+ All Categories
Home > Documents > Macroscopic Interferometry - MIT Media Labachoo/macro/Macro_CVPR_SLIDES.pdfAchuta Kadambi MIT Media...

Macroscopic Interferometry - MIT Media Labachoo/macro/Macro_CVPR_SLIDES.pdfAchuta Kadambi MIT Media...

Date post: 06-Feb-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
60
Achuta Kadambi MIT Media Lab 2 Macroscopic Interferometry Achuta Kadambi, MIT Media Lab Joint work with Jamie Schiel and Ramesh Raskar
Transcript
  • Achuta Kadambi

    MIT Media Lab

    2

    Macroscopic InterferometryAchuta Kadambi, MIT Media Lab

    Joint work with Jamie Schiel and Ramesh Raskar

  • Achuta Kadambi

    MIT Media Lab

    3

    Computer Vision/Graphics

  • Achuta Kadambi

    MIT Media Lab

    4

    Computer Vision/Graphics Real-Life

    Electric field only shown

    700 nanometer wavelength

  • Achuta Kadambi

    MIT Media Lab

    5

    Computer Vision/Graphics Real-Life

    Electric field only shown

    700 nanometer wavelength

    Microscopic wave phenomena Macro scenes

  • Achuta Kadambi

    MIT Media Lab

    6

    Multi-depth 3D Camera

  • Achuta Kadambi

    MIT Media Lab

    7

    Multi-depth 3D Camera

    10 meter scene

  • Achuta Kadambi

    MIT Media Lab

    8

    Multi-depth 3D Camera

    10 meter scene

    Performance competitive low SNR

  • Achuta Kadambi

    MIT Media Lab

    9

    Previous Work

    ICCV15: Uses wave phenomena of polarization to enhance 3D shape

    Kadambi et al. ICCV 2015

  • Achuta Kadambi

    MIT Media Lab

    10

    Previous Work

    ICCV15: Uses wave phenomena of polarization to enhance 3D shape

    Today: Use wave phenomena to create multi-depth 3D

    Kadambi et al. ICCV 2015

  • Achuta Kadambi

    MIT Media Lab

    11

    Scene

    A

    BA

    B

  • Achuta Kadambi

    MIT Media Lab

    12

    Scene

    A

    BA

    B

    AI I

  • Achuta Kadambi

    MIT Media Lab

    13

    Scene

    A

    BA

    B

    BI I

  • Achuta Kadambi

    MIT Media Lab

    14

    Scene

    A

    BA

    B

  • Achuta Kadambi

    MIT Media Lab

    15

    Scene

    A

    BA

    B

    A BI I I

  • Achuta Kadambi

    MIT Media Lab

    16

    Scene

    A

    BA

    B

  • Achuta Kadambi

    MIT Media Lab

    17

    Scene

    A

    BA

    B

    Interference Term

    co2 sA B A BI II I I

  • Achuta Kadambi

    MIT Media Lab

    18

    Scene

    A

    BA

    B

    Coherent Source

    Interference graphic from sciencetalenter.dk

    Interference Term

    co2 sA B A BI II I I

  • Achuta Kadambi

    MIT Media Lab

    19

    InterferometryIntentionally superimposing light to get scene clues

    Figure from ligo.Caltech.edu

  • Achuta Kadambi

    MIT Media Lab

    20

    Interferometry uses a reference to probe the scene

    Reference Signal

    Sample

    Signal

    Phase Delay

  • Achuta Kadambi

    MIT Media Lab

    21

    Tiny Wavelength Good for Microscopic Scenes

    Reference Signal

    Sample

    Signal

    Phase Delay

    700 nanometer wavelength

  • Achuta Kadambi

    MIT Media Lab

    22

    Tiny Wavelength Good for Microscopic Scenes

    Reference Signal

    Sample

    Signal

    Phase Delay

    700 nanometer wavelength

    Corneal OCT

    Corneal OCT from Carl Zeiss Visante ®

  • Achuta Kadambi

    MIT Media Lab

    23

    Tiny Wavelength Good for Microscopic Scenes

    Reference Signal

    Sample

    Signal

    Phase Delay

    700 nanometer wavelength

    Corneal OCT

    Corneal OCT from Carl Zeiss Visante ®

  • Achuta Kadambi

    MIT Media Lab

    24

    Smaller the measurement ..

