+ All Categories
Home > Documents > MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Date post: 27-Mar-2015
Category:
Upload: patrick-hopkins
View: 230 times
Download: 2 times
Share this document with a friend
Popular Tags:
33
MOSFET Transistor Basics AVLSI Workgroup Paul Hasler
Transcript
Page 1: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Transistor Basics

AVLSI Workgroup

Paul Hasler

Page 2: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Diffusion of Charge over Barrier

Ec

Ec

Ef

Ec

A B

P(E) =

~ e-(E-Ef)/kT

1

1 + e-(E-Ef)/kT

10-4

10-3

10-2

10-1

100

-2

-1

0

1

2

3

4

5

6

7

8

Probability

Ene

rgy

(eV

)

Case I: P(E) ~ exp( - E0 /kT)

qV

E0

Case II: P(E) ~ exp( - ( E0 - qV)/kT)

Ratio of Case II to Case I = exp( V / UT )

UT = kT/q

Page 3: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

P-N Junctions

N-typeN

D

P-typeN

A

Depletion Layer or Region

ChargeDensity

qND

-qNA

BandDiagram

Page 4: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

P-N Junctions --- Diodes

N-typeN

D

P-typeN

A

First-Principles Model

Page 5: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

A MOSFET Transistor

Gate

Source

Drain

Source

Substrate

Gate

Drain

Page 6: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Self-Aligned Process

How do we make a basic transistor element?

We create a silicon-oxide “stencil” (or mask)

We get highly repeatable gates because the gate acts as a stencil as well

Page 7: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

CMOS Process Cross Section

n nn pp

(n-well)

all p-n junction must be reversed bias

p

CMOS Process = nFETs and pFETs are available

Page 8: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOS Transistor Operation

• Use subthreshold operation as the fundamental case

• Allows intuition across sub-VT and above-VT operation

• Sub-VT operation simplifies this 2D problem to 2 1D problems

Page 9: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Water Analogy of a MOSFET

Page 10: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Channel Current Dependence on Gate Voltage

In linear scale, we have a quadraticdependence

In log-scale, wehave an exponentialdependence

Page 11: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Channel Picture

Page 12: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOS Capacitor Picture

Page 13: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Channel Picture

Page 14: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Calculation of Drain Current

Page 15: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

No recombination 02

2

dx

ndDn

ndx

dnqDJ

l

nnqD drainsource

n

ddC

SSC

V

V

0 l varies as VG

TSC usource en /

TdC udrain en /

n = Ax + B

RGdx

ndD

dt

dnn

2

20 0 0

(qDn / l) (e-( - Vs)/UT - e-( - Vd)/UT)

eeIIuVVuVV TdgTSg / /

0

Page 16: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Current-Voltage Curves

1

/)(0

//)(0

///0

TSG

TdSTSG

TDTSTG

uVKV

uVuVKV

uVuVuKVDS

eI

eeI

eeeII

Saturation

4 TdS uV

eeIIuVVuVV TdgTSg //

0

1 //0

TSdTSg uVVuVVeeI

Page 17: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Channel Current Dependence on Gate Voltage

In linear scale, we have a quadraticdependence

In log-scale, wehave an exponentialdependence

Page 18: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Channel Current Dependence on Gate Voltage

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.910

-11

10-10

10-9

10-8

10-7

10-6

Gate voltage (V)

Dra

in c

urr

en

t (A

)

= 0.58680 Io = 1.2104fA

In linear scale, we have a quadraticdependence

In log-scale, wehave an exponentialdependence

Page 19: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Determination of Threshold Voltage

0.4 0.5 0.6 0.7 0.8 0.9 10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Gate voltage (V)

Dra

in c

urre

nt /

sub

thre

shol

d fit

VT = 0.86

Page 20: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Drain Current --- Source Voltage

0.6 0.65 0.7 0.75 0.8 0.85 0.9

10-12

10-11

10-10

10-9

10-8

10-7

Gate voltage (V)

Dra

in c

urre

nt (

A)

UT = 25.84mV

= 0.545

Page 21: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Origin of Drain Dependencies

Increasing Vd effects the drain-to-channel region:

• increases depletion width

• increases barrier height

Page 22: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Cause of DIBL

Page 23: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Drain Characteristics

Page 24: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Current versus Drain Voltage

Page 25: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Current versus Drain Voltage

Page 26: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Current versus Drain Voltage

Not flat due to Early effect (channel length modulation)

Page 27: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Current versus Drain Voltage

Not flat due to Early effect (channel length modulation)

In BJTs --- Base Modulation Effects

Page 28: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Current versus Drain Voltage

Not flat due to Early effect (channel length modulation)

Id = Id(sat) (1 + (Vd/VA) )

or

Id = Id(sat) eVd/VA

In BJTs --- Base Modulation Effects

Page 29: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Drain Induced Barrier Lowering

Data taken from a popular 1.2m MOSIS process

Data taken from a popular 2.0m MOSIS process

Page 30: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOSFET Operating Regions

End on mobilecharges in channel

End on fixedions in bulk

Field Lines fromgate charges

Below Threshold Above Threshold

Channelcurrent flows Diffusion Drift

Charge boundarycondition at source

Set by FermiDistribution

Cox((Vg-VT)-Vs)

= ln( 1 + e )((Vg - VT) - Vs)/UT

Qs = e( - Vs)/UT

Approximatesurface potential Vg ln(Qs)

(EKV modeling)

Page 31: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

MOS-Capacitor Regions

Qs = ln( 1 + e )((Vg - VT) - Vs)/UTQs = e

( - Vs)/UT

Depletion ((Vg - VT) - Vs < 0)

Qs = e ((Vg - VT) - Vs)/UT

Inversion ((Vg - VT) - Vs > 0)

Qs = ((Vg - VT) - Vs)/UT

Surface potentialmoving from depletionto inversion

Page 32: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Band-Diagram MOSFET Picture

Band-diagrampicture moving from subthreshold toabove-threshold

Conduction band bends due to electrostatic force of the electrons moving through the channel

Page 33: MOSFET Transistor Basics AVLSI Workgroup Paul Hasler.

Physics Based Models: Channels

Utilizing the physics of physical medium (Si) to efficiently implement computation

n +

p-substrate

n +

l = Channel LengthDe pl e tion Lay er

Vds

Ec

Ec

What if Hodgkin and Huxley had known / understood MOSFET transistors when developing the original modeling…..

+ -

V

Out

side

Insi

de

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

+

+ +

+ +

+ +++

+ +

+ +

+ +

GateDrainSource

E K

E Na

C

Vme m

M Na

M K

[Farquhar and Hasler, 2004]


Recommended