+ All Categories
Home > Documents > Modeling of isotropic and anisotropic magnetic molecules

Modeling of isotropic and anisotropic magnetic molecules

Date post: 10-Apr-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
33
Modeling of isotropic and anisotropic magnetic molecules urgen Schnack Department of Physics – University of Bielefeld – Germany http://obelix.physik.uni-bielefeld.de/schnack/ Seminar Aachen, October 30th, 2009 unilogo-m-rot.jpg
Transcript
Page 1: Modeling of isotropic and anisotropic magnetic molecules

Modeling of isotropic and anisotropicmagnetic molecules

Jurgen Schnack

Department of Physics – University of Bielefeld – Germany

http://obelix.physik.uni-bielefeld.de/∼schnack/

SeminarAachen, October 30th, 2009

unilogo-m-rot.jpg

Page 2: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Collaboration

Many thanks to my collaborators worldwide

• T. Englisch, T. Glaser, M. Hock, S. Leiding, A. Muller, R. Schnalle, Chr. Schroder,J. Ummethum (Bielefeld)

• K. Barwinkel, H.-J. Schmidt, M. Neumann (Osnabruck);

• M. Luban, D. Vaknin (Ames Lab, USA); P. Kogerler (Aachen, Julich, Ames)J. Musfeld (U. of Tennessee, USA); N. Dalal (Florida State, USA);R.E.P. Winpenny, E.J.L. McInnes (Man U, UK); L. Cronin (Glasgow, UK);J. van Slageren (Nottingham);H. Nojiri (Sendai, Japan); A. Postnikov (Metz, France)

• J. Richter, J. Schulenburg (Magdeburg); S. Blugel (FZ Julich); A. Honecker(Gottingen); U. Kortz (Bremen); A. Tennant, B. Lake (HMI Berlin); B. Buchner,V. Kataev, R. Klingeler, H.-H. Klauß (Dresden); P. Chaudhuri (Muhlheim);J. Wosnitza (Dresden-Rossendorf)

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 1/32

Page 3: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Contents for you today

Contents for you today

V4

1. Introduction

2. Isotropic molecules: ITO & point group

3. Anisotropic molecules

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 2/32

Page 4: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Introduction

Introduction

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 3/32

Page 5: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ The beauty of magnetic molecules I

The beauty of magnetic molecules I

Mn12

• Inorganic or organic macro molecules, whereparamagnetic ions such as Iron (Fe), Chromium(Cr), Copper (Cu), Nickel (Ni), Vanadium (V),Manganese (Mn), or rare earth ions are embed-ded in a host matrix;

• Pure organic magnetic molecules: magnetic cou-pling between high spin units (e.g. free radicals);

• Speculative applications: magnetic storage de-vices, magnets in biological systems, light-induced nano switches, displays, catalysts,transparent magnets, qubits for quantum com-puters.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 4/32

Page 6: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ The beauty of magnetic molecules II

The beauty of magnetic molecules II

• Dimers (Fe2), tetrahedra (Cr4), cubes (Cr8);

• Rings, especially iron and chromium rings

• Complex structures (Mn12) – drosophila ofmolecular magnetism;

• “Soccer balls”, more precisely icosidodecahedra(Fe30) and other macro molecules;

• Chain like and planar structures of interlinkedmagnetic molecules, e.g. triangular Cu chain:

J. Schnack, H. Nojiri, P. Kogerler, G. J. T. Cooper, L. Cronin, Phys. Rev.B 70, 174420 (2004); Sato, Sakai, Lauchli, Mila, . . .

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 5/32

Page 7: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ The beauty of magnetic molecules III

The beauty of magnetic molecules III

Energy

Orientation

Anisotropybarrier

Magnetization

Field

• Single Molecule Magnets (SMM): magneticmolecules with large ground state moment;e.g. S = 10 for Mn12 or Fe8

• Anisotropy barrier dominates behavior(as in your hard drive);

• Single molecule is a magnet and showsmetastable magnetization and hysteresis;but also magnetization tunneling.

• Today’s major efforts: improve stability ofmagnetization; rational design; investigate onsurfaces.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 6/32

Page 8: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Model Hamiltonian

Model Hamiltonian (spin only)

H∼ =∑i,j

~s∼(i) · Jij ·~s∼(j) +∑i,j

~Dij ·[~s∼(i)×~s∼(j)

]+ µB

~BN∑i

gi~s∼(i)

Exchange/Anisotropy Dzyaloshinskii-Moriya Zeeman

Isotropic Hamiltonian

H∼ = −∑i,j

Jij~s∼(i) ·~s∼(j) + g µB BN∑i

s∼z(i)

Heisenberg Zeeman

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 7/32

Page 9: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Thank God, we have computers

Thank God, we have computers

“cell professor”

128 cores, 384 GB RAM

. . . but that’s not enough!

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 8/32

Page 10: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Isotropic magnetic molecules

Isotropicmagnetic molecules

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 9/32

Page 11: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Advanced ITO & Point Groups I

Advanced ITO & Point Groups I

Group theory for highly symmetric molecules:

• H∼ = −∑

i,j Jij ~s∼i · ~s∼j + gµB~S∼ ·

~B ;

•[H∼ , ~S∼

2]

= 0,[H∼ , S∼z

]= 0;

• Irreducible Tensor Operator (ITO) approach,MAGPACK (1);

• Additional point group symmetries (2).

