+ All Categories
Home > Documents > LTCC VCO Design Study

LTCC VCO Design Study

Date post: 12-Sep-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
38
The Chinese University of Hong Kong Department of Electronic Engineering Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu) S.H. Cheng, K.K. M. Cheng, and K.-L. Wu S.H. Cheng, K.K. M. Cheng, and K. S.H. Cheng, K.K. M. Cheng, and K. - - L. Wu L. Wu LTCC VCO Design Studies LTCC VCO Design Studies Department of Electronic Engineering Department of Electronic Engineering The Chinese University of Hong Kong The Chinese University of Hong Kong
Transcript
Page 1: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

S.H. Cheng, K.K. M. Cheng, and K.-L. WuS.H. Cheng, K.K. M. Cheng, and K.S.H. Cheng, K.K. M. Cheng, and K.--L. WuL. Wu

LTCC VCO Design Studies LTCC VCO Design Studies

Department of Electronic EngineeringDepartment of Electronic EngineeringThe Chinese University of Hong KongThe Chinese University of Hong Kong

Page 2: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

1. Introduction1. . IntroductionIntroduction

2. Theory of oscillator design22. . Theory of oscillator designTheory of oscillator design

3. Noise in oscillators33. . Noise in oscillatorsNoise in oscillators

4. High-Q LTCC resonator design4. 4. HighHigh--Q LTCC resonator designQ LTCC resonator design

5. LTCC VCO design5. 5. LTCC VCO designLTCC VCO design

6. Experimental result6. 6. Experimental resultExperimental result

7. Conclusion7. 7. ConclusionConclusion

ContentsContents

Page 3: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

1. LTCC VCO design1. LTCC VCO design

LTCC VCO design

LTCC VCO design procedure:LTCC VCO design procedure:

VCO circuit design

VCO circuit design

LTCC element realization

LTCC element realization

LTCC VCO integration and VCO simulation

LTCC VCO integration and VCO simulation

Circuit fabrication

Circuit fabrication

Performance evaluation

Performance evaluation

LTCC layoutoptimizationLTCC layoutoptimization

Page 4: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Theory of oscillator design

ZL

C1C3

C2L

ZL

C1C3

C2L

Two possible placements of the frequency tuning component.Two possible placements of the frequency tuning component.

Page 5: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Theory of oscillator design

Two-port active device networkResonator

Load network

ZL

ZR ZIN

Port 1 Port 2

RR RIN

jXR jXIN

1>ΓΓ INR 1>ΓΓ INR

Oscillation start up condition:Oscillation start up condition:

Steady state oscillation condition:Steady state oscillation condition:

1=ΓΓ INR 1=ΓΓ INR 1=ΓΓ OUTL 1=ΓΓ OUTLifif

ZIN + ZL = 0ZIN + ZL = 0

⇒⇒

Page 6: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Noise in oscillator

+

+

+= 2

22

2

212

1121log10)(

m

venr

m

c

SL

o

mm f

KkTRff

PFkTB

Qf

ffL

+

+

+= 2

22

2

212

1121log10)(

m

venr

m

c

SL

o

mm f

KkTRff

PFkTB

Qf

ffL

VCO phase noise:VCO phase noise:

Renv – effective noise resistance of the varactorKv – VCO gain in Hz/VRenv – effective noise resistance of the varactorKv – VCO gain in Hz/V

1. Choose an active device with the lowest possible flicker corner frequency (fc). Minimizes flicker noise using proper circuit design techniques.

2. Select a varactor having a lower effective noise resistance.3. Increase the loaded Q (QL) of the oscillator. It can be achieved

by using components with higher unloaded Q (Qu).

1. Choose an active device with the lowest possible flicker corner frequency (fc). Minimizes flicker noise using proper circuit design techniques.