    LIGO Project to Detect Grav Waves

    Measure sample deviations less than the size of a proton

  • Achuta Kadambi

    MIT Media Lab

    25

    Smaller the measurement .. Bigger the instrument

    LIGO Project to Detect Grav Waves

    Measure sample deviations less than the size of a proton

    .. But kilometers in size

  • Achuta Kadambi

    MIT Media Lab

    26

    Vision goal: small device, large scene

  • Achuta Kadambi

    MIT Media Lab

    27

    Vision goal: small device, large scene

    700 nanometer wavelength

    Optical Phase

  • Achuta Kadambi

    MIT Media Lab

    28

    Vision goal: small device, large scene

    700 nanometer wavelength

    Optical Phase Electronic Phase

    Kinect uses electronic phase

  • Achuta Kadambi

    MIT Media Lab

    29

    Terminology

    Primal-Domain: Original Frame a Signal is Sampled In

    Dual-Domain: Frequency transform with respect to Primal

    Phase ToF: existing Kinect-style ToF cameras

  • Achuta Kadambi

    MIT Media Lab

    30

    Phase ToF (Kinect)

  • Achuta Kadambi

    MIT Media Lab

    31

    Phase ToF (Kinect)

    2 Mz

    c

    f

  • Achuta Kadambi

    MIT Media Lab

    32

    How the Phase ToF (Kinect) Works

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1Signal One and Signal Two

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10x 10

    7 Fourier Transform of Cross Correlation Function dt = 0.0001;

    N = 20000;

    t = 0:dt:(N-1)*dt;

    phi1 = pi/3; phi2 = 0;

    s1 = sin(2*pi*1*t + phi1);

    s2 = sin(2*pi*1*t+ phi2);

    xcFFT = conj( fft(s1) ) .*

    fft(s2);

    [~, fundamental_idx] =

    max(xcFFT);

    phase_difference = angle(

    xcFFT(fundamental_idx) );

  • Achuta Kadambi

    MIT Media Lab

    33

    Block Diagram of Phase ToF

    cos M ts t f

    cos Mr t f t

    Primal-domain is \tau

    For clarity, all constants removed

    Phase ToF Refer.

    Phase ToF Sample

  • Achuta Kadambi

    MIT Media Lab

    34

    Block Diagram of Phase ToF

    Phase ToF Refer.

    cos M ts t f

    cos Mr t f t

    For clarity, all constants removed

    cos Mc f

    Phase ToF Xcorr

    Phase ToF Sample

  • Achuta Kadambi

    MIT Media Lab

    35

    Compute FFT wrt.

    & Take angle of fundam.

    Block Diagram of Phase ToF

    Phase ToF Refer.

    Phase ToF Sample

    cos M ts t f

    cos Mr t f t

    Primal-domain is \tau

    For clarity, all constants removed

    cos Mc f

    Phase ToF Xcorr

  • Achuta Kadambi

    MIT Media Lab

    36

    Problems with Phase ToF

    Reflections of two or more sine waves come back and mix

    Multipath Interference

    Phase Wrapping

    Phase is periodic – long-range depths will wrap

    Low SNR

    Calculating phase requires multiple steps (prop. of errors)

  • Achuta Kadambi

    MIT Media Lab

    37

    Computational ToF Imaging

    By count of recent papers, appears to be a hot area in comp. photo

    [Heide and Hullin et al. 2013]

    [Godbaz et al. 2008]

    [Kadambi et al. 2013]

    [Bhandari et al. 2014]

    [Jayasuriya et al. 2015]

    [Gkioulekas et al. 2015]

    Find more details at ICCV 2015 course:

    www.media.mit.edu/~achoo/iccvtoftutorial/

    [Su et al. 2016] -- @ Wed AM posters

    [Shreshtha et al. 2016] -- @ next month’s SIGGRAPH

    [Tsai et al. 2016]

  • Achuta Kadambi

    MIT Media Lab

    38

    Computational ToF Imaging

    By count of recent papers, appears to be a hot area in comp. photo

    [Heide and Hullin et al. 2013]

