+ All Categories
Home > Documents > Onsemi ATX PSU Design

Onsemi ATX PSU Design

Date post: 01-Nov-2014
Category:
Upload: usuariojuan
View: 146 times
Download: 5 times
Share this document with a friend
37
1 TND359/D Rev 0, Jan-09 High-Efficiency 255 W ATX Power Supply Reference Design Documentation Package
Transcript
Page 1: Onsemi ATX PSU Design

1

TND359/D Rev 0, Jan-09

High-Efficiency 255 W ATX Power Supply

Reference Design Documentation Package

Page 2: Onsemi ATX PSU Design

2

© 2009 ON Semiconductor Disclaimer: ON Semiconductor is providing this reference design documentation package “AS IS” and the recipient assumes all risk associated with the use and/or commercialization of this design package. No licenses to ON Semiconductor’s or any third party’s Intellectual Property is conveyed by the transfer of this documentation. This reference design documentation package is provided only to assist the customers in evaluation and feasibility assessment of the reference design. The design intent is to demonstrate that efficiencies beyond 85% are achievable cost effectively utilizing ON Semiconductor provided ICs and discrete components in conjunction with other inexpensive components. It is expected that users may make further refinements to meet specific performance goals.

Page 3: Onsemi ATX PSU Design

3

Table of Contents

1. Overview................................................................................................... 4 2. Specifications .......................................................................................... 5 3. Architecture Overview............................................................................. 7

3.1 Primary Side: PFC Stage................................................................................. 7 3.2 Primary Side: Half bridge resonant LLC Converter.......................................... 7 3.3 Secondary Side: Synchronous Rectification .................................................... 7 3.4 Secondary Side: DC-DC Conversion Stage .................................................... 8 3.5 Secondary Side: Monitoring and Supervisory Stage........................................ 8 3.6 Standby Power ................................................................................................ 8

4. Performance Results..................................................................................9 4.1 Total Efficiency ............................................................................................................9 4.2 Power Factor ...............................................................................................................9 4.3 Standby Power ..........................................................................................................10 4.4 Input Current..............................................................................................................10 4.5 Inrush Current............................................................................................................10 4.6 Output Transient Response (Dynamic Loading) ........................................................11 4.7 Overshoot at Turn-On/Turn-Off..................................................................................11 4.8 Output Ripple / Noise.................................................................................................13 4.9 Hold-up Time .............................................................................................................20 4.10 Timing / Housekeeping / Control..............................................................................21 4.11 Output Protection.....................................................................................................23

5. Evaluation Guidelines ..............................................................................26 6. Schematics................................................................................................28 7. Parts List ...................................................................................................29 8. Resources/Contact Information ..............................................................36 9. Appendix ...................................................................................................36

Page 4: Onsemi ATX PSU Design

4

1. Overview ON Semiconductor was the first semiconductor company to provide an 80 PLUS-certified open reference design for an ATX power supply in 2005. A second generation 80 PLUS-certified open reference design with improved efficiency was then introduced in 2007. ON Semiconductor is now introducing its third generation 80 PLUS-certified open reference design with a drastic efficiency improvement. This is a 255 W multi-output power supply for the ATX form factor. Achieving a maximum efficiency of 90% at 50% load, and at 230 and 240 Vac, this third generation reference design achieves >88% efficiency at 50% load, and 100 and 115 Vac. All efficiency measurements were obtained at the end of a 41 cm (16 in.) cable, ensuring the design can be used ‘as is’ in all standard desktop PC configurations. This reference document provides the details behind this third generation design. The design manual provides a detailed view of the performance achieved with this design in terms of efficiency, performance, thermals and other key parameters. In addition, a detailed list of the bill-of-materials (BOM) is also provided. ON Semiconductor will also be able to provide technical support to help our customers design and manufacture a similar ATX power supply customized to meet their specific requirements. The results achieved in this third generation design were possible due to the use of advanced new components from ON Semiconductor. These new ICs not only speeded up the overall development cycle for this new design, but also helped achieve the high efficiencies while at the same time keeping a check on the overall cost. This third generation design consists of a single PCB designed to fit into the standard ATX enclosure along with a fan. Figure 1 below presents the overall architecture employed in this design. Detailed schematics are included later in this design manual.

Figure 1: Reference Design Architecture Simplified Block Diagram

Page 5: Onsemi ATX PSU Design

5

As seen in figure 1, the first stage, active Power Factor Correction (PFC) stage, is built around ON Semiconductor’s Continuous Conduction Mode (CCM) PFC controller, NCP1654. The NCP1654 provides an integrated, robust and cost-effective PFC solution. The second stage features a resonant half-bridge LLC topology using ON Semiconductor’s controller, NCP1396. This topology ensures maximum efficiency and minimizes EMI. The NCP1027, standby controller, is used to generate the 5 V standby output. The NCP1027 is an optimized integrated circuit for the ATX power supply and incorporates a high-voltage MOSFET. On the secondary side, this architecture uses a synchronous rectification scheme built around ON Semiconductor’s NCP4302 controller in order to generate a 12 V output. Finally, two identical DC-DC controllers are used to down-convert the 12 V into +5 V, +3.3 V and -12 V. The DC-DC controller is the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8-pin package. Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a synchronous rectification scheme. With the introduction of this third generation, high-efficiency ATX Power Supply, ON Semiconductor has shown that with judicious choice of design tradeoffs, optimum performance is achieved at minimum cost.

