+ All Categories
Home > Documents > NSLS-II Alexander Goncharov - Cornell University

NSLS-II Alexander Goncharov - Cornell University

Date post: 15-Apr-2022
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
22
Themes: Metals thermal EOS and melting: Pt Simple diatomicsmolecular dissociation: H 2 ,D 2 ,N 2 ,O 2 Minerals: MgO Noble metalsthermal conductivity: Ar Challenges: Materials characterization under extreme conditions of high PT strain rate New materials synthesis under extremes including nonequilibrium conditions Time-domain experiments in diamond anvil cells Alexander Goncharov Geophysical Laboratory, Carnegie Institution of Washington New pulsed laser and Xray techniques: Pulsed laser heating Ultrafast laser pumpprobe techniques Combined Xray synchrotronpulsed laser experiments Laser driven shock compression in the DAC NSLS-II Delay Time (ns) 0 200 400 600 800 Reaction Product (arb. units) 0 20 40 60 80 100 Induction Reaction Probe
Transcript
Page 1: NSLS-II Alexander Goncharov - Cornell University

Themes:Metals thermal EOS and melting:  Pt Simple diatomics‐molecular dissociation: H2, D2, N2, O2 Minerals: MgO Noble metals‐thermal conductivity:  Ar

Challenges:Materials characterization under extreme conditions of high P‐T ‐strain rate  New materials synthesis under extremes including non‐equilibrium conditions

Time-domain experiments in diamond anvil cells

Alexander Goncharov

Geophysical Laboratory, Carnegie Institution of Washington

New pulsed laser and X‐ray techniques: Pulsed laser heating Ultrafast laser pump‐probe techniques Combined Xray synchrotron‐pulsed laser experiments Laser driven shock compression in the DAC 

NSLS-II

Delay Time (ns)0 200 400 600 800

Rea

ctio

n Pr

oduc

t (ar

b. u

nits

)

0

20

40

60

80

100 Induction Reaction

Probe

Page 2: NSLS-II Alexander Goncharov - Cornell University

D. A. DaltonV. V. StruzhkinM. SomayazuluR. J. Hemley

S. R. McWilliamsM. Mahmood

M. R. ArmstrongJ. C. Crowhurst

V. PrakapenkaI. KantorM. Rivers

LLNL

GSECARS, APS, ANL

Howard University

Acknowledgements

NSFDOE BES (EFree)DOE NNSA (CDAC)DCOAROCIW

Geophysical Laboratory

Support

Carnegie Washington DC campus

Page 3: NSLS-II Alexander Goncharov - Cornell University

Scientific challenges: bridge the gap between static and dynamic experiments  in P‐T‐strain rate conditions reached & probed 

Pressure (GPa)

10 100 1000

Tem

pera

ture

(K)

100

1000

10000Hugoniot

DAC limit

Theory

Proposed shock in DAC (sketch)

Melt lineMelt line

Hugoniotprecompressed

Jupiter isentrope

Reverberating shock

Dissociation

Orientationallydisordered

solid

Orientationallyordered solids

Fluid?

Molecular fluid

Atomic fluid?

Hydrogen

Proposed pulsed heating (sketch)

QuantumMonte Carlo

Phase diagram of hydrogen

Gap

Extreme P‐T conditions are relevant for:‐warm dense matter‐new materials synthesis‐fast chemical reactivity‐materials strength‐melting curves‐ planetary interior

Here we propose to combine static and dynamic experiments in the DAC by performing• pulsed laser heating• laser driven shock in the DAC

Page 4: NSLS-II Alexander Goncharov - Cornell University

Melting phenomena and properties of fluids at high P‐T condition

New techniques are needed to enable accurate measurements of melting phenomenaimproved laser heating techniques:

Time‐resolved X‐ray & optical techniques : diffuse peak in XRD XAS spectroscopy   elastic, optical, and vibrational properties

Shock  & static experiments disagree by 1000’s K 

Dramatic decline of melting line?!Diagnostics of melting is scarce

Problems with static methods• Instabilities (e.g., diffusion)• chemical reaction• indirect criteria and lack of positive observations

Guillaume et al., 2011

Page 5: NSLS-II Alexander Goncharov - Cornell University

Wavelength (nm)580 600 620 640 660 680

Inte

nsity

(arb

. uni

ts)

