+ All Categories
Home > Documents > Niseem Magdy

Niseem Magdy

Date post: 11-Jan-2022
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
18
Niseem Magdy STAR Collaboration Stony Brook University [email protected]
Transcript
Page 1: Niseem Magdy

Niseem MagdySTAR Collaboration

Stony Brook University

[email protected]

Page 2: Niseem Magdy

2

Directed flow

2

The rapidity-odd directed flow v1π‘œπ‘‘π‘‘ develops

along the direction of the impact parameter

and is an odd function of pseudorapidity.

The rapidity-even directed flow v1𝑒𝑣𝑒𝑛 stems

from initial-state fluctuations acting in

concert with hydrodynamic-like expansion

Dip

ole asy

mm

etry

STAR, PRL 101 252301 (2008)

The magnitude of v1𝑒𝑣𝑒𝑛 is sensitive to:

Initial-state eccentricity & its fluctuations

Transport coefficients ( Ξ€πœ‚ 𝑠 , etc) but with less

sensitivity than for higher order harmonics.

The v1𝑒𝑣𝑒𝑛 constitutes a new set of experimental

constraints that can help to:

Differentiate between initial-state models

Pin down the temperature dependence of the

transport coefficients.

PRL 108, 252302 (2012)

Page 3: Niseem Magdy

Collected data for different systems at 𝑠𝑁𝑁 β‰ˆ 200 GeV;

Au + AuU + U Cu + Au Cu + Cu d + Au p + Au

3

STAR Detector at RHIC

TPC detector covers |πœ‚| < 1

Collected data for Au+Au at different 𝑠𝑁𝑁

Au + Au

Page 4: Niseem Magdy

Flow

𝑯𝑩𝑻

π‘«π’†π’„π’‚π’š

π‘΄π’π’Žπ’†π’π’•π’–π’Žπ‘ͺπ’π’π’”π’†π’“π’—π’‚π’•π’Šπ’π’

Diβˆ’jets

Two particle correlation function 𝐢r Ξ”πœ‘ ,

πΆπ‘Ÿ Ξ”πœ‘ = 𝑑𝑁/π‘‘Ξ”πœ‘ and 𝑣𝑛n =ΟƒΞ”πœ‘ πΆπ‘Ÿ Ξ”πœ‘ cos(𝑛 Ξ”πœ‘)

ΟƒΞ”πœ‘ πΆπ‘Ÿ Ξ”πœ‘

𝑺𝒉𝒐𝒓𝒕 βˆ’ π’“π’‚π’π’ˆπ’†π‘³π’π’π’ˆ βˆ’ π’“π’‚π’π’ˆπ’†

𝑛 > 1𝑣𝑛𝑛 = 𝑣𝑛

π‘Žπ‘£π‘›π‘ + π›Ώπ‘ β„Žπ‘œπ‘Ÿπ‘‘

𝑛 = 1𝑣11 = 𝑣1

π‘Žπ‘£1𝑏 + π›Ώπ‘™π‘œπ‘›π‘”

Non-flow

Azimuthal anisotropy measurements

Correlation

function

4

Charge

Flow

Non-flo

w

Non-flow suppression is needed

Page 5: Niseem Magdy

𝑣11 = 𝑣1π‘Žπ‘£1

𝑏 + π›Ώπ‘™π‘œπ‘›π‘” 𝑛 = 1

𝑣11 π‘π‘‡π‘Ž , 𝑝𝑇

𝑑 = 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇

π‘Ž 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇

𝑑 βˆ’ 𝐢 π‘π‘‡π‘Ž 𝑝𝑇

𝑑

Good simultaneous fit (πœ’2

𝑛𝑑𝑓~ 1.1) obtained with fit function Eq(1)

v11characteristic behavior gives a good constraint for π’—πŸπ’†π’—π’†π’ 𝐩𝐓 extraction

5

arXiv:1203.0931

arXiv:1203.3410

arXiv:1208.1874

arXiv:1208.1887

arXiv:1211.7162

1

Long range non-flow suppression

𝑣11 Eq(1) represents NxM matrix which we fit with N+1 parameters

π‘΄π’π’Žπ’†π’π’•π’–π’Ž

π‘ͺπ’π’π’”π’†π’“π’—π’‚π’•π’Šπ’

𝒏

π‘³π’π’π’ˆ βˆ’ π’“π’‚π’π’ˆπ’†

-1 0 1 2 1 2 3

v11

x10 -3Au+Au0%-5%200 GeV

(a) 0.2 < p aT < 0.6 (GeV/c)

-1 0 1 2 1 2 3

v1 1

1.0 < p aT < 1.4 (GeV/c)

(b)

-1 0 1 2 1 2 3

v1 1

p bT (GeV/c) 1.4 < p aT < 1.8 (GeV/c)

(c)

-1 0 1 2 1 2 3

v1 1

1.8 < p aT < 2.6 (GeV/c)

(d)π‘ͺ ∝ ΰ΅—πŸ < 𝒑𝑻

𝟐 >< 𝑴𝒖𝒍𝒕 >

STAR Preliminary

Page 6: Niseem Magdy

The characteristic behavior of 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 agrees with hydrodynamic

expectations.

