6 −101.7 Colorless Angular Oscillatory42 547 237 2.31 0.07122 0.00067 1.63620 0.03496 0.16663 0.00333 0.05245 0.00154 964 19 994 18 −3.3 Pink Rounded Oscillatory43 98 185 0.53 0.05095 0.00058 0.28187 0.00719 0.04013 0.00081 0.01313 0.00042 239 27 254 5 −6.4 Pink Angular Oscillatory44 876 715 1.23 0.05080 0.00049 0.28135 0.00623 0.04017 0.00080 0.01338 0.00041 232 21 254 5 −9.7 Colorless Rounded Dark45 152 188 0.81 0.06757 0.00200 1.26331 0.05523 0.13559 0.00281 0.04131 0.00080 856 59 820 16 4.5 Pink Rounded Oscillatory46 182 289 0.63 0.05175 0.00054 0.28416 0.00678 0.03983 0.00080 0.01318 0.00044 274 22 252 5 8.4 Pink Rounded Oscillatory47 153 83 1.85 0.05851 0.00068 0.69225 0.01795 0.08581 0.00175 0.02781 0.00094 549 26 531 10 3.5 Pink Angular Oscillatory48 146 352 0.42 0.18389 0.00172 13.32944 0.28531 0.52575 0.01048 0.15558 0.00530 2688 15 2724 44 −1.6 Pink Rounded Dark49 276 97 2.86 0.16678 0.00158 11.22670 0.24340 0.48824 0.00977 0.14648 0.00513 2526 15 2563 42 −1.8 Pink Rounded Sector50 231 215 1.07 0.12410 0.00231 4.86843 0.16790 0.28452 0.00607 0.08128 0.00167 2016 32 1614 30 22.5 Pink Rounded Homogeneous51 178 231 0.77 0.06264 0.00066 0.79662 0.01916 0.09225 0.00187 0.03741 0.00142 696 22 569 11 19.1 Colorless Rounded Oscillatory52 74 70 1.05 0.05113 0.00091 0.28963 0.00982 0.04108 0.00084 0.01323 0.00041 247 41 260 5 −5.3 Colorless Euhedral Oscillatory53 138 70 1.99 0.07761 0.00087 1.30853 0.03303 0.12229 0.00248 0.04379 0.00127 1137 24 744 14 36.6 Pink Rounded Oscillatory54 164 115 1.42 0.15288 0.00289 9.06507 0.31660 0.43005 0.00896 0.12035 0.00239 2378 34 2306 40 3.6 Pink Rounded Homogeneous55 111 183 0.61 0.04989 0.00057 0.27743 0.00699 0.04034 0.00080 0.01318 0.00041 190 27 255 5 −34.9 Colorless Angular Oscillatory56 414 380 1.09 0.07034 0.00064 1.51687 0.03164 0.15642 0.00305 0.04946 0.00147 938 19 937 17 0.2 Purple Rounded Dark57 68 160 0.42 0.05217 0.00062 0.28089 0.00732 0.03906 0.00078 0.01289 0.00044 293 27 247 5 16.0 Orange Rounded Oscillatory58 145 71 2.04 0.16551 0.00152 10.77915 0.22589 0.47237 0.00926 0.13948 0.00437 2513 14 2494 41 0.9 Pink Rounded Homogeneous59 230 527 0.44 0.07072 0.00065 1.43404 0.03030 0.14708 0.00287 0.03715 0.00120 949 19 885 16 7.3 Pink Rounded Homogeneous60 568 173 3.29 0.07108 0.00067 1.50939 0.03275 0.15403 0.00302 0.04845 0.00160 960 17 924 17 4.1 Pink Rounded Dark61 101 225 0.45 0.05155 0.00057 0.27354 0.00673 0.03849 0.00076 0.01297 0.00047 266 24 243 5 8.5 Orange Euhedral Homogeneous62 239 115 2.08 0.04612 0.00785 0.02549 0.00491 0.00401 0.00014 0.00130 0.00012 4 272 25.8 0.9 −537.6 Orange Euhedral Oscillatory63 667 316 2.11 0.05195 0.00060 0.28612 0.00733 0.03995 0.00080 0.01299 0.00047 283 25 253 5 11.1 Colorless Euhedral Oscillatory64 144 120 1.20 0.05552 0.00099 0.27220 0.00935 0.03556 0.00075 0.01169 0.00037 433 41 225 5 48.9 Colorless Angular Oscillatory65 114 67 1.69 0.03638 0.00886 0.02217 0.00602 0.00442 0.00014 0.00139 0.00009 −18 274 28.4 0.9 −24.6 Colorless Euhedral Oscillatory66 2261 700 3.23 0.04783 0.00366 0.25154 0.02279 0.03814 0.00083 0.01211 0.00024 91 167 241 5 −168.2 Colorless Euhedral Oscillatory67 76 71 1.08 0.06652 0.00254 1.12066 0.06173 0.12218 0.00261 0.03729 0.00070 823 82 743 15 10.3 Colorless Rounded Oscillatory68 49 84 0.58 0.12594 0.00116 5.53006 0.11695 0.31849 0.00626 0.09256 0.00280 2042 17 1782 31 14.6 Pink Rounded Homogeneous69 189 156 1.21 0.04609 0.00339 0.02486 0.00226 0.00391 0.00010 0.00133 0.00012 3 156 25.2 0.7 −884.3 Orange Angular Oscillatory70 151 106 1.43 0.05313 0.00550 0.03264 0.00415 0.00446 0.00012 0.00151 0.00008 334 225 28.7 0.8 91.6 Colorless Angular Oscillatory71 118 124 0.96 0.15706 0.00197 6.84057 0.18730 0.31589 0.00633 0.08817 0.00174 2424 22 1770 31 30.8 Colorless Euhedral Oscillatory72 373 216 1.72 0.06267 0.00069 0.59142 0.01460 0.06845 0.00137 0.02850 0.00093 697 24 427 8 40.1 Colorless Euhedral Oscillatory73 84 136 0.61 0.05253 0.00067 0.27688 0.00758 0.03823 0.00077 0.01231 0.00044 309 30 242 5 22.0 Pink Angular Oscillatory74 185 181 1.03 0.05202 0.00061 0.27013 0.00699 0.03766 0.00075 0.01208 0.00042 286 25 238 5 17.1 Orange Euhedral Oscillatory

151T.U

sukietal./

Tectonophysics586

(2013)145

–159

Page 8: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

3000

2600

2200

1800

1400

1000

0.0

0.2

0.4

0.6

0 4 8 12 16 20 24

M03-24B(n=61)

650

550

450

350

250

0.03

0.05

0.07

0.09

0.11

0.2 0.4

0.6

0.8

1.0

206 P

b/23

8 U20

6 Pb/

238 U

206 P

b/23

8 U

Upper intercept2466 ± 14 Ma

Lower intercept605 ±14 Ma

A

2600

2200

1800

1400

1000

600

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12

M03-21B(n=50)