2. Specifications The design closely follows the ATX12V version 2.2 power supply guidelines and specifications available from www.formfactors.org, unless otherwise noted. This 255 W reference design exceeds the 80 PLUS Silver (www.80plus.org), ENERGY STAR® 5.0 (www.energystar.gov), and Climate Savers Computing Initiative (CSCI) Step 3 (www.climatesaverscomputing.org) efficiency targets for desktop PC multi-output power supplies. Table 1 hereafter shows a summary of the efficiency targets from these different organizations.

Levels Specification20% of rated

output

50% of rated

output

100% of rated

outputCompliance

• Multiple-Output• Non-Redundant• PFC 0.9 at 100% of rated output

80% efficiency

80% efficiency

80% efficiency

ENERGY STAR rev. 4.0&

CSCI step #1

Effective date: July 2007

• Multiple-Output• Non-Redundant• PFC 0.9 at 50% of rated output

82% efficiency

85% efficiency

82% efficiency

ENERGY STAR rev. 5.0 (Effective date: July 2009)

&CSCI step #2

(June 2008 thru July 2009)

• Multiple-Output• Non-Redundant• PFC 0.9 at 50% of rated output

85% efficiency

88% efficiency

85% efficiency

CSCI step #3(July 2009 thru June 2010)

• Multiple-Output• Non-Redundant• PFC 0.9 at 50% of rated output

87% efficiency

90% efficiency

87% efficiency

CSCI step #4(July 2010 thru June 2011)

Mul

ti-O

utpu

t ATX

Pow

er S

uppl

ies

Table 1: Summary of Efficiency Targets

Page 6: Onsemi ATX PSU Design

6

Key specifications for this reference design are included in Table below.

Input DC Output Current

Voltage (Vac)

Frequency (HZ)

Output Voltage

(Vdc) Min

DC Current (A)

Full Load DC Current

(A)

Max DC Current

(A) Min. 90 47 +12 VA 0 9.50 13.0

+12 VB 0 5.12 7.0 +5 V 0.3 9.44 15.0 +3.3 V 0.3 5.03 8.0 Typ.

100 115 230 240

50 60 50 50 -12 V 0 0.32 0.4

Max. 264 63 +5 VSB 0 2.39 3.0

Output Power Output Voltage

(Vdc)

Full Load DC Current

(A) Full Load

Output Power (W)

Notes

+12 VA 9.50 114.0

+12 VB 5.12 61.4

Peak +12 VAdc output current up to 14 A. Peak +12 VBdc output current to be 8 A. The maximum combined load on the +12 VAdc and +12 VBdc outputs shall not exceed 220 W.

+5 V 9.44 47.2

+3.3 V 5.03 16.6

The maximum continuous combined load on the +5Vdc and +3.3 Vdc outputs shall not exceed 80 W.

-12 V 0.32 3.8 +5 VSB 2.39 11.95

Full Load Total Output Power =

255 W

Output Voltage Regulation (V)Output

Voltage (Vdc) Min. Typ. Max.

Tolerance (%)

Output Ripple / Noise (mVpp)

+12 VA +11.4 +12 +12.6 ±5 120 +12 VB +11.4 +12 +12.6 ±5 120 +5 V +4.75 +5 +5.25 ±5 70 +3.3 V +3.14 +3.3 +3.47 ±5 50 -12 V -10.8 -12 -13.2 ±10 250 +5 VSB +4.75 +5 +5.25 ±5 100

Table 2: Target Specifications Target specifications for other key parameters of the reference design include: Efficiency: Minimum efficiency of 85% at 20% and at 100% of rated output power, and 88% at 50% of rated output power as defined by the 80 PLUS requirements.

Power Factor: Power factor of 0.9 or greater at 100 % load. Input Voltage: Universal Mains: 90 Vac to 265 Vac, frequency: 47 to 63 Hz. Safety Features: As per the ATX12V version 2.2 power supply guidelines, this design includes safety features such as OVP, UVP, and OCP.

Page 7: Onsemi ATX PSU Design

7

3. Architecture Overview The architecture selected is designed around a succession of conversion stages as illustrated in Figure 1. The first stage is a universal input, active power factor boost stage delivering a constant output voltage of 385 V to the second stage, the half bridge resonant LLC converter. On the secondary side, this architecture uses a synchronous rectification scheme built around ON Semiconductor’s NCP4302 controller in order to generate a +12 V output. Finally, the +12 V is down-converted +5 V, +3.3 V and -12 V by a DC-DC conversion stage, built around two identical DC-DC controllers. In addition, a small integrated flyback converter delivers 12 W of standby power to another isolated 5 V rail. All the different voltage rails are monitored by a dedicated supervisory controller. ON Semiconductor has developed multiple power management controllers and MOSFET devices in support of the ATX program. Web-downloadable data sheets, design tools and technical resources are available to assist design optimization. The semiconductor components, supporting the ATX Generation 3 platform, are the NCP1654 PFC controller, the NCP1396 half-bridge resonant LLC controller, the NCP4302 synchronous rectification, the NCP1027 standby controller, the NCP1587 DC-DC controller with synchronous rectification, and the NTD4809 single N-channel power MOSFET driven by the NCP1587, in synchronous rectification.