(1) D. Gatteschi and L. Pardi, Gazz. Chim. Ital. 123, 231 (1993); J. J. Borras-Almenar, J. M. Clemente-Juan, E.Coronado, and B. S. Tsukerblat, Inorg. Chem. 38, 6081 (1999).(2) O. Waldmann, Phys. Rev. B 61, 6138 (2000); V. E. Sinitsyn, I. G. Bostrem, and A. S. Ovchinnikov,J. Phys. A-Math. Theor. 40, 645 (2007); R. Schnalle and J. Schnack, Phys. Rev. B 79, 104419 (2009).

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 10/32

Page 12: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Reminder ITO

Reminder ITO

H∼Heisenberg =√

3∑i,j

Jij T∼(0)({ki}, {ki}|ki = kj = 1)

Irreducible Tensor Operator approach

• Express spin operators and functions thereof as ITOs;

• Use vector coupling basis |α S M 〉 and recursive recoupling;

• Numerical implementation e.g. MAGPACK.

(1) Gatteschi, Tsukerblat, Coronado, Waldmann, . . .(2) R. Schnalle, Ph.D. thesis, Osnabruck University (2009)

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 11/32

Page 13: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Advanced ITO & Point Groups II

Advanced ITO & Point Groups II

P(n) |α S M 〉 =

(lnh

∑R

(χ(n)(R)

)∗G∼(R)

)|α S M 〉

Point Group Symmetry

• Projection on irreducible representations (Wigner);

• Basis function generating machine;

• Orthonormalization necessary.

(1) O. Waldmann, Phys. Rev. B 61, 6138 (2000).(2) R. Schnalle, Ph.D. thesis, Osnabruck University (2009)

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 12/32

Page 14: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Advanced ITO & Point Groups III

Advanced ITO & Point Groups III

G∼(R) |α S M 〉a =∑α′

|α′ S M 〉a a〈α′ S M |α S M 〉b

Serious problem: Recoupling

• So far: only point groups that are compatible with the coupling scheme are used(1);

• Problem: otherwise complicated basis transformation between differentcoupling schemes;

• Solution: implementation of graph-theoretical results to evaluate recouplingcoefficients a〈α′ S M |α S M 〉b (2).

(1) O. Waldmann, Phys. Rev. B 61, 6138 (2000).(2) R. Schnalle, Ph.D. thesis, Osnabruck University (2009)

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 13/32

Page 15: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Advanced ITO & Point Groups IV

Advanced ITO & Point Groups IV

0 1 2 3S

-36

-35

-34

-33

-32

-31

E/|J

|

A1gA2gEgT1gT2gA1uA2uEuT1uT2u

Cuboctahedron, s = 3/2, Hilbert space dimension 16,777,216; symmetry Oh (1).Evaluation of recoupling coefficients very time consuming. (1,2)

(1) J. Schnack and R. Schnalle, Polyhedron 28, 1620 (2009);(2) R. Schnalle and J. Schnack, Phys. Rev. B 79, 104419 (2009).

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 14/32

Page 16: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Summary – Isotropic molecules

Summary – Isotropic molecules

! • Combined use of SU(2) and point group symmetries possible.

• Numerical effort for recoupling coefficients enormous.

• Representation with smaller matrices.

• Further insight: spectroscopic labeling, selection rules fortransitions.

• Works also for frustrated molecules, where QMC does notconverge.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 15/32

Page 17: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Anisotropic magnetic molecules

Anisotropicmagnetic molecules

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 16/32

Page 18: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Getting eigenvalues

Getting eigenvalues

H∼ (~B) = −∑i,j

Jij~s∼(i) ·~s∼(j) +∑

i

di

(~ei ·~s∼(i)

)2

+ µB~B ·

∑i

gi ·~s∼(i)

•[H∼ , ~S∼

2]6= 0,

[H∼ , S∼z

]6= 0; ⇒ MAGPACK does not work!

• You have to diagonalize H∼ (~B) for every field (direction and strength)!

• If you are lucky, point group symmetries still exist. Use them!

(1) J. Schnack, Condens. Matter Phys. 12, 323 (2009);

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 17/32

Page 19: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ How to obtain the magnetization?

How to obtain the magnetization?

Numerical differentiation

• For each field ~B you evaluate the energy eigenvalues TWICE:Mν(~B) = −

(Eν(~B(1 + ε))− Eν(~B)

)/(εB)

• Numerical differentiation is a serious mathematical subject – good accuracyrequires fine-tuning.

Using eigenvectors of H∼ (~B)

• Evaluate the energy eigenvectors: greater numerical effort, for INS anywaynecessary;

• For each ~B, evaluate and store Eν and ~Mν(~B) = µB〈 ν |∑N

i gi ·~s∼(i) | ν 〉.

• Accurate, but time consuming (eigenvectors!).