0

20

40

60

80

100Planck Fit, T=10570±190 KMeasurements

Pulsed versus continuous laser heating in the DAC

Continuous Heating

Radial distance (10-6m)0 10 20

Axia

l Dis

tanc

e (1

0-6 m

)

-4

-2

0

2

4 400 600 800 1000 1200 1400 1600

Axia

l Dis

tanc

e (1

0-6 m

)

Pulsed Heating

Radial Distance (10-6m)0 10 20

-4

-2

0

2

4 500 1000 1500 2000 2500 3000 3500 4000

Time (10-6s)

0.0 2.0 4.0 6.0 8.0 10.0

Tem

pera

ture

(K)

0

500

1000

1500

Continuous heating after turning on power

0.00 0.05 0.10

Pow

er (W

)

0

5

10

15

20

Power ramp

Time (10-6s)0.0 0.1 0.2

Tem

pera

ture

(K)

0

1000

2000

3000

4000

Pulsed heating

0.00 0.02 0.04

Pow

er (W

)

0

400

800

Temperature histories (FE calculations)

Finite element calculations, mapsPulsed laser heating: experiment

Measurements are very challenging (small volume, strong thermal radiation)Uniform in space and time heating in the DAC require longer pulses 

Page 6: NSLS-II Alexander Goncharov - Cornell University

Time‐domain experiments in laser heated DAC:thermal radiation & chemical reactivity suppression 

Pulsed heating (ns and s): we discriminate spatially and temporally (by measuring ~5‐10 s after the arrival of the heating pulse). 

Timing for pulsed heat + pulsed Raman operation:

A. F. Goncharov & J. Crowhurst (2005); Goncharov et al., 2008; Goncharov et al., 2010 

Temperature Map

Radial Distance (s)

0 5 10

Axia

l Dis

tanc

e (

s)

-2

0

2

400 600 800 1000 1200 1400 1600 1800

Coupler

T map: FE calculations 

Time (s)

5 10 15 20

Tem

pera

ture

(K)

500

1000

1500

2000

T coupler T center Laser Pulse

Intensity (arb. units)

Measurement

Page 7: NSLS-II Alexander Goncharov - Cornell University

before after

Time‐Resolved Raman Spectra of Hydrogen with double‐sided microsecond laser heating

Sample:  H2, Ir Coupler P = 10‐25 GPa

Time‐domain experiment

Timing

Raman excitation

S. R. McWilliams

Raman spectra 

Fluid

Laser heating

Raman shift (cm-1)

3900 4000 4100 4200 4300

Inte

nsity

(rel

ativ

e un

its)

445 K

815 K

1200 K

1500 K

1800 K

300 K

Raman spectraCW excitation 60 GPa

Rapidly collected Raman spectra showmodified intramolecular bonds above40 GPa.Subramanian et al. PNAS, 2011

Page 8: NSLS-II Alexander Goncharov - Cornell University

0.16 0.20 0.24 0.28 0.32 0.36 0.400.0

0.3

0.6

Inte

nsity

, a.u

.

Time, ms

up to 50 kHz

Goncharov, Struzhkin, Prakapenka, Kantor, Rivers, Dalton

X-ray diffraction combined with pulsed laser heating

1‐50 μs, 5‐20 KHz

Time‐resolveddetector: Pilatus

Pulsed fiber laserSpectrograph & Intensified gated CCD detector

Thermal radiation

Sector 13: GSECARSX‐ray

Diffraction

Laser

Pulse generator

Page 9: NSLS-II Alexander Goncharov - Cornell University

Pulsed laser heating in the DAC: s timescales

GL: A. Goncharov, V. Struzhkin, A. Dalton; GSE CARS: V. Prakapenka, M. Rivers, I. Kantor

Time-resolved X-ray diffraction

8 12 16 20

1

2

Inte

nsity

, a.u

.