3.1 Primary Side: PFC Stage There are a variety of PFC topologies available. These include discontinuous conduction mode (DCM), critical conduction mode (CRM) and continuous conduction mode (CCM). At this power level, CCM is the preferred choice and the NCP1654 will implement an IEC61000-3-2 compliant, fixed frequency, peak current mode or average current mode PFC boost converter with very few external components.

3.2 Primary Side: Half bridge resonant LLC Converter The heart of the half-bridge resonant LLC converter stage is the NCP1396 resonant mode controller. Thanks to its proprietary high-voltage technology, this controller includes a bootstrapped MOSFET driver for half-bridge applications accepting bulk voltages up to 600 V. Protections featuring various reaction times, e.g. immediate shutdown or timer-based event, brown-out, broken optocoupler detection etc., contribute to a safer converter design, without engendering additional circuitry complexity. An adjustable dead-time also helps lower the shoot-through current contribution as the switching frequency increases. More information about LLC structure can be found in the ON Semiconductor application note AND8311/D (Understanding the LLC Structure in Resonant Applications).

3.3 Secondary Side: Synchronous Rectification The 12 V output generated by the half-bridge resonant LLC converter is rectified using a proprietary synchronous rectification scheme built around two NCP4302 and two external single N-channel MOSFETs.

Page 8: Onsemi ATX PSU Design

8

3.4 Secondary Side: DC-DC Conversion Stage Two identical DC-DC controllers are used to down-convert the 12 V into +5 V and +3.3 V. The DC-DC controller is the NCP1587, a low voltage synchronous buck controller in a very small surface mount 8-pin package. The NCP1587 is a low cost PWM controllers designed to operate from a 5 V or 12 V supply. This device is capable of producing an output voltage as low as 0.8 V. The NCP1587 provides a 1 A gate driver design and an internally set 275 kHz (NCP1587) oscillator. Other efficiency enhancing features of the gate driver include adaptive non overlap circuitry. The NCP1587 also incorporates an externally compensated error amplifier and a capacitor programmable soft start function. Protection features include programmable short circuit protection and under voltage lockout. Each DC-DC controller drives two NTD4809 (30 V, 58 A, single N-channel power MOSFET) in a synchronous rectification scheme. The -12 V is generated from the +5 V using a small discrete-based converter.

3.5 Secondary Side: Monitoring and Supervisory Stage The four dc outputs +5 V, +3.3 V, +12 VA and +12 VB are monitored by a dedicated monitoring controller which also provides over-current protection, over-voltage protection, under-voltage protection and generates the Power Good logic signal.

3.6 Standby Power The NCP1027 integrates a fixed frequency current mode controller and a 700 volt MOSFET. The NCP1027 is an ideal part to implement a flyback topology delivering 15 W to an isolated 5 V output. At light loads the IC will operate in skip cycle mode, thereby reducing its switching losses and delivering high efficiency throughout the load range.

Page 9: Onsemi ATX PSU Design

9

4. Performance Results Measurements are done at three loading conditions, the load being expressed as a % of the rated output power, i.e. at 20%, 50% and at 100% of rated output power. Measurements are also done at four AC line voltages, at 100 Vac, 115 Vac, 230 Vac and 240 Vac, at 50 Hz, 60 Hz and 63 Hz. All measurements are taken at the end of the 41 cm-long (16 inches) cable. The converter efficiency is measured according to the loading conditions detailed in Table 3:

Output Current (A) Load as % of rated output power +12VA +12VB +5V +3.3V -12V +5VSB

20% 1.90 1.02 1.89 1.01 0.06 0.48 50% 4.75 2.56 4.72 2.52 0.16 1.20

100% 9.50 5.12 9.44 5.03 0.32 2.39 Max. 13.0 7.0 15.0 8.0 0.4 3.0

Table 3: Load Matrix for Efficiency Measurements

4.1 Total Efficiency Total Efficiency (%)

AC Input 20% Load 50% Load 100% Load 100 VAC / 50 HZ 85.9% 88.3% 85.9% 115 VAC / 60 HZ 86.3% 88.8% 86.8% 230 VAC / 50 HZ 86.5% 90.1% 88.7% 240 VAC / 63 HZ 86.5% 90.1% 88.8%

Table 4: Efficiency Results The converter achieves over 85% efficiency with room to spare over all load conditions. All measurements are done at the end of the power cable.