The extracted π’—πŸπ’†π’—π’†π’ 𝒑𝑻 at 200 GeV and 0%-10% centrality

6

𝐯𝟏𝟏 𝒑𝑻𝒂, 𝒑𝑻

𝒕 = π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒂 π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒕 βˆ’ π‘ͺ 𝒑𝑻𝒂 𝒑𝑻

𝒕

πœ‚ < 1 and |Ξ”πœ‚| > 0.7Long range non-flow suppression

π‘΄π’π’Žπ’†π’π’•π’–π’Ž

π‘ͺπ’π’π’”π’†π’“π’—π’‚π’•π’Šπ’

𝒏

π‘³π’π’π’ˆ βˆ’ π’“π’‚π’π’ˆπ’†

Dipolar nature requires that 0∞ 𝑑𝑁

𝑑𝑝𝑇𝑝𝑇 𝑣1

𝑒𝑣𝑒𝑛= 0

0

0.04

0.08 0 1

2 3

veven1

pT (GeV/c)

Au+Au200 GeV0%-10%

HydroSTAR Preliminary

Hydro

E.Retinskaya , et al.

PRL 108, 252302 (2012)

Page 7: Niseem Magdy

The characteristic behavior of

𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 shows a weak centrality

dependence

The extracted π’—πŸπ’†π’—π’†π’ 𝒑𝑻 and the momentum conservation

parameter 𝐢 at 200 GeV

7

𝐯𝟏𝟏 𝒑𝑻𝒂, 𝒑𝑻

𝒕 = π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒂 π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒕 βˆ’ π‘ͺ 𝒑𝑻𝒂 𝒑𝑻

𝒕

πœ‚ < 1 and |Ξ”πœ‚| > 0.7Long range non-flow suppression

π‘΄π’π’Žπ’†π’π’•π’–π’Ž

π‘ͺπ’π’π’”π’†π’“π’—π’‚π’•π’Šπ’

𝒏

π‘³π’π’π’ˆ βˆ’ π’“π’‚π’π’ˆπ’†

STAR Preliminary

0 0 0.01

0.02

0 0.004

0.008

C

1/<Mult>

Au+Au200 GeV

The momentum conservation

parameter 𝐢 scales as < 𝑴𝒖𝒍𝒕 >βˆ’πŸ

0

0.04

0.08

0.12 0 1

2 3

veven1

pT (GeV/c)

Au+Au200 GeV

0%-10%

10%-20%

20%-30%

30%-40%

Fit to 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 data shows

𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 centrality dependent

STAR Preliminary

π‘ͺ ∝ ΰ΅—πŸ < π’‘π‘»πŸ >< 𝑴𝒖𝒍𝒕 >

Page 8: Niseem Magdy

8

Rapidity-even dipolar flow

π’—πŸπ’†π’—π’†π’ 𝐢𝑒𝑛𝑑

π’—πŸπ’†π’—π’†π’ 𝑠𝑁𝑁

π’—πŸπ’†π’—π’†π’ 𝒑𝑻

Page 9: Niseem Magdy

Similar characteristic behavior of 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 at all energies

𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 agrees with hydrodynamic calculations at 200 GeV

The extracted 𝑣1𝑒𝑣𝑒𝑛 𝑝𝑇 at all BES energies

9

πœ‚ < 1 and |Ξ”πœ‚| > 0.7Beam energy dependence of 𝑣1

𝑒𝑣𝑒𝑛

STAR Preliminary

𝐯𝟏𝟏 𝒑𝑻𝒂, 𝒑𝑻

𝒕 = π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒂 π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒕 βˆ’ π‘ͺ 𝒑𝑻𝒂 𝒑𝑻

𝒕

Hydro

E.Retinskaya , et al.