650

550

450

350

250

0.03

0.05

0.07

0.09

0.11

0.2

0.4

0.6

0.8

B

2600

2200

1800

1400

1000

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14

VNTS1(n=73)

650

550

450

350

250

150

50

0.00

0.02

0.04

0.06

0.08

0.10

0.0

0.2

0.4

0.6

0.8

1.0

207Pb/

235U

Upper intercept2518 ± 10Ma

Lower intercept249 ± 8Ma

Upper intercept2416 ± 50Ma

Lower intercept1082 ± 110Ma

C

Num

ber

0

2

4

6 M03-21B(n=39)

533857

961 2523

6381606

1660

500 1000 1500 2000 2500 3000 3500

Age (Ma)

0

2

4

6

500 1000 1500 2000 2500 3000 3500

VNTS1(n=41)

Age (Ma)

2450

532

639

744

928

2518

986

Num

ber

0

2

4

6

8

10

M03-24B(n=29)

1608

987948606

2469

500 1000 1500 2000 2500 3000 3500

Age (Ma)

Num

ber

D

E

F

2470

Fig. 3. Concordia diagrams (A: M03-24B, B: M03-21B, and C: VNTS1) and age histograms with the probability diagram (D: M03-24B, E: M03-21B, and F: VNTS1) of U–Pb zirconsanalyses. Error ellipses of each data point in concordia diagrams are 2σ. The upper and lower intercept ages and their discordia lines (broken lines) are shown for discordia zirconsin A and C. Enlargement of the younger part of concordia diagrams is also shown in A, B and C. Data for the older zircons (>500 Ma) are only shown in histograms (D, E, and F). Inthese plots, 207Pb/206Pb ages with discordant degree b20% were used except b1 Ga zircons where 206Pb/238U ages were used.

152 T. Usuki et al. / Tectonophysics 586 (2013) 145–159

Cenozoic zircons (~30 Ma) occur only in VNTS1. Based on zircon mor-phologies, internal texture, Th/U ratio with comparison of geology ofthe catchment area as described before, it is very likely that the zirconsoriginated from intrusive rocks of the TSB.

The main purpose of this study is to reveal age distribution ofdetrital zircons derived from Early Paleozoic sedimentary rocks in Indo-china. In contrast to the younger zircons, the older zircons are occasion-ally pink or purple in color and show roundedmorphology and their CLimages are typically dark or unclear (Fig. 2D–L). The Th/U ratio of theolder zircons are also >0.3 (Table 1). Some discordant zircons fromM03-24B define a discordia line with an upper intercept age of2466±14 Ma (Fig. 3A). Several Proterozoic zircons of VNTS1 showdiscordia lines with upper intercept ages of 2416±50 Ma and 2518±10 Ma (Fig. 3C). Age probability plots of the older zircons (>0.5 Ga)from M03-24B, M03-21B and VNTS1 consistently show Neoarchean

(~2.5 Ga), Mesoproterozoic (1.7–1.4 Ga), Grenvillian (~0.95 Ga), andPan-African (0.65–0.5 Ga) age peaks (Fig. 3D–F), although theMesoproterozoic peak age (~1.7 Ga) of VNTS1 is smaller than those ofthe other samples. The similarity of peak patterns between M03-24BandM03-21B confirms that the age distribution patterns are representa-tive of zircons from Song Ca (Ca River). M03-24B contains concordantPaleoarchean (3226±14 Ma) andMesoarchean (3066±15 Ma) detritalzircons and represents the oldest ages yet found in Indochina.

4.2. Zircon Hf isotopes

Hf isotopic data for the older (>0.5 Ga) zircons (n=105) areshown in Table 2 and a U–Pb age vs epsilon Hf diagram is shown inFig. 4. The oldest two Paleo- to Meso-archean zircons from sampleM03-24B show slightly negative and positive εHf(T) values (−1.1

Page 9: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

Table 2Summary of Hf isotope analyses for the older (>0.5 Ga) zircons.

Accepted age (Ma) ±1 σ Disc % 176Hf/177Hf ±1 σ 176Lu/177Hf 176Yb/177Hf TDM(Ga)

TCDM(Ga)

Hfi εHf(T)

M03-24B1 1463 20 0.3 0.281571 0.000011 0.001242 0.039002 2.37 2.93 0.281537 −11.22 1156 71 4.3 0.282067 0.000014 0.001144 0.033700 1.67 2.00 0.282042 −0.23 647 13 32.8 0.281405 0.000017 0.000703 0.021185 2.56 3.73 0.281396 −34.45 1819 20 48.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.10 3226 14 0.0 0.280777 0.000014 0.001525 0.045125 3.48 3.65 0.280682 −1.011 2676 14 −2.7 0.280961 0.000016 0.000513 0.014320 3.14 3.47 0.280935 −4.912 587 12 1.1 0.281698 0.000017 0.000088 0.002398 2.13 3.11 0.281697 −25.113 1556 17 1.2 0.281390 0.000012 0.000676 0.019873 2.58 3.24 0.281370 −15.014 804 16 −4.3 0.282112 0.000018 0.001020 0.029892 1.61 2.10 0.282097 −6.115 938 18 −6.7 0.282286 0.000022 0.001108 0.036898 1.37 1.63 0.282266 2.917 547 11 25.3 0.282130 0.000019 0.000337 0.009830 1.55 2.19 0.282127 −10.818 1138 22 1.3 0.282345 0.000009 0.000315 0.007177 1.26 1.34 0.282338 9.921 1605 19 9.7 0.281432 0.000020 0.000945 0.028386 2.54 3.14 0.281403 −12.722 516 10 −6.0 0.282085 0.000015 0.000185 0.005537 1.61 2.31 0.282083 −13.023 1271 19 8.8 0.281673 0.000015 0.000393 0.011393 2.18 2.77 0.281664 −11.024 1610 18 0.7 0.281735 0.000016 0.000552 0.017406 2.10 2.43 0.281718 −1.425 2447 16 5.9 0.281194 0.000013 0.000438 0.013398 2.83 3.09 0.281174 −1.726 2459 15 2.0 0.280922 0.000014 0.000502 0.015020 3.19 3.70 0.280898 −11.228 3066 15 −1.3 0.280942 0.000012 0.000366 0.009688 3.16 3.22 0.280920 3.729 992 18 1.5 0.282294 0.000013 0.000443 0.012512 1.33 1.55 0.282286 5.130 612 12 3.3 0.281655 0.000014 0.001030 0.031598 2.24 3.22 0.281643 −26.531 2268 45 36.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.32 930 17 0.4 0.281419 0.000017 0.000509 0.015725 2.53 3.54 0.281410 −27.733 1022 19 −3.8 0.281739 0.000016 0.000378 0.011454 2.09 2.78 0.281732 −14.234 985 20 −5.8 0.282107 0.000010 0.001126 0.034562 1.62 2.01 0.282086 −2.535 1589 19 −2.9 0.281557 0.000013 0.000459 0.012922 2.34 2.84 0.281543 −8.137 2468 17 0.2 0.280592 0.000021 0.000285 0.008645 3.61 4.40 0.280579 −22.338 960 18 1.4 0.281969 0.000014 0.000247 0.007807 1.77 2.30 0.281965 −7.340 1619 17 0.5 0.281482 0.000012 0.000315 0.009235 2.43 2.98 0.281472 −10.041 2511 17 0.5 0.281230 0.000013 0.000592 0.016745 2.79 2.98 0.281202 0.844 1881 18 −1.9 0.281448 0.000017 0.000696 0.021865 2.50 2.91 0.281423 −5.845 972 18 −4.4 0.281939 0.000013 0.000011 0.000568 1.80 2.35 0.281939 −8.046 938 18 2.7 0.282328 0.000012 0.000801 0.024869 1.30 1.53 0.282314 4.547 586 13 −14.0 0.281653 0.000011 0.000285 0.009172 2.20 3.22 0.281650 −26.848 996 19 −3.3 0.282219 0.000017 0.000219 0.007146 1.43 1.71 0.282215 2.349 1602 18 −3.1 0.281392 0.000013 0.000441 0.014109 2.56 3.20 0.281379 −13.751 2356 73 −3.6 0.280888 0.000017 0.000604 0.020425 3.25 3.85 0.280861 −14.952 1602 17 −2.5 0.281517 0.000013 0.000747 0.024948 2.41 2.94 0.281494 −9.653 609 12 0.6 0.282489 0.000011 0.000606 0.020178 1.07 1.36 0.282482 3.254 1338 20 −0.2 0.281949 0.000014 0.000192 0.006361 1.79 2.10 0.281944 0.455 907 17 1.0 0.282030 0.000015 0.000413 0.014085 1.69 2.20 0.282023 −6.556 2472 17 0.0 0.280954 0.000012 0.000385 0.013169 3.14 3.61 0.280936 −9.558 2606 14 1.5 0.281031 0.000012 0.000676 0.021652 3.06 3.38 0.280997 −4.259 2480 16 1.1 0.281120 0.000017 0.000474 0.015668 2.93 3.24 0.281098 −3.6