2-theta, degree

Detection of melting

Pt

Time (s)

T (K

)

0

1000

2000

3000

Uni

t Cel

l Vol

ume

(A3 )

54.5

55.0

55.5

-20 0 20 40 60 80 100 120

Rel

etiv

e In

tens

ity Pulse profile

Unit Cell Volume FE calculated temperatures:

surfacecenter

Pulse profile vsThermal expansion & temperature histories

Tm Pt  38 GPa

Page 10: NSLS-II Alexander Goncharov - Cornell University

Optical Pump‐Probe System for Time Domain Thermoreflectance experiments use a double modulation approach

AlAl AdCQRT )1(

MgO

Aluminum

DAC

Sample cavity

Argon

Pump + Probe

D. Dalton, A. Goncharov, W.‐P. Hsieh, D. Cahill

Page 11: NSLS-II Alexander Goncharov - Cornell University

Fianium LaserWavelength: 1064 nm

Rep Rate: Single Shot to MHzEnergy: 2 μJ, Pulse Width: <10 ps

Peak Power: ~20 kW

DelayStage

PhotonicCrystalFiber

½ WP

Polarizer

1064, 532 nm mirrors

Spectrometer with Gated Detector

(300nm‐780 nm)

BroadbandmirrorsBroadband, chirped 

Source for CARS

Narrowband fundamental

DAC10 x

Objective

10 xObjective

KTPDoubling crystal

Long passfilter

532 nmnotchfilter

Short  passfilter

532 nmnotchfilter

Heating Laserμs scale pulse

We are developing a new coherent Antistokes Raman and broad band spectroscopy systems 

D. A. Dalton, McWilliams

Page 12: NSLS-II Alexander Goncharov - Cornell University

The supercontinuum data was collected in a single shot manner at ~180 nJ/pulse into the fiber

Tungsten lamp (~3000 K) data collected at 103 longer accumulation time.

Broadband Optical Spectroscopy will enable single shot study of optical properties at the extreme environments attainable in the DAC.

Supercontinuum Generation (SG) results in a very bright, white light source. 

D. A. Dalton & S. McWilliams

lens

lens

nonlinear fiber

Page 13: NSLS-II Alexander Goncharov - Cornell University

insulator

sample

Transient extreme conditions;diamond anvil cell combined withpulsed laser heating.

Time‐domain optical spectroscopy in the diamond‐anvil cell.

background

Heating pulse

transmittedprobe 

600‐760 nm

Oxygen, absorbance with P & T

Ultrafast absorption spectroscopy usingsuper‐continuum optical probe.

heating laser

super‐continuum    probe

present probe: 400 to 850 nm

20 picosec.

25 GPa

60 GPa

45 GPa

25 GPa

7 GPa

T

T

T

PCF fiber output

Goncharov, McWilliams, Dalton, Geophysical Lab

Page 14: NSLS-II Alexander Goncharov - Cornell University

First Sweep of the Supercontinuum using  a streak cameraWavelen

gth (arb. units)

Page 15: NSLS-II Alexander Goncharov - Cornell University

Coherent Anti Stokes Raman Spectroscopy (CARS) will be used for time resolved chemistry in the DAC  

ωpump

ωStokes

ωCARS

CARS has better conversion efficiency that RamanCARS can discriminate from fluorescense and thermal backgroundCARS does have non‐resonant background

λ=532 nm

λ= 532 nm‐2 μm

ωprobe

ωpump 

ωStokes

ωCARS λ= ~300‐532 nm

CARSRaman Effect

=ωprobe

ωmolecule

Rayleigh Anti‐StokesStokes

ω0 ω0ω0 ‐ ∆ω ω0 + ∆ω

ωmolecule  =ωpump ‐ ωStokes

Second harmonic Supercontinuum

Page 16: NSLS-II Alexander Goncharov - Cornell University

Broadband Coherent Anti‐Stokes Raman Spectroscopy (CARS) is planned to  perform single shot study of optical properties at the extreme environments attainable in the DAC: first tests at CIW

Dalton, McWilliams, & GoncharovRaman Shift (cm-1)

1000 2000 3000

Inte

nsity

(arb

. uni

ts) CARS, 532 nm

Raman, 457 nm

CARS spectra with supercontinuumFianiumLaser

Wavelength: 1064 nmRep Rate: Single Shot to MHz

Energy: 2 μJ, Pulse Width: <10 psPeak Power: ~20 kW

DelayStage

PhotonicCrystalFiber

½ WP

Polarizer

1064, 532 nm mirrors

Spectrometer with Gated Detector

(300nm‐780 nm)