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 18/32

Page 20: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Orientational average for powder samples

Orientational average for powder samples

• If you have a single crystal, doze off for the restof my talk.

• Average over x-, y-, and z-direction: poor;

• Average over random directions: large fluctua-tions;

• Use Lebedev-Laikov grids: The parameters en-sure that angular integration of polynomials xk ·yl · zm, where k + l + m ≤ 131 can be performedwith a relative accuracy of 2 · 10−14.

• I am using LLG with 50 (25) orientations.

V. I. Lebedev and D. N. Laikov, Dokl. Akad. Nauk 366, 741 (1999); and link to program on www.molmag.de

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 19/32

Page 21: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Mn3Cr I

Mn3Cr I

Mn

MnMn

C3

eCr

Mn3Cr:

• Assume C3 symmetry;

• Two couplings: J1 to central Cr, J2 between Mn;

• Model Mn anisotropy by local axis~e(ϑ, φ).Due to C3 symmetry ϑMn1 = ϑMn2 = ϑMn3.Only relative φ = 120◦ determined.

• Model Cr anisotropy by local axis~e(ϑ, φ).Due to C3 symmetry ϑCr = 0, φCr = 0.

• Mn: s=5/2, g=2.0; Cr: s=3/2, g=1.95

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 20/32

Page 22: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Mn3Cr II – Results

Mn3Cr II – Results

Result: J1 = −0.29 cm−1, J2 = −0.07 cm−1,dMn = −1.05 cm−1, ϑMn = 15◦, dCr = +0.40 cm−1.

M. Prinz, K. Kuepper, C. Taubitz, M. Raekers, B. Biswas, T. Weyhermuller, M. Uhlarz, J. Wosnitza, J. Schnack,A. V. Postnikov, C. Schroder, S. J. George, M. Neumann, P. Chaudhuri, Inorg. Chem., still struggling with the referees.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 21/32

Page 23: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Mn3Cr III

Mn3Cr III – Angular averaging

For a good fit you need several directions, at least 10.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 22/32

Page 24: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Mn6Fe I

Mn6Fe I

• Rational design of strict C3 symmetry of localeasy axes (Thorsten Glaser): e.g. Mn6Cr (1),Mn6Fe (2)

• Mn6Fe: J1 between Mn in caps, J2 to cen-tral Fe; Mn anisotropy modeled by local axis~e(ϑ, φ) with ϑMn1 = ϑMn2 = ϑMn3 = 36.5◦.Only relative φ = 120◦ determined.

• Mn: s=2, g=1.98; Fe: s=1/2, g-tensor.

(1) T. Glaser, M. Heidemeier, T. Weyhermuller, R. D. Hoffmann, H. Rupp, P. Muller,Angew. Chem.-Int. Edit. 45, 6033 (2006).(2) T. Glaser, M. Heidemeier, E. Krickemeyer, H. Bogge, A. Stammler, R. Frohlich, E. Bill, J. Schnack,Inorg. Chem. 48, 607 (2009).

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 23/32

Page 25: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Mn6Fe II – Results

Mn6Fe II – Results

T. Glaser, M. Heidemeier, E. Krickemeyer, H. Bogge, A. Stammler, R. Frohlich, E. Bill, J. Schnack,Inorg. Chem. 48, 607 (2009).

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 24/32

Page 26: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ V4 I

V4 I

C3

eJ

JV

1

2

[VIII4 Cl6(thme) 2(bipy) 3]

• 4 VIII4 ions with s = 1; approximate C3 symmetry;

• 2 exchange interactions;

• Central V: axial anisotropy;

• Outer Vs: local anisotropy axis with azimuthalangle ϑ.

• Powder average.

Ian S. Tidmarsh, Luke J. Batchelor, Emma Scales, Rebecca H. Laye,Lorenzo Sorace, Andrea Caneschi, Jurgen Schnack and Eric J.L.McInnes, Dalton Trans. (2009) 9402

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 25/32

Page 27: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ V4 II

V4 II

Two equally good parameter sets.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 26/32

Page 28: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ V4 III

V4 III

High fields could distinguish.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 27/32

Page 29: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ V4 IV

V4 IV

Accuracy of measurement limits modeling.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 28/32

Page 30: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ V4 V

V4 – Anisotropy tensors

Cartoon of anisotropy tensors.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 29/32

Page 31: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Summary – Anisotropic molecules

Summary – Anisotropic molecules

! • It is possible to determine local anisotropy axes with ratherhigh accuracy.

• Complementary ab initio calculations on local D–tensorswould be valuable.

• Powders have to be averaged properly.

• Single crystals would probably allow to obtain the full localD–tensor, i.e. also E–terms.

• Element-selective calculations possible.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 30/32

Page 32: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ The End

Thank you very much for your attention.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 31/32

Page 33: Modeling of isotropic and anisotropic magnetic molecules

➠ ➡➡ ➠ ❐ ? ✖ Information

Molecular Magnetism Web

www.molmag.de

Highlights. Tutorials. Who is who. Conferences.

unilogo-m-rot.jpg Jurgen Schnack, Modeling of magnetic molecules 32/32


Recommended