4.2 Power Factor The power factor exceeds 0.9 over all operating conditions as shown in Table .

Power Factor AC Input 20% Load 50% Load 100% Load Specification

100 VAC / 50 HZ 0.96 0.983 0.987 115 VAC / 60 HZ 0.945 0.978 0.986 230 VAC / 50 HZ 0.714 0.912 0.966 240 VAC / 63 HZ 0.689 0.902 0.962

PF > 0.90 @100% & 50% of rated output power

Table 5: Power Factor vs Load as % of Rated Output Power

Page 10: Onsemi ATX PSU Design

10

4.3 Standby Power

AC Input Output

Current on +5VSB (A)

Input Power

(W) Specification

100 VAC / 50 HZ 0.147 0.36 115 VAC / 60 HZ 0.171 0.31 230 VAC / 50 HZ 0.244 0.55

240 VAC / 63 HZ 0.312 0.57

< 1W • U.S. Department of Energy, FEMP (Federal Energy

Management Program): http://www1.eere.energy.gov/femp/procurement/index.html

• Executive Order 13221 of July 31, 2001: http://www1.eere.energy.gov/femp/pdfs/eo13221.pdf

Table 6: Standby Power vs AC Line Voltage

4.4 Input Current Measurement (A) AC Input 20% Load 50% Load 100% Load Specification

90 VAC / 47 HZ 0.673 1.609 3.245 100 VAC / 50 HZ 0.614 1.458 2.952 115 VAC / 63 HZ 0.544 1.271 2.549 180 VAC / 50 HZ 0.363 0.799 1.573 230 VAC / 53 HZ 0.355 0.667 1.266 240 VAC / 60 HZ 0.353 0.646 1.217 264 VAC / 63 HZ 0.339 0.597 1.092

90V (max 3.6A) 180V (max.1.8A)

@ 100% load

Table 7: Input Current vs Load and AC Line Voltage

4.5 Inrush Current Parameter Description Min. Typ. Max. Units

Initial In-rush Current 55 A (Peak) Secondary In-rush Current 35 A (Peak)

Table 8: Inrush Current Specification

AC Input Output Load Measurement (A) Specification

Initial In-rush Current 9.9 90 VAC/47 HZ 100% Load Secondary In-rush Current 8.0

Initial In-rush Current 17.9 120 VAC/63 HZ 100% Load Secondary In-rush Current 16.2

Initial In-rush Current 25.4 220 VAC/50 HZ 100% Load Secondary In-rush Current 24.5

Initial In-rush Current 34.1 264 VAC/63 HZ 100% Load Secondary In-rush Current 33.3

Initial In-rush Current < 55 A

Secondary In-rush Current < 35 A

Table 9: Inrush Current vs AC Line Voltage

Page 11: Onsemi ATX PSU Design

11

4.6 Output Transient Response (Dynamic Loading) Output Transient starting Load T1 / T2 (0.1 A/µsec), T1 / T2 (1 ms)

Load (A) Voltage Max. (V) DC Output Min. Load Step Max. Overshoot Undershoot +12 VA 0.5 6.5 6.5 0.6 0.6 +12 VB 0.5 3.5 3.5 0.6 0.6 +5 V 0.3 5 10 0.25 0.25 +3.3 V 0.3 2.66 5.34 0.17 0.17 -12 V 0 0.17 0.33 0.6 0.6 +5 VSB 0 1.33 2.67 0.25 0.25

Table 10: Output Transient Response (Dynamic Loading)

4.7 Overshoot at Turn-On/Turn-Off

DC Output Min. – Load Step

Load Step – Max. Specification Unit

+12VA 0.34 N/A 1.2 +12VB 0.38 N/A 1.2 +5V 0.21 0.23 0.5 +3.3V 0.15 0.17 0.33 -12V 0.18 0.20 -1.2 +5VSB 0.21 0.20 0.5

VP-P

Table 11: Overshoot at Turn-On/Turn-Off

Measured and Calculated Data at 115V / 60HZ DC Output Min. – Load Step Load Step – Max.

+12 VA N/A

+12 VB N/A

Page 12: Onsemi ATX PSU Design

12

+5 V

+3.3 V

-12 V

+5 VSB

Figure 2: Dynamic Load Test Waveforms

Page 13: Onsemi ATX PSU Design

13

4.8 Output Ripple / Noise The ripple voltage of each output is measured at no load and at the maximum load for each output., and at the four different line voltages. The output ripple is measured across 10 μF/MLC parallel 1000 μF low ESR/ESL termination capacitors. Figure 3 through 6 show the output voltage ripple measurements. All outputs meet the voltage ripple requirements.