M03-21B1 2536 20 19.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.2 892 16 −0.2 0.282239 0.000009 0.000937 0.028888 1.43 1.76 0.282223 0.33 626 12 −2.4 0.282362 0.000014 0.000456 0.014009 1.24 1.63 0.282357 −0.95 645 12 −1.3 0.282480 0.000021 0.000456 0.014038 1.08 1.35 0.282474 3.78 1742 19 4.3 0.281532 0.000017 0.000490 0.016692 2.37 2.80 0.281516 −5.69 2472 14 2.0 0.280983 0.000014 0.000517 0.017309 3.11 3.56 0.280959 −8.711 776 14 −1.5 0.281991 0.000014 0.000507 0.017103 1.75 2.37 0.281984 −10.814 1418 18 −0.2 0.281843 0.000021 0.000378 0.011192 1.95 2.30 0.281833 −1.715 2465 14 8.9 0.281226 0.000010 0.000598 0.017690 2.79 3.02 0.281198 −0.417 896 17 4.6 0.282363 0.000011 0.000663 0.019722 1.24 1.47 0.282352 5.018 1608 19 0.2 0.281589 0.000010 0.000666 0.021320 2.31 2.77 0.281569 −6.819 854 16 2.6 0.282564 0.000012 0.000783 0.025750 0.97 1.04 0.282551 11.120 531 10 12.4 0.281668 0.000014 0.000403 0.011337 2.18 3.22 0.281664 −27.521 1592 19 3.2 0.281523 0.000011 0.000540 0.016286 2.39 2.92 0.281507 −9.422 964 18 −0.5 0.281868 0.000011 0.000531 0.016255 1.92 2.53 0.281858 −11.023 518 10 −12.8 0.282163 0.000014 0.000377 0.012236 1.51 2.14 0.282159 −10.324 2091 48 12.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.25 1665 16 9.7 0.281703 0.000013 0.001007 0.029247 2.17 2.50 0.281671 −1.926 987 18 −2.5 0.281834 0.000013 0.001246 0.038544 2.00 2.62 0.281811 −12.227 811 15 1.8 0.281697 0.000018 0.000518 0.015536 2.15 3.00 0.281689 −20.428 2215 57 14.9 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.29 1578 41 7.1 0.281497 0.000011 0.001038 0.030000 2.46 3.02 0.281466 −11.131 2521 17 −1.1 0.281314 0.000017 0.000295 0.008455 2.65 2.75 0.281300 4.532 852 16 3.4 0.281811 0.000020 0.000496 0.015245 2.00 2.72 0.281803 −15.534 2516 16 −2.0 0.281032 0.000014 0.000675 0.019100 3.06 3.43 0.281000 −6.2

(continued on next page)

153T. Usuki et al. / Tectonophysics 586 (2013) 145–159

Page 10: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

Table 2 (continued)

Accepted age (Ma) ±1 σ Disc % 176Hf/177Hf ±1 σ 176Lu/177Hf 176Yb/177Hf TDM(Ga)

TCDM(Ga)

Hfi εHf(T)

M03-21B35 956 18 −1.0 0.281622 0.000015 0.000493 0.015208 2.25 3.08 0.281613 −19.936 2380 15 0.4 0.281138 0.000013 0.000599 0.016770 2.91 3.28 0.281111 −5.437 2467 16 2.4 0.281023 0.000020 0.000620 0.020200 3.07 3.48 0.280994 −7.638 950 18 0.4 0.281803 0.000016 0.000540 0.016410 2.01 2.69 0.281793 −13.639 2452 16 −1.0 0.281041 0.000014 0.000234 0.006676 3.01 3.41 0.281030 −6.640 1642 17 2.5 0.281975 0.000015 0.002269 0.061372 1.86 1.99 0.281904 5.941 859 16 6.0 0.281970 0.000013 0.000434 0.013333 1.78 2.36 0.281963 −9.643 2474 15 0.1 0.280654 0.000023 0.000335 0.010454 3.53 4.27 0.280638 −20.144 1695 16 −1.3 0.281882 0.000020 0.000980 0.036118 1.92 2.07 0.281850 5.245 1483 18 2.3 0.281699 0.000014 0.000794 0.020742 2.16 2.61 0.281677 −5.846 2476 17 1.8 0.281114 0.000010 0.000418 0.011911 2.93 3.25 0.281094 −3.847 2519 16 −1.1 0.281075 0.000014 0.000404 0.012762 2.98 3.31 0.281056 −4.248 951 18 5.6 0.281953 0.000015 0.000707 0.023045 1.81 2.36 0.281940 −8.450 545 11 −2.8 0.281871 0.000017 0.000177 0.005294 1.90 2.76 0.281869 −19.9