PRL 108, 252302 (2012)

0 0.1

0 1

2

veven1

(a)Au+Au200 GeV0%-10%

Hydro(h/s = 0.16)

0

0.1

0 1

2

veven1

62.4 GeV

(b)

0 0.1

0 1

2

veven1

(c)39 GeV

0 0.1

0 1

2

veven1

(d)27 GeV

0 0.1 0 1

2

19.6 GeV

(e)

0

0.1 0 1

2

pT (GeV/c)

(f)14.5 GeV

0 0.1 0 1

2

11.5 GeV

(g)

0 0.1 0 1

2

7.7 GeV

(h)

0 1 2 0 0.02

0.04 0 1 2

C

1/<Mult>

Β΄10 2

Page 10: Niseem Magdy

For different energies

𝑣1𝑒𝑣𝑒𝑛 increases as collisions become more peripheral

The extracted π’—πŸπ’†π’—π’†π’ 𝐢𝑒𝑛𝑑 and the momentum conservation parameter

at different beam energies

10

𝐯𝟏𝟏 𝒑𝑻𝒂, 𝒑𝑻

𝒕 = π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒂 π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒕 βˆ’ π‘ͺ 𝒑𝑻𝒂 𝒑𝑻

𝒕

πœ‚ < 1 and |Ξ”πœ‚| > 0.7Beam energy dependence of 𝑣1

𝑒𝑣𝑒𝑛

STAR Preliminary

0

0.01 0 0.01

0.02

0 0.01

C(Γ–sNN)

1/<Mult>

(b)

π‘ͺ ∝ ΰ΅—πŸ < π’‘π‘»πŸ >< 𝑴𝒖𝒍𝒕 >

STAR Preliminary

0

0.01

0.02

10 20

30 40

50 60

70

|v1even

|

Centrality%

(a)Au+Au

0.4 < pT < 0.7(GeV/c)

200 GeV39 GeV

19.6 GeV

𝑣1𝑒𝑣𝑒𝑛 shows a weak centrality dependence

Momentum conservation parameter 𝐢 scales as 𝑀𝑒𝑙𝑑 βˆ’1

Page 11: Niseem Magdy

|𝑣1𝑒𝑣𝑒𝑛| shows similar values to 𝑣3 at 0.4 < 𝑝𝑇 < 0.7(𝐺𝑒𝑉/𝑐)

The extracted π’—πŸπ’†π’—π’†π’ vs 𝑠𝑁𝑁 at 0%-10% centrality

11

𝐯𝟏𝟏 𝒑𝑻𝒂, 𝒑𝑻

𝒕 = π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒂 π’—πŸπ’†π’—π’†π’ 𝒑𝑻

𝒕 βˆ’ π‘ͺ 𝒑𝑻𝒂 𝒑𝑻

𝒕

πœ‚ < 1 and |Ξ”πœ‚| > 0.7Beam energy dependence of 𝑣1

𝑒𝑣𝑒𝑛

STAR Preliminary

P.BoΕΌek

PLB 717 287-290 (2012)

-0.02

-0.01 0

0.01

0.02

10 100

Γ–sNN (GeV)

vn

Au+Au0%-10%

0.4< pT < 0.7(GeV/c)

v even1v3

Ξ΅3 > Ξ΅1

𝑣3 has larger viscous effect than 𝑣1𝑒𝑣𝑒𝑛

Page 12: Niseem Magdy

12

π’—πŸπ’†π’—π’†π’ π‘πΆβ„Ž

π’—πŸπ’†π’—π’†π’ 𝒑𝑻

Rapidity-even dipolar flow

Page 13: Niseem Magdy

Au + AuU + U Cu + Au Cu + Cu d + Au p + Au

𝑣𝑛 measurements for different systems are sensitive to system shape (νœ€π‘›),

dimensionless size (𝑅𝑇) and transport coefficients Ξ·

s,ΞΆ

s, … .

π’π’π’—π’πœΊπ’

∝ βˆ’π‘¨πœΌ

𝒔𝑡π‘ͺ𝒉

βˆ’πŸ/πŸ‘

Even Harmonic π’—πŸ Odd Harmonic π’—πŸ‘A𝑑 π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’πœ‚

𝑠and π‘πΆβ„Ž

βˆ’1/3

π’—π’π’…π’“π’Šπ’—π’†π’ π’ƒπ’š

πœΊπ’ + … πœΊπŸ‘ ∝𝟏

𝑡

PRC 88, 044915 (2013)E. Shuryak and I. Zahed

𝜺𝟐 scaling is needed

Expectations Odd harmonics are system

independent

Even harmonics are system

dependent13

𝑣𝑛/βˆˆπ‘› ∝ π‘’βˆ’ 𝐴 (πœ‚π‘ π‘›2

𝑅𝑇) 𝑆 ~ 𝑅𝑇 3 ~ π‘πΆβ„Ž then 𝑅𝑇~ π‘πΆβ„Ž1/3

B.Schenke , et al.