2. Select a varactor having a lower effective noise resistance.3. Increase the loaded Q (QL) of the oscillator. It can be achieved

by using components with higher unloaded Q (Qu).

fo – center frequencyfm – offset frequency from the carrierfc – device flicker noise corner frequencyQL – loaded Q-factor of the resonance tankPS – signal levelF – device noise figurekTB – constant equals –174dBm/Hz with a 1 Hz bandwidth

fo – center frequencyfm – offset frequency from the carrierfc – device flicker noise corner frequencyQL – loaded Q-factor of the resonance tankPS – signal levelF – device noise figurekTB – constant equals –174dBm/Hz with a 1 Hz bandwidth

Page 7: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

HBFP0450

Select a suitable transistorSelect a suitable transistorVCC

RFC

RB1RB2

RE

RC

RFCBiasing circuit designBiasing circuit design

CR

LR

Oscillator circuit completionOscillator circuit completion

Output filter

C2

50Ω

DC blockNegative resistance designNegative resistance design

Cf

Cb

CvRFC

VCtrl

Frequency tuning network designFrequency tuning network design

VCO circuit schematic designVCO circuit schematic design

LTCC VCO design

Page 8: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

TermTerm1

Z=50 OhmNum=1

DC_BlockDC_Block1

TermTerm2

Z=50 OhmNum=2

LL39

R=1 OhmL=5.9 nH

CC57C=1 pF

LL38

R=L=4 nH

LL37

R=L=4 nH

CC53C=3 pF

CC52C=3 pF

CC51C=3 pF

di_sms_bb833_19930908D1

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

RR3R=3.6 kOhm

RR2R=3.6 kOhm

RR7R=68 Ohm

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

RR1R=50 Ohm

V_DCSRC1Vdc=3 V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

V_DCSRC2Vdc=Vin V

CC55C=1.5 pF

CC54C=1.8 pF

pb_hp_HBFP0450_19980529Q5

CC56C=5 pF

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

TermTerm1

Z=50 OhmNum=1

DC_BlockDC_Block1

TermTerm2

Z=50 OhmNum=2

LL39

R=1 OhmL=5.9 nH

CC57C=1 pF

LL38

R=L=4 nH

LL37

R=L=4 nH

CC53C=3 pF

CC52C=3 pF

CC51C=3 pF

di_sms_bb833_19930908D1

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

RR3R=3.6 kOhm

RR2R=3.6 kOhm

RR7R=68 Ohm

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

RR1R=50 Ohm

V_DCSRC1Vdc=3 V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

V_DCSRC2Vdc=Vin V

CC55C=1.5 pF

CC54C=1.8 pF

pb_hp_HBFP0450_19980529Q5

CC56C=5 pF

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

LTCC VCO design

Page 9: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-50

0

50

-100

100

freq, GHz

phas

e(Z

(2,2

))m

ag(Z

(2,2

))

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-50

0

50

-100

100

freq, GHz

phas

e(Z

(2,2

))m

ag(Z

(2,2

))

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-16

-14

-12

-10

-8

-6

-18

-4

freq, GHz

real

(Z(1

,1))

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-16

-14

-12

-10

-8

-6

-18

-4

freq, GHz

real

(Z(1

,1))

Vctrl = 3VVctrl = 3V

Vctrl = 0VVctrl = 0V

m1freq=2.289GHzVin=0.000000imag(Z(1,1))+imag(Z(2,2))=0.043

m2freq=2.338GHzVin=3.000000imag(Z(1,1))+imag(Z(2,2))=0.088

2.28 2.30 2.32 2.342.26 2.36

-10

-5

0

5

-15

10

freq, GHz

imag

(Z(1

,1))

+im

ag(Z

(2,2

))

m1 m2

real

(Z(1

,1))

+re

al(Z

(2,2

))

m1freq=2.289GHzVin=0.000000imag(Z(1,1))+imag(Z(2,2))=0.043

m2freq=2.338GHzVin=3.000000imag(Z(1,1))+imag(Z(2,2))=0.088

2.28 2.30 2.32 2.342.26 2.36

-10

-5

0

5

-15

10

freq, GHz

imag

(Z(1

,1))

+im

ag(Z

(2,2

))

m1 m2

real

(Z(1

,1))

+re

al(Z

(2,2

))

LTCC VCO design

Page 10: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctav es=2Z=1.1 OhmV=