VNTS11 2530 15 26.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.2 644 12 −14.9 0.282413 0.000017 0.000452 0.013565 1.17 1.50 0.282408 1.34 1904 32 23.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.5 2442 16 −1.4 0.281155 0.000011 0.000950 0.030543 2.92 3.24 0.281111 −4.09 2498 18 2.4 0.281253 0.000016 0.000638 0.019088 2.76 2.94 0.281223 1.315 528 11 31.8 0.282158 0.000010 0.000327 0.009203 1.51 2.14 0.282155 −10.216 556 10 1.8 0.282281 0.000014 0.000395 0.011186 1.35 1.85 0.282277 −5.318 2451 15 −0.5 0.280978 0.000009 0.000660 0.021976 3.13 3.60 0.280947 −9.619 2317 24 8.8 0.281235 0.000012 0.000574 0.016814 2.78 3.10 0.281210 −3.422 2362 15 60.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.24 973 18 −5.6 0.281931 0.000014 0.000292 0.008190 1.82 2.38 0.281926 −8.425 595 11 −9.2 0.282184 0.000015 0.000376 0.011602 1.48 2.05 0.282180 −7.826 1092 71 6.1 0.282194 0.000013 0.001026 0.029269 1.49 1.75 0.282173 3.027 1270 18 −0.2 0.281652 0.000007 0.000339 0.010229 2.20 2.82 0.281644 −11.829 1723 17 −4.6 0.281794 0.000008 0.000844 0.024993 2.04 2.25 0.281766 2.833 632 12 −0.7 0.282521 0.000011 0.001116 0.039285 1.04 1.29 0.282508 4.640 917 17 6.4 0.282325 0.000014 0.001048 0.029811 1.31 1.56 0.282307 3.842 994 18 −3.3 0.282210 0.000013 0.001206 0.038246 1.48 1.78 0.282187 1.345 820 16 4.5 0.282181 0.000017 0.000897 0.025683 1.51 1.93 0.282167 −3.347 531 10 3.5 0.282192 0.000011 0.000274 0.008441 1.47 2.06 0.282189 −8.948 2688 15 −1.6 0.280855 0.000010 0.000519 0.015249 3.28 3.70 0.280828 −8.449 2526 15 −1.8 0.280858 0.000013 0.000572 0.017419 3.28 3.81 0.280830 −12.050 2016 32 22.5 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.51 569 11 19.1 0.282348 0.000018 0.001457 0.040650 1.29 1.72 0.282332 −3.053 744 14 36.6 0.282033 0.000011 0.000565 0.016756 1.70 2.30 0.282025 −10.054 2378 34 3.6 0.280865 0.000017 0.000348 0.010368 3.26 3.86 0.280849 −14.856 937 17 0.2 0.281369 0.000015 0.000489 0.015367 2.59 3.64 0.281360 −29.358 2513 14 0.9 0.281237 0.000015 0.000697 0.019451 2.79 2.98 0.281204 0.959 885 16 7.3 0.282137 0.000011 0.000210 0.006677 1.54 1.97 0.282133 −3.060 924 17 4.1 0.282250 0.000015 0.000749 0.022501 1.40 1.71 0.282237 1.567 743 15 10.3 0.282548 0.000013 0.001237 0.034902 1.00 1.16 0.282531 7.968 2042 17 14.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.71 2424 22 30.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

n.a. not analyzed.

154 T. Usuki et al. / Tectonophysics 586 (2013) 145–159

and +3.6) yielding Hf crustal model ages (TDMC ) of 3.7 and 3.2 Ga,respectively. The Neoarchean, Mesoproterozoic, Grenvillian, andPan-African age groups from the three samples exhibit large ranges ofεHf(T), suggesting that the host magma of zircons from these groupshave diverse sources. The Neoarchean group yields varying εHf(T) values−22.4 to+4.5, which indicates both significant reworking of older crustand juvenile crust formation. The existence of very low negative εHf(T)indicates that the source magma includes reworked Eoarchean (TDMC =4.4–3.7 Ga) crustal materials. Grenvillian and Pan-African groupsshow large ranges of εHf(T) from strong negative values to positive,i.e.,−29.3 to +5.1 and−34.4 to +4.6, respectively. The strong neg-ative εHf(T) values from both the groups indicate reworked oldercrust (~3.7 Ga) in addition to juvenile input. The Mesoproterozoicgroup also ranges from negative (−15.1) to positive (+5.9), suggestingcrustal reworking and juvenile input, but the oldest Hf model age ofthis group indicates ~3.3 Ga, slightly younger than those of Neoarchean,Grenvillian, and Pan-African groups.

5. Discussion

5.1. Exotic origin of the detrital zircons

Analyzed zircons in this studywere collected frommodern river sed-iments in the TSB and not directly from outcrop of Early Paleozoic sedi-mentary rocks. Therefore,we need to discuss about the relation betweenthe sources for our zircons and the geology of catchment areas. As de-scribed before, the sampling sites for M03-24B and M03-21B and theirupstream area are mostly underlain by Upper Ordovician–Lower Siluri-an sedimentary rocks (Fig. 1B). They are also intruded by several largeand small plutonic bodies (Tran et al., 2008). So, zircons in samplesM03-24B and M03-21B are probably derived from Upper Ordovician–Lower Silurian sedimentary rocks and their intrusions. Although theseintrusions have not been studied in detail yet (Tran et al., 2008), someDevonian to Late Permian K–Ar biotite ages are reported in addition toa Late Permian TIMSU–Pb zircon age (Tran andVu, 2011). The Paleozoic

Page 11: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

-30

-20

-10

0

10

20

epsi

lon

Hf

Western Cathaysia

Qiangtang

Tethyan Himalaya

Indochina (VNTS-1)

Indochina (M03-21B)

Indochina (M03-24B)

DM

CHUR

3.7 Ga3.3 Ga176 Lu/177 Hf = 0.015

0.95

Ga

2.5

Ga

500 1000 1500 2000 2500 3000 3500 4000

Age (Ma)

Fig. 4. Age vs epsilon Hf plot of zircons from samples M03-24B, M03-21B and VNTS1. For comparison, detrital zircons data from western Cathaysia, Qiangtang, and TethyanHimalaya are also plotted. Data sources: western Cathaysia: Yu et al. (2008, 2010), Qiangtang: Zhu et al. (2011), Dong et al. (2011), Tethyan Himalaya: Zhu et al. (2011). DM: De-pleted mantle, CHUR: Chondritic uniform Reservoir. The declining parallel lines indicate Hf crustal model ages (T C

DM) based on assuming 176Lu/177Hf of average continental crust is0.015 (Griffin et al., 2004).

155T. Usuki et al. / Tectonophysics 586 (2013) 145–159

K–Ar ages can be interpreted asminimumages, as shown an Ar–Ar geo-chronological study for Early Paleozoic granulites overprinted by theIndosinian orogeny in the Kontum massif (Maluski et al., 2005). It iswell known that magmatic activities in the TSB mainly occurred inEarly-Middle Paleozoic and Permo-Triassic (Tran and Vu, 2011). There-fore, ~450 Ma and ~250 Ma euhedral zircons in our samples may comefrom intrusives in the catchment areas. On the other hand, the older zir-cons (>0.5 Ga) are most likely derived from Upper Ordovician–LowerSilurian sedimentary rocks. In the upstream of VNTS1, Triassic sedimen-tary rocks are also distributed in addition to Upper Ordovician–Siluriansedimentary rocks. However, the similarity of age distribution and Hfisotope compositions with those of M03-24B and M03-21B suggeststhat detrital zircons in VNTS1 may be derived mainly from the UpperOrdovician–Silurian sedimentary rocks or their recycled sources. There-fore, we interpret that age distributions and Hf isotope data of the olderzircons represent those of Early Paleozoic sedimentary rocks in the TSB.