BroadbandmirrorsBroadband, chirped 

Source for CARS

Narrowband fundamental

DAC10 x

Objective

10 xObjective

KTPDoubling crystal

Long passfilter

532 nmnotchfilter

Short  passfilter

532 nmnotchfilter

Heating Laserμs scale pulse

CARS spectra with supercontinuum at CIW

Methanol 0.5 GPa

Page 17: NSLS-II Alexander Goncharov - Cornell University

Broadband Coherent Anti‐Stokes Raman Spectroscopy (CARS) is planned to  perform single shot study of optical properties at the extreme environments attainable in the DAC: first tests at CIW

Dalton, McWilliams, & Goncharov

CARS spectra with supercontinuumFianiumLaser

Wavelength: 1064 nmRep Rate: Single Shot to MHz

Energy: 2 μJ, Pulse Width: <10 psPeak Power: ~20 kW

DelayStage

PhotonicCrystalFiber

½ WP

Polarizer

1064, 532 nm mirrors

Spectrometer with Gated Detector

(300nm‐780 nm)

BroadbandmirrorsBroadband, chirped 

Source for CARS

Narrowband fundamental

DAC10 x

Objective

10 xObjective

KTPDoubling crystal

Long passfilter

532 nmnotchfilter

Short  passfilter

532 nmnotchfilter

Heating Laserμs scale pulse

CARS spectra with supercontinuum at CIW

Raman Shift (cm-1)

500 1000 1500 2000 2500 3000

Ram

an In

tens

ity (a

rb. u

nits

)

CARS, 2 s488 nm Raman, 1 s

Nitrogen 22 GPa

Page 18: NSLS-II Alexander Goncharov - Cornell University

Laser driven shock compression in the DAC:samples are dynamically compressed in the DAC  

Armstrong and Crowhurst, LLNL

• Precompression in 100 GPa range is possible• Preheating and precooling if needed• Ultrafast experiments can be small scale: Table top system, unlike currently better known technique of laser shocks which involves large laser facilities (such as NIF) 

Al

Diamond

Pump

Moving Alsurface

Precompressedsample

Shocked AlShock front 

Shockedsample

SchematicUltrafast interferometry diagnostics

Page 19: NSLS-II Alexander Goncharov - Cornell University

Observation of Off‐Hugoniot Shocked States with Ultrafast Time Resolution: Probing High‐pressure, Low‐temperature States

Laser shocks in the DAC can generate and detect 10s GPashock waves (and low pressure acoustic waves) in materials under precompression of 10s GPa

Laser shocks in the DAC can generate and detect 10s GPashock waves (and low pressure acoustic waves) in materials under precompression of 10s GPa

Bonev et al., (2010)

Phase diagram of hydrogen

Armstrong et al ., in press

Example of data for Ar

Page 20: NSLS-II Alexander Goncharov - Cornell University

First shots on deuterium

•Shock and particle velocities of ~12‐13 km/s and ~1 km/s for precompression ranging up to 36 GPa, giving a shock pressure ~10 GPa.

•Possible phase transition over the duration of the probe window

Pha

se s

hift

per 5

ps

Delay (ps)

M. Armstrong. J. Crowhurst, LLNL

Page 21: NSLS-II Alexander Goncharov - Cornell University

Pulsed laser techniques have a great abilities to: ‐ access unavailable previously extreme P‐T conditions‐ overcome problems of containing and probing  chemically reactive and mobile materials‐study vibrational, optical, elastic, transport properties under extreme conditions

The full potential of these techniques will be reached with further development of ultrafast (ps to fs) pump‐probe  & single –shot techniques  coupled to pulsed laser heating and laser shocks in the DAC. ‐perform experiments in a time domain to access the time scale and dynamics of phase transitions  & chemical reactions

We are looking forward for developing new combined X‐ray – optical techniques at synchrotron beamlines (e.g., ERL, Petra III, XFEL, NSLS‐II)

Outlook: the field is matureWe are looking for new opportunities which will be 

given by new generation synchrotron sources

Page 22: NSLS-II Alexander Goncharov - Cornell University

Recommended