CC57C=1 pF

LL39

R=1 OhmL=5.9 nH

LL38

R=L=4 nH

LL37

R=L=4 nH

CC53C=3 pF

CC52C=3 pF

CC51C=3 pF

di_sms_bb833_19930908D1

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

RR3R=3.6 kOhm

RR2R=3.6 kOhm

RR7R=68 Ohm

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

RR1R=50 Ohm

V_DCSRC1Vdc=3 V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

V_DCSRC2Vdc=Vin V

CC55C=1.5 pF

CC54C=1.8 pF

pb_hp_HBFP0450_19980529Q5

CC56C=5 pF

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctav es=2Z=1.1 OhmV=

CC57C=1 pF

LL39

R=1 OhmL=5.9 nH

LL38

R=L=4 nH

LL37

R=L=4 nH

CC53C=3 pF

CC52C=3 pF

CC51C=3 pF

di_sms_bb833_19930908D1

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

RR3R=3.6 kOhm

RR2R=3.6 kOhm

RR7R=68 Ohm

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

RR1R=50 Ohm

V_DCSRC1Vdc=3 V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

V_DCSRC2Vdc=Vin V

CC55C=1.5 pF

CC54C=1.8 pF

pb_hp_HBFP0450_19980529Q5

CC56C=5 pF

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

LTCC VCO design

Harmonic Balance Simulation

Page 11: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

m3noisefreq=1.000kHzVin=0.000000pnfm=-82.628

m4noisefreq=10.00kHzVin=0.000000pnfm=-102.628

m5noisefreq=100.0kHzVin=0.000000pnfm=-122.628

m6noisefreq=1.000MHzVin=0.000000pnfm=-142.628

1E4 1E5 1E61E3 1E7

-160

-140

-120

-100

-80

-180

-60

noisefreq, Hz

pnfm

, dB

c

m3

m4

m5

m6

m3noisefreq=1.000kHzVin=0.000000pnfm=-82.628

m4noisefreq=10.00kHzVin=0.000000pnfm=-102.628

m5noisefreq=100.0kHzVin=0.000000pnfm=-122.628

m6noisefreq=1.000MHzVin=0.000000pnfm=-142.628

1E4 1E5 1E61E3 1E7

-160

-140

-120

-100

-80

-180

-60

noisefreq, Hz

pnfm

, dB

c

m3

m4

m5

m6

0.5 1.0 1.5 2.0 2.50.0 3.0

2.33

2.34

2.35

2.36

2.37

2.32

2.38

HB.Vin

HB

.freq

[::, 1

], G

Hz

0.5 1.0 1.5 2.0 2.50.0 3.0

2.33

2.34

2.35

2.36

2.37

2.32

2.38

HB.Vin

HB

.freq

[::, 1

], G

Hz

0.5 1.0 1.5 2.0 2.50.0 3.0

8.4

8.6

8.8

9.0

8.2

9.2

HB.Vin

dBm

(HB

.Vou

t[::,1

])

0.5 1.0 1.5 2.0 2.50.0 3.0

8.4

8.6

8.8

9.0

8.2

9.2

HB.Vin

dBm

(HB

.Vou

t[::,1

])LTCC VCO design

Page 12: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

CR

LR

Output filter

C2

Cf

Cb

HBFP0450

VCC

RFC

RB1RB2

RE

RC

RFC

50Ω

DC block

CvRFC

VCtrl

Striplineresonator

Outputfilter

Feedback network

LTCC substrate

CR

LR

Output filter

C2

Cf

Cb

LTCC VCO design

Page 13: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

CC3C=3 pF

CC2C=3 pF

CC1C=3 pF

LL2

R=L=4 nH

LL1

R=L=4 nH

PortP2Num=2

PortP1Num=1

mb_mrt_GRM_39_19950721C4PART_NUM=GRM39C0G030C50 3.0pF

CC3C=3 pF

CC2C=3 pF

CC1C=3 pF

LL2

R=L=4 nH

LL1

R=L=4 nH

PortP2Num=2

PortP1Num=1

mb_mrt_GRM_39_19950721C4PART_NUM=GRM39C0G030C50 3.0pF

LTCC element realization: Output filter designLTCC element realization: Output filter design

LTCC VCO design

Page 14: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Ground plane is not shown

2.5 3.0 3.5 4.0 4.52.0 5.0

-40

-30

-20

-10

-50

0

freq, GHz

dB(S

(2,1

))

2.5 3.0 3.5 4.0 4.52.0 5.0

-40

-30

-20

-10

-50

0

freq, GHz

dB(S

(2,1

))