The detrital zircons (>0.5 Ga) from the TSB showmajor age groupsof ~2.5, 1.7–1.4, ~0.95, and 0.65–0.5 Ga in addition to the two Paleo- toMeso-archean zircons which are the oldest materials ever recordedfrom Indochina. The subrounded or rounded shapes of these zirconssuggest strong ablation during long-distance transport. Counterpartigneous bodies of these ages have not been recognized in Indochina,although high quality age data is still limited. Instead, the Kontummassif,representing the largest basement exposure of Indochina (Hutchison,1989), is now regarded as exposures of deep crustal levels of thePermo-Triassic orogeny in contact with Paleozoic mid-crustal rocks(Nagy et al., 2001). Although Archean to Early Paleozoic zircon U–Pbages (concordant or near concordant ages by SHRIMPandupper interceptages by TIMS method) have been reported from several localities in theKontum massif and TSB (Carter et al., 2001; Lan et al., 2003; Nagy et al.,2001; Nam et al., 2001; Roger et al., 2007; Usuki et al., 2009), most ofthem could be interpreted as detrital ages based on occurrences of awide variety of ages even in one sample (Carter et al., 2001; Lan et al.,2003; Nagy et al., 2001; Usuki et al., 2009) and internal texture of thezircons (Usuki et al., 2009). This evidence suggests that the older zirconsof this studymostly represent exotic input from other adjacent continen-tal terranes previously linked with Indochina. The existence of >3 Gazirconsmay suggest that the source provenancewas linkedwith cratonicareas such as India, East Antarctica, orWestern Australia (Yu et al., 2008).

Similar interpretations are derived from recent detrital zircon studies inother SE Asian blocks, such as South China, Qiangtang, and Lhasa, andtheir age distribution is used to reconstruct their paleopositions on theGondwana margin (Duan et al., 2011; Wang et al., 2010; Yu et al., 2008;Zhu et al., 2011).

5.2. Comparison with Gondwana derived terranes

Yu et al. (2008) showed that detrital zircons from late Neoproterozoicmetasediments inwestern Cathaysia (Nanling–Yunkai area) are charac-terized by the existence of significant amounts of younger Grenvillianages (~1000–930 Ma) rather than typical Grenvillian ages (1300–1050 Ma). Recently, Zhu et al. (2011) showed that the source prove-nance for sediments of Qiangtang and Lhasa can be distinguished byusing Grenvillian detrital zircons. Qiangtang is dominated by ‘younger’Grenvillian (~950 Ma) ageswhich originated from the TethyanHimalaya.In contrast detrital zircons from Lhasa are dominantly ‘older’ Grenvillian(~1170 Ma) and derived from the Albany–Fraser belt in southwestAustralia (Zhu et al., 2011). As previously described, Indochina is clearlydominated by ‘younger’ Grenvillian ages (~950 Ma). Therefore, here wecompare age spectrum of Indochina with those from the westernCathaysia, Qiangtang and Tethyan Himalaya (Fig. 5). The zircon age prob-ability plots from lateNeoproterozoicmetasediments and river sedimentsfrom western Cathaysia (Wan et al., 2010; Wang et al., 2007; Xu et al.,2007; Yu et al., 2008, 2010), Ordovician quartzite from Qiangtang (Donget al., 2011; Zhu et al., 2011), and Neoproterozoic to Lower Permian sed-imentary rocks from Tethyan Himalaya (McQuarrie et al., 2008; Myrowet al., 2009, 2010; Zhu et al., 2011) showmajor age peaks in Neoarchean(~2500 Ma), Mesoproterozoic (1700–1400 Ma), Grenvillian (~950 Ma),and Pan-African (650–500 Ma), which are similar to those of Indochina.In comparison to the age spectra of Indochina, there is remarkable corre-lation with Tethyan Himalaya. The peak ages for spectra of Indochina;2467, 1733, 1606, 1481, 1147, 958, 817, 637, and 531 Ma (Fig. 5A) arecommon with those of Tethyan Himalaya, which also have the peaks at2466, 1726, 1617, 1453, 1153, 968, 817, 618, and 530 Ma (Fig. 5D). Thedata indicate that detrital zircons from Indochina, western Cathaysia,Qiangtang, and Tethyan Himalaya shared a common source provenance.

Hf isotopes of the detrital zircons also support our interpretation.Fig. 4 compares εHf(T) of detrital zircons from Indochina with those

Page 12: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

A

B

C

D

Indochina(n=109, N=3)

Western Cathaysia(n=435, N=15)

Qiangtang(n=229, N=2)

Tethyan Himalaya(n=474, N=9)

500 1000 1500 2000 2500 3000 3500 4000

Age (Ma)

2467

1606

958

637

531

1453 16171726

968

817

17331481

952

2486

1147

1118

814

800

528

644

940

2472

24668171153

530618

1180

17201502

18001658

Fig. 5. Relative probability plot for zircon U–Pb ages from this study and for other Gondwana derived terranes. In these plots, 207Pb/206Pb ages with discordant degree b20% wereused except b1 Ga zircons where 206Pb/238U ages were used. A: river sediments from Indochina (This study), B: late Neoproterozoic metasediments and river sediments fromwest-ern Cathaysia (Wan et al., 2010; Wang et al., 2007; Xu et al., 2007; Yu et al., 2008, 2010), C: Ordovician quartzites from Qiangtang (Dong et al., 2011; Zhu et al., 2011), D: LowerPermian, Ordovician, Cambrian and Neoproterozoic sedimentary rocks from Tethyan Himalaya (McQuarrie et al., 2008; Myrow et al., 2009, 2010; Zhu et al., 2011). N: number ofsamples, n: number of grains analyzed.

156 T. Usuki et al. / Tectonophysics 586 (2013) 145–159

from western Cathaysia, Qiangtang, and Tethyan Himalaya. Each agegroup of Neoarchean, Mesoproterozoic, Grenvillian, and Pan-African ofIndochina have large ranges of εHf(T) and overlaps with those ofwestern Cathaysia, Qiangtang, and Tethyan Himalaya. For example, theNeoarchean group for Indochina is characterized by a large range of epsi-lon Hf containing strong negative values with Hf model ages of >3.7 Ga.The same pattern is observed in the Neoarchean zircons from westernCathaysia, Qiangtang and TethyanHimalaya. The epsilonHf of Grenvillianand Pan-African group from Indochina show large range from positive tostrongly negative with model ages of ~3.7 Ga. Mesoproterozoic zirconsfrom Indochina show a restricted epsilon Hf range and the oldest Hfmodel age of this group is slightly younger (~3.3 Ga) than that of theother group, which is also consistent with those fromwestern Cathaysia,Qiangtang and Tethyan Himalaya.