    [Godbaz et al. 2008]

    [Kadambi et al. 2013]

    [Bhandari et al. 2014]

    [Jayasuriya et al. 2015]

    [Gkioulekas et al. 2015]

    Find more details at ICCV 2015 course:

    www.media.mit.edu/~achoo/iccvtoftutorial/

    [Su et al. 2016] -- @ Wed AM posters

    [Shreshtha et al. 2016] -- @ next month’s SIGGRAPH

    [Tsai et al. 2016]

    Our Contribution: change primal-domain

  • Achuta Kadambi

    MIT Media Lab

    39

    Changing the Primal Domain

    Compute FFT wrt.

    Primal-domain is \tau

    For clarity, all constants removed

    cos Mc f

    Phase ToF Xcorr

    Phase ToF Refer.

    Phase ToF Sample

    cos M ts t f

    cos Mr t f t

  • Achuta Kadambi

    MIT Media Lab

    40

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

  • Achuta Kadambi

    MIT Media Lab

    41

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

  • Achuta Kadambi

    MIT Media Lab

    42

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

  • Achuta Kadambi

    MIT Media Lab

    43

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

  • Achuta Kadambi

    MIT Media Lab

    44

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

    , cos2

    M M M

    zc f

    cff

  • Achuta Kadambi

    MIT Media Lab

    45

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

    , cos2

    M M M

    zc f

    cff

    2

    00, cosM M Mz

    c ff fc

  • Achuta Kadambi

    MIT Media Lab

    46

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

    , cos2

    M M M

    zc f

    cff

    cos2

    M M

    zc f f

    c

    2

    00, cosM M Mz

    c ff fc

  • Achuta Kadambi

    MIT Media Lab

    47

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

    , cos2

    M M M

    zc f

    cff

    cos2

    M M

    zc f f

    c

    2

    00, cosM M Mz

    c ff fc

    Frequency ToF Xcorr

  • Achuta Kadambi

    MIT Media Lab

    48

    Changing the Primal Domain

    cos Mc f

    Phase ToF Xcorr

    For clarity, all constants removed

    2 Mz

    c

    f

    cos2

    M Mc ffc

    z

    , cos2

    M M M

    zc f

    cff

    cos2

    M M

    zc f f

    c

    2

    00, cosM M Mz

    c ff fc

    Primal-domain is f_M

    Dual-domain corresponds

    to pathlength.

    Frequency ToF Xcorr

  • Achuta Kadambi

    MIT Media Lab

    49

  • Achuta Kadambi

    MIT Media Lab

    50

  • Achuta Kadambi

    MIT Media Lab

    51

    Macroscopic Scenes

  • Achuta Kadambi

    MIT Media Lab

    52

    Macroscopic Scenes

  • Achuta Kadambi

    MIT Media Lab

    53

    Macroscopic Scenes

  • Achuta Kadambi

    MIT Media Lab

    54

    Multi-depth 3D Camera

    Need only 4 frequencies to recover both reflections

  • Achuta Kadambi

    MIT Media Lab

    55

    Multi-depth 3D Camera

    Need only 4 frequencies to recover both reflections

  • Achuta Kadambi

    MIT Media Lab

    56

    Multi-depth 3D Camera

    Need only 4 frequencies to recover both reflections

  • Achuta Kadambi

    MIT Media Lab

    57

    Resolving Multipath Interference

    Scene

  • Achuta Kadambi

    MIT Media Lab

    58

    How close can the reflections be?

  • Achuta Kadambi

    MIT Media Lab

    59

    How close can the reflections be?

  • Achuta Kadambi

    MIT Media Lab

    60

    Analyzing multipath estimation in low SNR

  • Achuta Kadambi

    MIT Media Lab

    61

    Conclusion

    Formalize link between ToF cameras and optical interferometry

    Changed primal-domain for multi-depth, low SNR, long-range 3D

    [email protected]/~achoo

    Collaborators

    Jamie SchielRamesh Raskar

    Acknowledgements:

    Ayush BhandariSuren JayasuriyaVage Taamazyan

    mailto:[email protected]

Recommended