LTCC VCO design

Page 15: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

LTCC element realization: feedaback network designLTCC element realization: feedaback network design

CC3C=0.01349 pF

PortP2Num=2

CC1C=4.868 pF

PortP1Num=1

CC2C=1.496 pF

CC3C=0.01349 pF

PortP2Num=2

CC1C=4.868 pF

PortP1Num=1

CC2C=1.496 pF

LTCC VCO design

Page 16: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

High-Q LTCC resonator

Laminated stripline resonator designLaminated stripline resonator design

w

hh

λ/4

Stripine thickness = t

εr

g

Vertical structure:Vertical structure:- 15 layers- each layer thickness = 3.6mils- via-diameter = 5.2mils

- 15 layers- each layer thickness = 3.6mils- via-diameter = 5.2mils

LTCC material properties:LTCC material properties:- DuPont 6145D- εr = 7.8- lost tangent = 0.002

- DuPont 6145D- εr = 7.8- lost tangent = 0.002

Dimension:Dimension:- l = λ/4 = 441mils- l = λ/4 = 441mils

Page 17: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Resonator layout and simulation resultResonator layout and simulation result

fo

Reflection curve of the resonatorReflection curve of the resonator

High-Q LTCC resonator

Page 18: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

From the simulation result obtained, the Q can be calculated byFrom the simulation result obtained, the Q can be calculated by

oww

o

ddQ

=

=ωφω

2oww

o

ddQ

=

=ωφω

2

where φ is the phase angle of the z-parameter which change with frequencywhere φ is the phase angle of the z-parameter which change with frequency

High-Q LTCC resonator

Page 19: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Top and bottom ground planes are removed

Stripline

Shielding

Measurement port

1. Traditional Stripline1. Traditional Stripline

High-Q LTCC resonator

Page 20: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline – resonant frequencyStripline – resonant frequency

2.16

2.18

2.2

2.22

2.24

2.26

2.28

8 10 12 14 16 18 20 22 24 26Line width (mils)

Res

onan

t fre

quen

cy (G

Hz)

h = 21.6 milsh = 28.8 milsh = 36 milsh = 43.2 mils

High-Q LTCC resonator

Page 21: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline – unloaded QStripline – unloaded Q

100

110

120

130

140

150

160

170

8 10 12 14 16 18 20 22 24 26Line width (mils)

Res

onat

or u

nloa

ded

Q

h = 21.6 milsh = 28.8 milsh = 36 milsh = 43.2 mils

High-Q LTCC resonator

Page 22: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

2. Meander-line stripline resonator2. Meander-line stripline resonator

Top and bottom ground planes are removed

Meander lineShielding Measurement port

High-Q LTCC resonator

Page 23: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

12 mils50 mils

50 mils

50 mils

280 mils

292 mils

50 mils

50 mils132 mils

561 mils

12 mils

High-Q LTCC resonator

Page 24: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline versus Meander-line – resonant frequencyStripline versus Meander-line – resonant frequency

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

12 14 16 18 20 22 24 26Line width (mils)

Res

onan

t fre

quen

cy (G

Hz)

meander-line stripline

Stripline

High-Q LTCC resonator

Page 25: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline versus Meander-line – unloaded QStripline versus Meander-line – unloaded Q

140

145

150

155

160

165

170

12 14 16 18 20 22 24 26Line width (mils)

Res

onat

or u

nloa

ded

Q

meander-line stripline

Stripline

High-Q LTCC resonator

Page 26: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Top and bottom ground planes are removed

Bi-metal-layer stripline

Shielding

Measurement port

3. Bi-metal-layer stripline resonator3. Bi-metal-layer stripline resonator

Bi-metal layer stripline

Ground planes

Vias sidewall

High-Q LTCC resonator

Page 27: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline versus Bi-metal-layer stripline – resonant frequencyStripline versus Bi-metal-layer stripline – resonant frequency

2.14

2.16

2.18

2.2

2.22

2.24

2.26

2.28

8 10 12 14 16 18 20 22 24 26

Line width (mils)

Res

onan

t fre

quen

cy (G

Hz)

Stripline

Bi-metal layer

High-Q LTCC resonator

Page 28: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Stripline versus Bi-metal-layer stripline – unloaded QStripline versus Bi-metal-layer stripline – unloaded Q