According to Yu et al. (2008), the detrital zircons in lateNeoproterozoic sediments from western Cathaysia were derived fromIndia and east Antarctica. Zhu et al. (2011) showed that the detritalzircons in Ordovician quartzite and metasediments from Qiangtangwere derived from Tethyan Himalaya. Cambrian–Ordovician sedimentsin theHimalayan terraneswere derived from India, Antarctica, east Africa,and Australia (Myrow et al., 2010). The interpretations and similaritiesof age distribution and Hf isotopic compositions of Indochina indicatethat detrital zircons from Indochina are likely derived from the India–Antarctica region of east Gondwana.

5.3. Paleoposition of Indochina in Early Paleozoic

In previous studies, the paleogeographic reconfigurations of Indochinaduring Early Paleozoic have been difficult to be constrained due to limitedEarly Paleozoic paleomagnetic data from Indochina (Li et al., 2004) andshortage of paleontological indicators for the Early Paleozoic (Metcalfe,1998). However, our U–Pb ages and Hf isotope data from Indochinawith comparison to those from other terranes, especially South China

andQiangtang,make it possible to constrain the paleoposition of Indochi-na in the Gondwanamargin. The paleoposition of Qiangtang in the Indianmargin is widely accepted (e.g., Allègre et al., 1984; Metcalfe, 2011a; Yinand Harrison, 2000). As described before, data from Zhu et al. (2011)also support this position. The origin of South China is more controversial(e.g., Metcalfe, 1998, 2011a, 2011b; Torsvik and Cocks, 2009). Torsvik andCocks (2009) consider that South China was not part of the Gondwanamargin during the Early Paleozoic but many studies place it along theIndian margin of Gondwana (e.g., Duan et al., 2011; Jiang et al., 2003; Liet al., 2004; Metcalfe, 1998, 2011a, 2011b; Yu et al., 2008; Zhu et al.,2011). According to Li et al. (2004), the paleolatitude of South China dur-ing the Ordovician was somewhere between of 9° to 24° south, which isconsistent with the paleoposition of South China proposed by Metcalfe(1998) and with reconstructions based on age spectra of detrital zircons(Duan et al., 2011; Yu et al., 2008). Jiang et al. (2003) also place SouthChina along the Indianmargin during late Neoproterozoic by comparisonof strata between northern India and South China, although he suggestedthat South China drifted to Australian margin during the earliestCambrian.

The detrital zircons from Indochina are dominated by ages of~0.95 Ga, which is characteristic of the Indian margin of Gondwanaaccording to Zhu et al. (2011). Moreover, as described before, agespectra of >0.5 Ga zircons from Indochina show remarkable similar-ity to Qiangtang and Tethyan Himalaya, indicating that Indochina wasconnected to the Indian Gondwana margin (Fig. 6). Next, we considerthe relative position to South China. Yu et al. (2008) proposed thatthe Cathaysia component of South China was linked to the Gondwanamargin based on the characteristics of U–Pb ages and Hf isotope compo-sitions of detrital zircons from late Neoproterozoic metasediments inCathaysia. Wang et al. (2010) also considered the similar configurationof South China based on their detrital zircon ages, stratigraphy andpaleocurrent data of Cambrian to Silurian sandstones in South China. Inaddition, detrital zircon data from western Cathaysia shows a similar

Page 13: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

GISC

IC

QT

S

L

H

YG

AFB & MB(1300-1050 Ma)

Antarctica

Australia

India

Ordovician

WC

EC

TSB

PB

30°S

Meso-Neoproterozoic orogenic belts (1300-900 Ma)

Paleozoic aged orogenic belts (600-500 Ma)

Archean and Paleoproterozoic cratons

nPCMs(990-900 Ma)

EG (990-900 Ma)

NC

T

30°N

SWB

Fig. 6. Paleogeography of east Gondwana in the Ordovician. Note the position of Indochina outboard of Qiangtang and south of South China based on our study. Lhasa is placed in theAustralian margin, according to Zhu et al. (2011). The configuration of other blocks and continents are after Metcalfe (2011a). The position and ages of Grenvillian and Pan-Africanorogenic belts are after Boger et al. (2001). Arrows indicate transportation path of detritus in the Indian and Australian margins, suggested by Zhu et al. (2011). IC: Indochina, SC:South China, S: Sibumasu, QT: Qiangtang, L: Lhasa, H: Himalayan terranes including Tethyan Himalaya and High Himalaya, GI: Greater India, NC: North China, T: Tarim, SWB: SWBorneo, TSB: Truong Son Belt, WC: western Cathaysia, EC: eastern Cathaysia, YG: Pilbra/Yilgarn craton, AFB: Albany–Fraser belt, MB: Musgrave block, EG: Eastern Ghats, nPCMs:northern Prince Charles Mountains, PB: Perth Basin.

157T. Usuki et al. / Tectonophysics 586 (2013) 145–159

age distribution (Yu et al., 2008) to those of Indochina, whereas those ofeastern Cathaysia (Wuyishan area), which has no significant ~0.95 Gaage group (Yu et al., 2010), is different from those of Indochina. Therefore,we interpret that Indochina was adjacent to western Cathaysia. The con-straints indicate that Indochina was located outboard of Qiangtang andsouth of South China along the Indian Gondwana margin (Fig. 6). Thepaleoposition of Indochina is also consistent with paleontologic data.According to Forty and Cocks (1998), Ordovician trilobites fromSibumasu, whichwas located along the Australianmargin near the Equa-tor, are tropical-type whereas those from Indochina are cool-water type.The diversity of trilobites suggests that Indochina was located at higherlatitudes than the Australian margin although during the Silurian,Sino-Australian brachiopods occurred within Indochina as well asSouth China and east Australia (e.g., Metcalfe, 1998). The presence of

Sino-Australian brachiopods can be explained by a significant clockwiserotation of Gondwana from the Ordovician to Silurian (e.g., Metcalfe,2011a). By this rotation, the position of Indochina in the Indian marginmight move to lower latitude and became similar with paleolatitude ofSouth China and Australia.

6. Conclusions

This study reports a new data set of in-situ zircon U–Pb ages andHf isotopes of detrital zircons interpreted as sourced from UpperOrdovician–lower Silurian sedimentary rocks in the TSB. In comparisonto detrital zircons from other blocks in SE Asia, we make the followingconclusions.

Page 14: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

158 T. Usuki et al. / Tectonophysics 586 (2013) 145–159

1. The age distributions yield dominant Neoarchean (~2.5 Ga),Mesoproterozoic (1.7–1.4 Ga), Grenvillian (~0.95 Ga), and Pan-African (0.65–0.5 Ga) age groups and minor Paleo- to Meso-archean zircons.