DC Output No Load (A) Full Load (A) Output Ripple / Noise Max (mVp-p)

+12 VA 0 9.50 120

+12 VB 0 5.12 120

+5 V 0 9.44 70

+3.3 V 0 5.03 50

-12 V 0 0.32 250

+5 VSB 0 2.39 100 Table 12: Output Ripple / Noise Specification

4.8.1 100 VAC / 50 HZ - Ripple / Noise Test Waveform

No Load Full Load

+12 VA

No Load Full Load

+12 VB

Page 14: Onsemi ATX PSU Design

14

No Load Full Load

+5 V

No Load Full Load

+3.3 V

No Load Full Load

-12 V

No Load Full Load

+5 VsB

Figure 3: 100 VAC / 50 HZ - Ripple / Noise Test Waveform

Page 15: Onsemi ATX PSU Design

15

4.8.2 115 VAC / 60 HZ - Ripple / Noise Test Waveform

No Load Full Load

+12 VA

No Load Full Load

+12 VB

No Load Full Load

+5 V

No Load Full Load

+3.3 V

Page 16: Onsemi ATX PSU Design

16

No Load Full Load

-12 V

No Load Full Load

+5 VSB

Figure 4: 115 VAC / 60 HZ - Ripple / Noise Test Waveform

Page 17: Onsemi ATX PSU Design

17

4.8.3 230 VAC / 50 HZ - Ripple / Noise Test Waveform

No Load Full Load

+12 VA

No Load Full Load

+12 VB

No Load Full Load

+5 V

No Load Full Load

+3.3 V

Page 18: Onsemi ATX PSU Design

18

No Load Full Load

-12 V

No Load Full Load

+5 VSB

Figure 5: 230 VAC / 50 HZ - Ripple / Noise Test Waveform

Page 19: Onsemi ATX PSU Design

19

4.8.3 240 VAC / 63 HZ - Ripple / Noise Test Waveform

No Load Full Load

+12 VA

No Load Full Load

+12 VB

No Load Full Load

+5 V

No Load Full Load

+3.3 V

Page 20: Onsemi ATX PSU Design

20

No Load Full Load

-12 V

No Load Full Load

+5 VSB

Figure 6: 240 VAC / 63 HZ - Ripple / Noise Test Waveform

4.9 Hold-up Time The required holdup time at 50% load is 16 ms. Holdup time is measured from the moment the AC power is removed to when the PWR_OK signal goes low. Figure 7 shows the holdup time at 50% load, and at 115 Vac and 230 Vac. Channel 4 is the AC power and Channel 1 is the PWR_OK signal.

AC Input Dropout Loading Condition

Measurement (msec) Specification

115 VAC / 60 HZ 50% Load 22 230 VAC / 50 HZ 50% Load 23 > 16 ms

Table 13: Hold-up Time Specification

Page 21: Onsemi ATX PSU Design

21

115 VAC 60HZ - 50% Load 230 VAC / 50 HZ - 50% Load

Figure 7: Hold-up Time

4.10 Timing / Housekeeping / Control 4.10.1 AC On / Off Control

AC On / Off Test Parameter Description Main Outputs Rise Time 2 ms < T2 < 20 ms POK delay 100 ms < T3 < 500 ms Power down warning 1 ms < T4 Hold-up time T6 > 16 ms PS_ON Timing (on) T7 < 1000 ms Main Outputs Rise Time 2 ms < T2 < 20 ms

Figure 8: AC On / Off Control

Page 22: Onsemi ATX PSU Design

22

4.10.2 PS_ON On / Off Control

PS_ON On / Off Test Parameter Description Rise Time 2 ms < T2 < 20 ms POK delay 100 ms < T3 < 500 ms Power down warning 1 ms < T4 PS_ON Timing (off) T8 < 60 ms PS_ON Timing (on) T9 < 350 ms -12VDC Rise Time 0.1 ms < T10 < 20 ms

Figure 9: PS_ON On / Off Control

4.10.3 Logic Timings Measurements Parameter

Description Description Min. Max. DC Output AC IN PS_ON

Units

T1 Delay from Standby within regulation to DC outputs turn on 5 300 N/A 148 N/A

+12V 2.8 4.2 +5V 2.6 2.4

+3.3V 2.8 2.2 T2 Standby, +3.3VDC, +5VDC,and 12VDC output rise time 2 20

+5Vsb 14 N/A +12V 250 256 +5V 244 250 T3 Delay from output voltages within regulation limits to

POK asserted at turn on 100 500 +3.3V 244 252 +12V 1.6 28.4 +5V 4.8 30

+3.3V 6.8 32.4 T4 Delay from POK deasserted to output voltages (3.3V, 5V, 12V, -12V) dropping out of regulation limits 1

-12V 6 12 +12V 608 +5V 600 T5 Delay from DC output deasserted to Standby out of

regulation at turn off. 5 +3.3V 600

T6 Delay from loss of AC to desertions of PWOK. 16 N/A 604 +12V 143 +5V 178 T7 PS_ON Timing (on) 1000

+3.3V 179 +12V 65.6 +5V 67.2 T8 PS_ON Timing (off) 60

+3.3V 69.2 +12V 80.8 +5V 86.8 T9 Delay from PS-ON reasserted to output turn on 350