120

130

140

150

160

170

180

8 10 12 14 16 18 20 22 24 26Line width (mils)

Res

onat

or u

nloa

ded

Q

Stripline

Bi-metal layer

High-Q LTCC resonator

Page 29: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

LTCC element realization: Resonator designLTCC element realization: Resonator design

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-50

0

50

-100

100

freq, GHz

phas

e(Z

(1,1

))ph

ase(

Z(2

,2))

2.05 2.10 2.15 2.20 2.25 2.30 2.352.00 2.40

-50

0

50

-100

100

freq, GHz

phas

e(Z

(1,1

))ph

ase(

Z(2

,2))

self-resonant frequency 2.052 GHzunloaded Q = 90.3144self-resonant frequency 2.052 GHzunloaded Q = 90.3144

High-Q LTCC resonator

Page 30: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

LTCC layout integration and VCO simulationLTCC layout integration and VCO simulation

ResonatorResonator

Output filterOutput filter

Output portOutput port

C2 and CfnetworkC2 and Cfnetwork

CbCbTop-partTop-part

Bottom-partBottom-part

LTCC VCO design

Page 31: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Vc

Vb

Ve

VeVe

Vout

Vmain

pb_hp_HBFP0450_19980529Q5

DC_BlockDC_Block8

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctaves=2Z=1.1 OhmV=

DC_BlockDC_Block10

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

RR2R=3.6 kOhm

RR3R=3.6 kOhm

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

DC_BlockDC_Block11

DC_BlockDC_Block12

RR1R=50 Ohm

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

di_sms_bb833_19930908D1 V_DC

SRC2Vdc=Vin V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

S6PSNP5File="D:\tonytemp\Thesis_sim\vco\VCOtest05_3646ce_3646cbe_3666cres_matching1_new.sp"

1 5

4

6

3 Re f2

DC_BlockDC_Block7

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

RR7R=68 Ohm

V_DCSRC1Vdc=3 V

Vc

Vb

Ve

VeVe

Vout

Vmain

pb_hp_HBFP0450_19980529Q5

DC_BlockDC_Block8

OscPortOsc1

MaxLoopGainStep=FundIndex=1Steps=10NumOctaves=2Z=1.1 OhmV=

DC_BlockDC_Block10

mb_mrt_LQG_11A_19970328L35PART_NUM=LQG11A27NJ00 27nH

RR2R=3.6 kOhm

RR3R=3.6 kOhm

mb_mrt_LQG_11A_19970328L28PART_NUM=LQG11A27NJ00 27nH

DC_BlockDC_Block11

DC_BlockDC_Block12

RR1R=50 Ohm

mb_mrt_GRM_39_19950721C50PART_NUM=GRM39C0G040C50 4.0pF

di_sms_bb833_19930908D1 V_DC

SRC2Vdc=Vin V

mb_mrt_LQG_11A_19970328L36PART_NUM=LQG11A27NJ00 27nH

S6PSNP5File="D:\tonytemp\Thesis_sim\vco\VCOtest05_3646ce_3646cbe_3666cres_matching1_new.sp"