2. Zircons of each age group exhibit wide ranges of εHf(T) from strongnegative to positive values. The oldest Hf model ages for zircons ofNeoarchean, Grenvillian, and Pan-African age group yield ~3.7 Gaor older, while those of Mesoproterozoic group contain ~3.3 Ga.

3. The remarkable similarity of age spectra and Hf isotope composi-tions of zircons from Indochina with those from Tethyan Himalaya,western Cathaysia, and Qiangtang suggests that Indochina waslocated outboard of Qiangtang and south of South China along theIndian margin of Gondwana during the Early Paleozoic.

Acknowledgments

This studywas supported byAcademia Sinica and theNational ScienceCouncil, Taiwan, ROC, under grants NSC100-2116-M-001-031 and NSC92-2116-M-001-007. This paper is the contribution IESAS 1734 of theInstitute of Earth Sciences, Academia Sinica. The authors would like toexpress their sincere thanks to T.Y. Lee andM.W. Yeh for sharing samples.Tuan Anh Tran assisted with fieldwork in central Vietnam.We thank ourcolleagues Y. Iizuka for assisting in cathodoluminescence images of zir-cons and S.L. Chung for providing the zircon dating facilities. The manu-script was improved by syntax polish of J.G. Shellnutt. Constructivecomments on the manuscript by I. Metcalfe and an anonymous reviewerare gratefully acknowledged.

References

Allègre, C.J., et al., 1984. Structure and evolution of the Himalaya–Tibet orogenic belt.Nature 307, 17–22.

Andersen, T., 2002. Correction on common Pb in U–Pb analyses that do not report204Pb. Chemical Geology 192, 59–79.

Black, L.P., Gulson, B.L., 1978. The age of Mud Tank carbonatite, Strangways Range,Northern Territory. BMR Journal of Australian Geology and Geophysics 3, 227–232.

Boger, S.D., Wilson, C.J.L., Fanning, C.M., 2001. Early Paleozoic tectonism within the EastAntarctic craton: the final suture between east and west Gondwana? Geology 29,463–466.

Carter, A., Roques, D., Bristow, C., Kinny, P., 2001. Understanding Mesozoic accretion insoutheast Asia: significance of Triassic thermotectonism (Indosinian orogeny) inVietnam. Geology 29, 211–214.

Cawood, P.A., Johnson, M.R.W., Nemchin, A.A., 2007. Early Palaeozoic orogenesis alongthe Indian margin of Gondwana: tectonic response to Gondwana assembly. Earthand Planetary Science Letters 255, 70–84.

Chiu, H.Y., Chung, S.L., Wu, F.Y., Liu, D., Liang, Y.H., Lin, I.J., Iizuka, Y., Xie, L.W., Wang, Y.,Chu,M.F., 2009. Zircon U–Pb and Hf isotopic constrains from eastern TransHimalayanbatholiths on the precollisional magmatic and tectonic evolution in southern Tibet.Tectonophysics 477, 2–19.

Dong, C.Y., Li, C., Wan, Y.S., Wang, W., Wu, Y.W., Xie, H.Q., Liu, D.Y., 2011. Detrital zirconage model of Ordovician Wenquan quartzite south of Lungmuco–Shuanghu suturein theQiangtang area, Tibet: constraint on tectonic affinity and source regions. ScienceChina, Earth Sciences 54, 1034–1042.

Duan, L., Meng, Q.R., Zhang, C.L., Liu, X.M., 2011. Tracing the position of the South Chinablock in Gondwana: U–Pb ages and Hf isotopes of Devonian detrital zircons. Gond-wana Research 19, 141–149.

Forty, R.A., Cocks, L.R.M., 1998. Biogeography and palaeogeography of the Sibumasuterrane in the Ordovician: a review. In: Hall, R., Holloway, J.D. (Eds.), Biogeographyand Geological Evolution of SE Asia. Backhuys Publishers, Leiden, The Netherlands,pp. 43–56.

Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.E., O'Reilly, S.Y., van Achterberg, E.,Shee, S.R., 2000. The Hf-isotope composition of cratonic mantle: LAM-MC-ICPMSanalysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta64, 133–147.

Griffin, W.L., Belousova, E.A., Shee, S.R., Pearson, N.J., O'Reilly, S.Y., 2004. Archean crust-al evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence fromdetrital zircons. Precambrian Research 131, 231–282.

Hoskin, P.W.O., Schaltegger, U., 2003. The compositions of zircon and igneous andmetamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Re-views in Mineralogy & Geochemistry, 53. Mineralogical Society of America,Washigton D.C., pp. 27–62.

Hutchison, C.S., 1989. Geological Evolution of Southeast Asia. Clarendon, Oxford . (368 pp.).Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser

ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircongeochronology. Chemical Geology 211, 47–69.

Jiang, G., Sohl, L.E., Christie-Blick, N., 2003. Neoproterozoic stratigraphic comparison ofthe Lesser Himalaya (India) and Yangtze block (south China): Paleogeographic im-plications. Geology 31, 917–920.

Lan, C.Y., Chung, S.L., Van Long, Trinh, Lo, C.H., Lee, T.Y., Mertzman, S.A., Shen, J.J., 2003.Geochemical and Sr–Nd isotopic constraints from the Kontummassif, central Vietnamon the crustal evolution of the Indochina block. Precambrian Research 122, 7–27.

Lan, C.Y., Usuki, T., Wang, K.L., Yui, T.F., Okamoto, K., Lee, Y.H., Hirata, T., Kon, Y.,Orihashi, Y., Liou, J.G., Lee, C.S., 2009. Detrital zircon evidence for the antiquity ofTaiwan. Geosciences Journal 13, 233–243.

Lepvrier, C., Maluski, H., Nguyen, Van Vuong, Roques, D., Axente, V., Rangin, C., 1997.Indosinian NW-trending shear zones within the Trong Son Belt (Vietnam) 40Ar–39ArTriassic ages and Cretaceous to Cenozoic overprints. Tectonophysics 283, 105–127.

Li, P., Rui, G., Junwen, C., Ye, G., 2004. Paleomagnetic analysis of eastern Tibet: implica-tions for the collisional and amalgamation history of the Three River Region, SWChina. Journal of Asian Earth Sciences 24, 291–310.

Ludwig, K.R., 2003. ISOPLOT 3: a geochronological toolkit for Microsoft excel. BerkeleyGeochronology Centre Special Publication, 4, p. 74.

McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G., Duce, M., 2008.Preliminary stratigraphic and structural architecture of Bhutan: implications forthe along-strike architecture of the Himalayan system. Earth and Planetary ScienceLetters 272, 105–117.

Metcalfe, I., 1998. Palaeozoic and Mesozoic geological evolution of the SE Asian region:multidisciplinary constraints and implications for biogeography. In: Hall, R.,Holloway, J.D. (Eds.), Biogeography and Geological Evolution of SE Asia. BackhuysPublishers, Leiden, The Netherlands, pp. 25–41.

Metcalfe, I., 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography ofEast Asian crustal fragments: the Korean Peninsula in context. Gondwana Research9, 24–46.