+3.3V 86.8 T10 -12VDC output rise time 0.1 20 -12V 1.822 1.239

ms

Table 14: Logic Timings

Page 23: Onsemi ATX PSU Design

23

4.10.4 PWR_OK CONTROL AND LOGIC SIGNALS RIPPLE/NOISE

Measurement Max. Unit PWR_OK Full Load 35 400 mVP-P

Table 15: PWR_OK Timings 4.10.5 PS_ON

CONTROL AND LOGIC SIGNALS RIPPLE/NOISE Measurement Max. Unit PS_ON

Full Load 30 400 mVP-P Table 16: PS_ON Timings

4.11 Output Protection 4.11.1 Output Over-Voltage Protection

Specification DC Output Min. (V) Max. (V) Measurements

(V) +12 VA / B 13.5 15

+5 V 5.6 7 6.36 +3.3 V 3.76 4.3 4.2 -12 V -13.5 -15 +5 VSB 5.6 7

Table 17: Output Over-Voltage Protection 4.11.2 Output Under-Voltage Protection

+12VA +12 VB

+5 V +3.3 V

Figure 10: 115 VAC / 60 HZ DC Output Under-Voltage Protection @ Full Load

Page 24: Onsemi ATX PSU Design

24

4.11.3 Short Circuit Protection

+12 VA +12 VB

+5 V +3.3 V

+5 VSB

Figure 11: 115 VAC / 60 HZ DC Output Short circuit protection @ Full Load

Page 25: Onsemi ATX PSU Design

25

4.11.3 Over-Current Protection Over Current Protection DC Output Min. (A) Max. (A)

Measurements (A)

+12 VA 15 21 (< 240 VAC) 19.6 +12 VB 8.5 11.5 (< 240 VAC) 10.0 +5 V 18 24 20.5 +3.3 V 10 13 10.9 -12 V N/A N/A N/A +5 VSB 3 6 6.0

Table 18: Over-Current Protection

+12 VA +12 VB

+5 V +3.3 V

+5VSB

Figure 12: DC Output Short circuit protection @ Full Load

Page 26: Onsemi ATX PSU Design

26

5. Evaluation Guidelines Evaluation of the reference design should be attempted only by persons who are intimately familiar with power conversion circuitry. Lethal mains referenced voltages and high dc voltages are present within the primary section of the ATX circuitry. All testing should be done using a mains high-isolation transformer to power the demonstration unit so that appropriate test equipment probing will not affect or potentially damage the test equipment or the ATX circuitry. The evaluation engineer should also avoid connecting the ground terminal of oscilloscope probes or other test probes to floating or switching nodes (e.g. the source of the active clamp MOSFET). It is not recommended to touch heat sinks, on which primary active components are mounted, to avoid the possibility of receiving RF burns or shocks. High impedance, low capacitance test probes should be used where appropriate for minimal interaction with the circuits under investigation. As with all sensitive switchmode circuitry, the power supply under test should be switched off from the ac mains whenever the test probes are connected and/or disconnected. The evaluating engineer should also be aware of the idiosyncrasies of constant current type electronic loads when powering up the ATX demonstration unit. If the loads are adjusted to be close to the ATX’s maximum rated output power, the unit could shut down at turn on due to the instantaneous overloading effect of the constant current loads. As a consequence, electronic loads should be set to constant resistance mode or rheostats should be used for loads. The other alternative is to start the supply at light to medium load and then increase the constant current electronic loads to the desired level. The board is designed to fit in a traditional ATX enclosure as shown in Figure .

Page 27: Onsemi ATX PSU Design

27

Figure 13: ON Semiconductor’s 255 W Reference Design for ATX Power Supplies

Page 28: Onsemi ATX PSU Design

28

6. Schematics The power supply is implemented using a single sided PCB board. Added flexibility is provided by using daughter cards for the PFC (NCP1654) circuit and the NCP1396 resonant mode controller. The individual PCB board schematics are shown in figure 14.

Page 29: Onsemi ATX PSU Design

A

B

C

DD

C

B

A

Title

Number RevisionSize

A1

Date: 11-Dec-2008 Sheet of File: D:\WORK\layout\MAINSTAY_F.K.ddb Drawn By:

R81.8M(1%)

C50

0.47uF

1

234 Q1

SPP15N60C3

POWER SUPPLY ATX 255W >85%

R90-(1%)

1 8

2 7

3 6

4 5

IC1

NCP1654C54220nF

V8ON -Semi ATX255WD

F1 5A/250V

R54

47K

R3-1

0.5- 1W

R71.8M(1%)

C2

220uF/450V

AC IN 85-264V

L

N

1

2

3

4

BD110A600V

CY1472

CY2472

CY5nc.

D2LQA08TC600

R53

10-(1206)

R510K

R63.3M

R513.3M

R52 3.6K(1%)

C1474

C53

1nF

CX

1

1uF

C520.1uF

ON SEMICONDUCTOR.