PRC 89, 064908 (2014)

arXiv:1305.3341Roy A. Lacey, et al.

arXiv:1601.06001Roy A. Lacey, et al.

PRC 84, 034908 (2011)P. Staig and E. Shuryak.

PRC 88, 044915 (2013)E. Shuryak and I. Zahed

Acoustic ansatz

B.Schenke , et al.

PRC 89, 064908 (2014)

Page 14: Niseem Magdy

𝑣1𝑒𝑣𝑒𝑛 vs 𝑝𝑇 at different π‘πΆβ„Ž for all systems

The efficiency corrections for NCh have applied for Au+Au and U+U collisions.

Within the experimental uncertainties 𝑣1𝑒𝑣𝑒𝑛 shows similar trends and

magnitudes for all systems.

𝑣1𝑒𝑣𝑒𝑛 is system independent.

14

STAR Preliminary

𝑣1𝑒𝑣𝑒𝑛 for different systems

πœ‚ < 1 and |Ξ”πœ‚| > 0.7π’π’π’—π’πœΊπ’

∝ βˆ’π‘¨ 𝜼/𝒔 π‘πΆβ„Žβˆ’πŸ/πŸ‘

0 0.1

0 1

2

veven1Γ‘ Nch Γ± = 140 (a) 0 0.1

0 1

2

vev en

1

Γ‘ Nch Γ± = 70 (b)U+UAu+AuCu+AuCu+Cu

0 0.1

0 1

2

vev en1

Γ‘ Nch Γ± = 25 (c)U+UAu+AuCu+AuCu+Cud+Aup+Au

0 0.1

0 1

2

v3

(d) 0 0.1 0 1

2

v3

(e)

0 0.1 0 1

2

v3

(f)

0 0.2

0 1

2

v2

(g) 0 0.2 0 1

2

v2

(h)

0 0.2 0 1

2

v2

(i)

0 0.4 0 1 2 v2/e2

(j)

0 0.4 0 1 2 v2/e2

(k)pT (GeV/c)

0 0.4 0 1 2 v2/e2

(l) 0 0.1

0 1

2

veven1Γ‘ Nch Γ± = 140 (a) 0 0.1 0

1 2

veven1Γ‘ Nch Γ± = 70 (b)U+UAu+AuCu+AuCu+Cu

0 0.1 0 1

2

veven1Γ‘ Nch Γ± = 25 (c)U+UAu+AuCu+AuCu+Cud+Aup+Au

0 0.1

0 1

2

v3 (d) 0 0.1 0 1

2

v3 (e) 0 0.1 0 1

2

v3 (f)

0 0.2

0 1

2

v2 (g) 0 0.2 0 1

2

v2 (h) 0 0.2 0 1

2

v2 (i)

0 0.4 0 1 2 v2/e2 (j) 0 0.4 0 1 2 v2 /e2 (k)pT (GeV/c)

0 0.4 0 1 2 v2 /e2 (l)

0 0.1

0 1

2

veven1Γ‘ Nch Γ± = 140 (a) 0 0.1 0

1 2

veven1Γ‘ Nch Γ± = 70 (b)U+UAu+AuCu+AuCu+Cu

0 0.1 0 1

2

veven1Γ‘ Nch Γ± = 25 (c)U+UAu+AuCu+AuCu+Cud+Aup+Au

0 0.1

0 1

2

v3 (d) 0 0.1 0 1

2

v3 (e) 0 0.1 0 1

2

v3 (f)

0 0.2

0 1

2

v2 (g) 0 0.2 0 1

2

v2 (h) 0 0.2 0 1

2

v2 (i)

0 0.4 0 1 2 v2/e2 (j) 0 0.4 0 1 2 v2 /e2 (k)pT (GeV/c)

0 0.4 0 1 2 v2 /e2 (l)

0 0.1

0 1

2

veven1Γ‘ Nch Γ± = 140 (a) 0 0.1 0

1 2

veven1Γ‘ Nch Γ± = 70 (b)U+UAu+AuCu+AuCu+Cu

0 0.1 0 1

2

veven1Γ‘ Nch Γ± = 25 (c)U+UAu+AuCu+AuCu+Cud+Aup+Au

0 0.1

0 1

2

v3 (d) 0 0.1 0 1

2

v3 (e) 0 0.1 0 1

2

v3 (f)

0 0.2

0 1

2

v2 (g) 0 0.2 0 1

2

v2 (h) 0 0.2 0 1

2

v2 (i)