Metcalfe, I., 2011b. Palaeozoic–Mesozoic history of SE Asia. In: Hall, R., Cottam, M.A.,Wilson, M.E.J. (Eds.), The SE Asian Gateway: History and Tectonics of the Australia–Asia Collision: Geological Society of London, Special Publications, 355, pp. 7–35.

Metcalfe, I., 2011a. Tectonic framework and Phanerozoic evolution of Sundaland.Gondwana Research 19, 3–21.

Maluski, H., Lepvrier, C., Leyreloup, A., Vu, Van Tich, Phan, Truong Thi, 2005. 40Ar–39Argeochronology of the charnockites and granulites of the Kan Nack complex, KonTum Massif, Vietnam. Journal of Asian Earth Sciences 25, 653–677.

Myrow, P.M., Hughes, N.C., Searle, M.P., Fanning, C.M., Peng, S.C., Parcha, S.K., 2009.Stratigraphic correlation of Cambrian–Ordovician deposits along the Himalaya:implications for the age and nature of rocks in the Mt. Everest region. GeologicalSociety of America Bulletin 120, 323–332.

Myrow, P.M., Hughes, N.C., Goodge, J.W., Fanning, C.M., Williams, I.S., Peng, S.,Bhargava, O.N., Parcha, S.K., Pogue, K.R., 2010. Extraordinary transport and mixingof sediment across Himalayan central Gondwana during the Cambrian–Ordovician.Geological Society of America Bulletin 122, 1660–1670.

Nagy, E.A., Maluski, H., Lepvrier, C., Schärer, U., Thi, P.T., Leyreloup, A., Tich, V.V.,2001. Geodynamic significance of the Kontummassif in central Vietnam: composite40Ar/39Ar and U–Pb ages from Paleozoic to Triassic. Journal of Geology 109, 755–770.

Nam, T.N., Sano, Y., Terada, K., Toriumi, M., Van Quynh, P., Dung, L.T., 2001. FirstSHRIMP U–Pb zircon dating of granulites from the Kontum massif (Vietnam) andtectonothermal implications. Journal of Asian Earth Sciences 19, 77–84.

Roger, F., Maluski, H., Leyreloup, A., Lepvrier, C., Thi, P.T., 2007. U–Pb dating of hightemperature metamorphic episodes in the Kon Tum Massif (Vietnam). Journal ofAsian Earth Sciences 30, 565–572.

Scherer, E., Munker, C., Mezger, K., 2001. Calibration of the lutetium–hafnium clock.Science 293, 683–687.

Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in mainland SE Asia: new insightsfor Palaeo-Tethys closure and implications for the Indosinian orogeny. ComptesRendus Geoscience 340, 166–179.

Torsvik, T.H., Cocks, L.R., 2009. The Lower Palaeozoic palaeogeographical evolution ofthe northeastern and eastern peri-Gondwanan margin from Turkey to NewZealand. In: Bassett, M.G. (Ed.), Early Palaeozoic Peri-Gondwana Terranes: New In-sights from Tectonics and BiogeographyGeological Society of London, Special Pub-lications 325, 3–21.

Tran, Trong Hoa, Tran, Tuan Anh, Ngo, Thi Phuong, Pham, Thi Dung, Tran, Viet Anh,Izokh, A.E., Borisenko, A.S., Lan, C.Y., Chung, S.L., Lo, C.H., 2008. Permo-Triassicintermediate-felsic magmatism of the Truong Son belt, eastern margin of Indochi-na. Comptes Rendus Geoscience 340, 112–126.

Tran, Van Tri, Vu, Khuc (Eds.), 2011. Geology and Earth Resources of Viet Nam. Ministryof Nature Resources and Environment, General Department of Geology and Min-erals of Viet Nam, p. 634.

Tran, D.L., Nguyen, X.B. (Chief-Editors), 1989. Geological map of Vietnam on 1:500000,Geological Survey of Vietnam, Hanoi.

Usuki, T., Lan, C.Y., Yui, T.F., Iizuka, Y., Vu, Van Tich, Tran, Tuan Anh, Okamoto, K.,Wooden, J.L., Liou, J.G., 2009. Early Paleozoic medium-pressure metamorphism incentral Vietnam: evidence from SHRIMP U–Pb zircon ages. Geosciences Journal13, 245–256.

Wan, Y., Liu, D., Wilde, S.A., Cao, J., Chen, B., Domg, C., Song, B., Du, L., 2010. Evolution ofthe Yunkai Terrane, South China: evidence from SHRIMP zircon U–Pb dating, geo-chemistry and Nd isotope. Journal of Asian Earth Sciences 37, 140–153.

Wang, Y.J., Fan, W., Zhao, G., Ji, S., Peng, T., 2007. Zircon U–Pb geochronology of gneissicrocks in the Yunkai massif and its implications on the Caledonian event in theSouth China block. Gondwana Research 12, 404–416.

Wang, Y., Zhang, F., Fan, W., Zhang, G., Chen, S., Cawood, P.A., Zhang, A., 2010. Tectonicsetting of the South China Block in the early Paleozoic: resolving intracontinentaland ocean closure models from detrital zircon U–Pb geochrobology. Tectonics 29,TC6020.

Page 15: Linking the Indochina block and Gondwana during the Early Paleozoic: Evidence from U–Pb ages and Hf isotopes of detrital zircons

159T. Usuki et al. / Tectonophysics 586 (2013) 145–159

Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., von Quadt, A.,Roddick, J.C., Spiegel, W., 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf,trace element and REE analyses. Geostandards and Geoanalytical Research 19, 1–23.

Xu, X., O'Reilly, S.Y., Griffin, W.L., Wang, X., Pearson, N.J., He, Z., 2007. The crust ofCathaysia: age, assembly and reworking of two terranes. Precambrian Research158, 51–78.

Yin, A., Harrison, T.M., 2000. Geologic evolution of the Himalayan Tibetan Orogen. AnnualReview of Earth and Planetary Sciences 28, 211–280.

Yu, J.H., O'Reilly, S.Y., Wang, L., Griffin, W.L., Zhang, M., Wang, R., Jiang, S., Shu, L., 2008.Where was South China in the Rodinia supercontinent? Evidence from U–Pb geo-chronology and Hf isotopes of detrital zircons. Precambrian Research 164, 1–15.

Yu, J.H., O'Reilly, S.Y., Wang, L., Griffin,W.L., Zhou, M.F., Shu, L., 2010. Components and ep-isodic growth of Precambrian crust in the Cathaysia Block, South China: Evidencefrom U–Pb ages and Hf isotopes of zircons in Neoproterozoic sediments. PrecambrianResearch 181, 97–114.

Zhu, D.C., Zhao, Z.D., Niu, Y., Dilek, Y., Mo, X.X., 2011. Lhasa terrane in southern Tibetcame from Australia. Geology 39, 727–730.

Zhu, D.C., Zhao, Z.D., Niu, Y., Niu, Y., Dilek, Y., Hou, Z.Q., Mo, X.X., in press. The origin andpre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research.


Recommended