R641.1K(1%)

R60

8.2K(1%)R6310K

R62

2K

R59 6.8K

R58 15K

R61

150K

R57 30K

C59222

C57 1uF

C58

4.7u

F/50

V R665.1K

R67

10K

C61 104

D211N4148

Q3STP12NM50

Q4STP12NM50

R65

18-(

1206

)

C63103

D20

UF

1A60

0V

C6047uF/25V

R68

10-

R71 10-

R10

10K

R1110K

C4

333/

630V

R130

10-(2W)

R13110-(2W)

R701K

C5

220P

R551K

1 Css

2 FMAX

3 CTMR

4 RT

5 BO

6 FB

7 DT

8 FF SF 9

GND 10

MLOW 11

VCC 12

NC. 13

HB 14

MVPP 15

VBOOT 16

IC2 NCP1396A

T1/P2

0.1*

80 2

T

T1/P32T

D70

MBR60L45CTG

D71

MBR60L45CTG

C130561

C131561

C136

2200

uF/1

6V

C137

2200

uF/1

6V

C138

2200

uF/1

6V

C139

2200

uF/1

6V

C140

2200

uF/1

6V

L6 0.8uH

T1

R69 1K

C62

683

R12

24K

D24

1N4148

D25

1N4148

R743.3K

R72

10K

R731.1K

IC3

AZ431

Q5

MMBT2907

TO220

SO16

EE35

R5630K

LF10.8*25t 3mH

123

AC INLETAC IN

MOV471K

CX20.47

CY4472

CY3472

LF30.8*25 3mH L2

0.1*50t 680uH +12VA

D1STTH310(UF5407G)

GND

R13 10- 2W1 SYNC/CS

2 TRIG

3 CATH

4 REF Dlyadj 5

GND 6

VCC8

GATE 7

IC14

NCP4302

1 SYNC/CS

2 TRIG

3 CATH

4 REF Dlyadj 5

GND 6

VCC8

GATE 7

IC15

NCP4302

Q30

STP

80N

F55

Q31

STP

80N

F55 R138

10-

R13710-

D72

1N4148

D73

1N4148

R14010K

R13310K

R1322.2-

R1412.2-

R1346.2K

R135

3.3K

C132

104

C134

104

B

A

TO220

TO220

IC16AZ431

R1421K

R14418K(1%)

R145

4.7K(1%)

R143 68KC141223

-12V/0.32A

R3011K

R30010K

R30210K

Q21

SS

S80

50(T

O92

)

C262100/25V

D1206.2B

D1216.2B

TM2T204K

A

-

+FAN12V

+12V

GND

HV+

T1/P10.1*50 33t

IC23

817

RS12A0.002

RS12B

0.002+12VB

VS12A

VS12B

IS12A/B

FAN Control

12

2.54

CON3

1 BST

6 FB 3 G

nd

4 BG

Vcc

5

Phase 8Comp.

2 TG

IC18

NCP1587

Q32

NTD4809N

Q33

NTD4809N

C203

563

C202 100P

C201 NC.

C205NC.

C204104

C216

104

R202

1K

R2045.11K

R203

27K R205NC.

D100ES1D

C2062200uF/10V

L7 6.8uH

1 BST

6 FB 3 G

nd

4 BG

Vcc

5

Phase 8Comp.

2 TG

IC19

NCP1587

Q34

NTD4809N

Q35

NTD4809N

C212

563

C211 100P

C210 NC.

C214NC.

C213

104

C217

104

R208

1K

R2105.11K

R209

16K R211NC.

D103 ES1D

C2152200uF/10V

L8 6.8uH

+5V

+3.3V

GND

IS12V

GND

+5V/9.44A

+3.3V/5.03A

+5V/+3.3V Max.80W

16.6W

47.2W

1 VCC

2 Ramp Comp.

3 Brown-Out

4 FB Drain 5

GND 8

OPP 7

IC10

NCP1027

C104100uF/35V

R1002.2M

R10127K

R105

0-

R10278.7KC101

103

C102104

IC12817(1/2)

IC12

817(

1/2)

P155t

P219t

S15t

D51

ES1D

D50UF4007

R1033.3K(1206)

C10310uF/25V

CY6

222

D52 MBR20L45CT

C1082200uF/10V

C1091000uF/10V

L5

DR6*8

IC11AZ431

R110100-R108

10K(1%)

R109

10K(1%)

C107

684

+5Vsb/2.39A

GND

T2

VCC1

HV-B+

Q112SC4672

R7910K

D27

NC

Q12

MMBT2907

R761.8K

R8010K

R75NC

D26NC

Q142SA1797

Q10NC

R78NC

D28

NC

Q13

NC

C6410uF/25V

R77 33-

VCC1

C5647uF/25V

IC20

817

DC-DC Stage (CTL2)

IC5

LM393(1/2)

R81

499K(1%)R82499K(1%)

R836.8K(1%)

R841K

R8610K

R85470K

R88100-

R87 22K

R894.7K

C65104

C66105 C67

105

D29

4148

IC4

AZ431

VCC1

IC5

LM393(1/2)

IC21 817

HV+

PFC

OK

R2501K

+5Vsb

PGI

VS12A12

VS12B8

VS514

VS3313

IS12B7

IS12A5

IS3311

IS510

VCC15 FPOB 3

PSONB 4

PGI 1

PGO 16

RI 6

GND 2

OTP 9

IC17

PS223

R26247-

R26

047

-

R25

947

-

R25

820

0-

R25

7100

-

R256240-

R255470-

R2671K

R26610K

C26010/50V

PS_O

N

PGO

R26862K

R2642.2K

TM1T10K

R254

47-

D104

4148 C259104

R2651K

C255

104

C258

104C256 104

C257104

C254104

C253104

C250104

C252104

C261

104

R26

147

-

R269 330-

Q16

MMBT2222

R252 470-

5VSB

R2514.7k

Q17

MM

BT2

222

VS12AVS12B

VS5VS33

IS12BIS12A

IS33IS5

IS5

IS33FPBO

TO D-D

C2072200uF/10V

C208330uF/10V

C218

2200uF/10V

C219

2200uF/10V

RS33

0.002

RS5

NC.