0 0.4 0 1 2 v2/e2 (j) 0 0.4 0 1 2 v2 /e2 (k)pT (GeV/c)

0 0.4 0 1 2 v2 /e2 (l)

𝑝T (GeV/c)

Page 15: Niseem Magdy

15

𝑣1𝑒𝑣𝑒𝑛 vs π‘πΆβ„Ž for all systems

𝒗𝒏 𝐟𝐨𝐫 𝐝𝐒𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐬𝐲𝐬𝐭𝐞𝐦𝐬

0.02

0.04

0.06

0.08

0 175

350 525

700

0.02

0.04

0.06

0.08(c)

v20.2 < pT (GeV/c) < 4

U+UAu+AuCu+AuCu+Cu

d+Aup+Au

0.01

0.02

0 175

350 525

700

Γ‘ Nch Γ±

(b)

v30.2 < pT (GeV/c) < 4

0.01

0.02

0 175

350 525

700

vn

(a)

|v even1 |

0.2 < pT (GeV/c) < 0.9

0

0.01 0 0.02

0.04

C

Γ‘ Nch Γ± -1

Momentum conservation

parameter 𝐢 scales as

NChβˆ’1for all systems

π‘πΆβ„Ž

0.02 0.04 0.06 0.08 0 175 350 525 700 0.02 0.04 0.06 0.08(c)v20.2 < pT (GeV/c) < 4 U+UAu+AuCu+AuCu+Cud+Aup+Au

0.01 0.02 0 175 350 525 700

Γ‘ Nch Γ±

(b)v30.2 < pT (GeV/c) < 4

0.01 0.02 0 175 350 525 700

vn (a)|v even1 |0.2 < pT (GeV/c) < 0.9

0 0.01 0 0.02 0.04

CΓ‘ Nch Γ± -1

STAR Preliminary

|𝑣1𝑒𝑣𝑒𝑛|

πœ‚ < 1 and |Ξ”πœ‚| > 0.7π’π’π’—π’πœΊπ’

∝ βˆ’π‘¨ 𝜼/𝒔 π‘πΆβ„Žβˆ’πŸ/πŸ‘

The efficiency corrections for NCh have applied for Au+Au and U+U collisions.

Within the experimental uncertainties 𝑣1𝑒𝑣𝑒𝑛 shows similar trends and

magnitudes for all systems.

𝑣1𝑒𝑣𝑒𝑛 is system independent.

Page 16: Niseem Magdy

16

Odd harmonics are system

independent.

Even harmonics are system

dependent with less dependence

for higher harmonics.

𝑣𝑛for large systems 𝐴 + 𝐡𝒍𝒏

π’—π’πœΊπ’

∝ βˆ’π‘¨ 𝜼/𝒔 π‘πΆβ„Žβˆ’πŸ/πŸ‘ 𝑣𝑛 vs 𝑝𝑇 at π‘πΆβ„Ž = 270

0

0.1

0

1

2

3

veven1

Γ‘ N

Ch Γ± =

270

(a)

U+

UA

u+

Au

Cu+

Au

0

0.1

0.2

0

1

2

3

v2

(b)

0

0.1

0

1

2

3

v3

(c)

0

0.05

0

1

2

3

v4

pT(G

eV

/c)

(d)

STAR Preliminary

πœ‚ < 1 and |Ξ”πœ‚| > 0.7

Page 17: Niseem Magdy

ConclusionComprehensive set of STAR measurements presented for

𝑣1𝑒𝑣𝑒𝑛(𝑝𝑇, Cent% and 𝑠𝑁𝑁) for several collision systems.

Within the experimental uncertainties, the similar trends and

magnitudes of the measured 𝑣1𝑒𝑣𝑒𝑛 for different colliding systems at

𝑠𝑁𝑁 ~ 200 𝐺𝑒𝑉 suggest a comparable viscous coefficient AΞ·

𝑠

17

For 𝐴𝑒 + 𝐴𝑒 beam energy scan 𝑣1

𝑒𝑣𝑒𝑛 shows a weak dependence on centrality and beam energy

Within the experimental uncertainties |𝑣1𝑒𝑣𝑒𝑛|( 𝑠𝑁𝑁) shows a similar

magnitude to 𝑣3 suggesting that 𝑣3 has larger viscous effect than 𝑣1𝑒𝑣𝑒𝑛

For different systems at similar multiplicity (200 𝐺𝑒𝑉) Within the experimental uncertainties 𝑣1

𝑒𝑣𝑒𝑛 shows similar trends and

magnitudes for all systems

𝑣1𝑒𝑣𝑒𝑛 is system independent.

Page 18: Niseem Magdy

18


Recommended