1 5

4

6

3 Re f2

DC_BlockDC_Block7

mb_mrt_LQG_11A_19970328L32PART_NUM=LQG11A27NJ00 27nH

RR7R=68 Ohm

V_DCSRC1Vdc=3 V

LTCC VCO design

Design verificationDesign verification

Page 32: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

m3noisefreq=1.000kHzVin=2.700000pnfm=-88.639

m4noisefreq=10.00kHzVin=3.000000pnfm=-108.598

m5noisefreq=100.0kHzVin=3.000000pnfm=-128.598

m6noisefreq=1.000MHzVin=3.000000pnfm=-148.598

1E4 1E5 1E61E3 1E7

-160

-140

-120

-100

-80

-180

-60

noisefreq, Hzpn

fm, d

Bc

m3

m4

m5

m6

m3noisefreq=1.000kHzVin=2.700000pnfm=-88.639

m4noisefreq=10.00kHzVin=3.000000pnfm=-108.598

m5noisefreq=100.0kHzVin=3.000000pnfm=-128.598

m6noisefreq=1.000MHzVin=3.000000pnfm=-148.598

1E4 1E5 1E61E3 1E7

-160

-140

-120

-100

-80

-180

-60

noisefreq, Hzpn

fm, d

Bc

m3

m4

m5

m6

0.5 1.0 1.5 2.0 2.50.0 3.0

2.18

2.20

2.22

2.24

2.26

2.16

2.28

HB.Vin

HB

.freq

[::,

1], G

Hz

0.5 1.0 1.5 2.0 2.50.0 3.0

2.18

2.20

2.22

2.24

2.26

2.16

2.28

HB.Vin

HB

.freq

[::,

1], G

Hz

0.5 1.0 1.5 2.0 2.50.0 3.0

-4

-3

-2

-5

-1

HB.Vin

dBm

(HB

.Vou

t[::,1

])

0.5 1.0 1.5 2.0 2.50.0 3.0

-4

-3

-2

-5

-1

HB.Vin

dBm

(HB

.Vou

t[::,1

])LTCC VCO design

Page 33: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Circuit layout

LTCC VCO design

Page 34: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Measurement setupMeasurement setup

Network analyzerNetwork analyzer

Measurement control unitMeasurement control unit Probe stationProbe station

Experimental resultExperimental result

LTCC VCO design

Page 35: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

Biasing resistorBiasing resistor

BJT HBFP0450BJT HBFP0450

Varactor BB833Varactor BB833RFCRFC

DC blockDC block

GNDGND

VccVcc

VctrlVctrl

Output portOutput port

VCO measurement setup and resultVCO measurement setup and result

VCO analyzerVCO analyzer

LTCC VCO design

Page 36: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

-70

-60

-50

-40

-30

-20

-10

0

10

2 2.4375 2.875 3.3125 3.75 4.1875 4.625 5.0625 5.5

Oscillation frequency (GHz)

Out

put p

ower

(dB

m)

-70

-60

-50

-40

-30

-20

-10

0

10

2 2.4375 2.875 3.3125 3.75 4.1875 4.625 5.0625 5.5

Oscillation frequency (GHz)

Out

put p

ower

(dB

m)

0 dBm0 dBm

-50.37 dBm-50.37 dBm

Output spectrumOutput spectrum

2.3592GHz @ Vin = 3V2.3592GHz @ Vin = 3V

-80.00

-60.00

-40.00

-20.00

0.00

20.00

2.3587 2.3589 2.3591 2.3593 2.3595 2.3597 2.3599

Oscillation frequency (GHz)

Out

put p

ower

(dB

m)

-80.00

-60.00

-40.00

-20.00

0.00

20.00

2.3587 2.3589 2.3591 2.3593 2.3595 2.3597 2.3599

Oscillation frequency (GHz)

Out

put p

ower

(dB

m)

LTCC VCO design

Page 37: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

2.28

2.29

2.3

2.31

2.32

2.33

2.34

2.35

2.36

2.37

0 0.5 1 1.5 2 2.5 3

Control voltage (V)

Osc

illat

ion

freq

uenc

y (G

Hz)

2.28

2.29

2.3

2.31

2.32

2.33

2.34

2.35

2.36

2.37

0 0.5 1 1.5 2 2.5 3

Control voltage (V)

Osc

illat

ion

freq

uenc

y (G

Hz)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

Control voltage (V)

Out

put p

ower

(dB

m)

-8

-7

-6

-5

-4

-3

-2

-1

0

0 0.5 1 1.5 2 2.5 3

Control voltage (V)

Out

put p

ower

(dB

m)

VCO tuning characteristicsVCO tuning characteristics

LTCC VCO design

Page 38: LTCC VCO Design Study

The Chinese University of Hong KongDepartment of Electronic Engineering

Ke-Li Wu (www.ee.cuhk.edu.hk/~klwu)

-160

-140

-120

-100

-80

-60

-40

1 10 100 1000 10000

Offset frequency (kHz)

Phas

e no

ise

(dB

c/H

z)

-160

-140

-120

-100

-80

-60

-40

1 10 100 1000 10000

Offset frequency (kHz)

Phas

e no

ise

(dB

c/H

z)

-120.86 dBc/Hz-120.86 dBc/Hz

Phase noise performancePhase noise performance

LTCC VCO design


Recommended