2008.12.10

R2531K

+5Vsb

R2632K

C251

474

R1

1M(1

/4W

)R3

0.1-3Ws

D3

N.C

.

D4

N.C

.

TO220

TO220

TO220

SOT23

RS12A-10.002

RS12B-10.002

R992.2M

DPAK

DPAK

DPAK

DPAK

RS5-1NC.

R1471K

R149

22-

R146

22-

R1481K

C144

1n/50V

C145

1n/50V

D787.5B

D77

7.5B

A

B

T1(1/3)

(EE35)

D105

4148

IS12A/B

D541N4734A 1W

C110 102

5.32-5.88V

CTL1

6

124

5

76

10

89

11

12

15

3,14

16

Peak 14A

Peak 8A

P4-1 P4-1 P4-3 P4-2 P5-6 P5-5

P5-1

P5-4

P5-3

P5-2

E

F

E

F

PS_ONPGO

FPBO

IS12A/B

IS5 IS33

IS12A IS12B VS12B VS12A+5Vsb

+5Vsb

HV+

VCC1

VCC1

IS12A/B

GND

A

B

D48

P6KE200

1,2

5,6

12,13,14

10,11

8,9

IS5

IS33

VS5

VS33

VS33

VS5

D70,D71,C133,C135,R4,R134,R135,R139

HV-B+

Jump

Lm=620uH

R21310-

R21410-

R215 10-

80A55V

80A55V

Ls=80uH

R212 10-

D112 4148

D1134148

D1064148

D107 4148

R30315-

C2202200uF/16V

Q20MMBT2222

65Khz

D227.5B

D23

3.6B

jump

HV

D49

LL4148

R111

10-(2W)

3A1000V

R1501K

C230

NC.

C232

NC.

L3

120uH

C6

474

C200

220uF/25V

N210t

C209224(1812)

D102 SR24E

D101SR24E

C142330uF/25V

C143220uF/25V

L9

1.5uH

R20

6

75K

D11

01N

4744

R106

100-

C105220uF/25V L=0.9mH

EE25

OPT.

C210A220uF/25V

R5612K

R5582.5K

R5723.2K

D5

4148

C552.2uF

12

CON1

3.96

SW10-1 Switch

J933-

C10022uF400V

R21618K

C209-1 224(1812)

IC20

AZ4

31

CORERH16*17*9GND WIRE 2t

CX30.33

R12A24K

C4-1

223/

630V L9

0.8uH

L11Be core

Add

PP

TC(N

SM

D10

0)

RS51uH

L133uH

L103uH

ACL

ACN

To +5Vsb system

D122

1N4006

D123

1N4006

ACL

ACN

ACL

ACN

C146

220u

F/16

V

Figure 14: Schematics

ttt123
Inserted Text
Page 30: Onsemi ATX PSU Design

29

7. Parts List The bill of materials (BOM) for the design is provided in this section. To reflect the schematics shown in the previous section, the BOM have also been broken into different sections and provided in separate tables – Table 19 through 22. It should be noted that a number of components used during the development cycle were based on availability. As a result, further cost reductions and better inventory management can be achieved by component standardization, i.e. the unique part numbers can be SIGNIFICANTLY reduced by standardization and re-use of component values and case sizes. This will result in a lower cost BOM and better inventory management.

QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N MAIN BOARD (PFC Stage, Synchronous Rectification Output Stage)

1 HS1 HEAT SINK 93*60*4 AL4.0t Taizhi

1 BD1 DIO.BRI 10A 600V / TS10P05G PANJIT

1 D2 DIO.NR LQA08TC600 8A 600V TO-220AC QSPEED

1 Q1 FET.NCH SPP15N60C3 TO220 INFINEON

2 Q3, Q4 FET.NCH STP12NM50 TO-220 ST

1 SCREW(BD1) SCREW PAN-HEAD M3*10 LONGFEI

4 SCREW(D2, Q1, Q3, Q4) SCREW PAN-HEAD M3*6 LONGFEI

4 SL(D2, Q1, Q3, Q4) SLTO-220 13*19*0.3mm JUNHO

4 B(D2, Q1, Q3, Q4) BUSHING TO-220 JUNHO

1 HS2 HEAT SINK 93*60*4 AL4.0t Taizhi

2 Q30, Q31 STP80NF55-06 80A55V TO220 ST

1 D52, MBR20L45CT 20A 45V TO-220 ON

2 D70, D71 MBR60L45CTG 60A 45V TO-220 ON

5 SCREW(D52, Q32, Q31, Q70, Q71) SCREW PAN-HEAD M3*6 LONGFEI

5 SL(Q30, Q31, D70, D71, D52) SLTO-220 13*19*0.3mm JUNHO

5 B(Q30, Q31, D70, D71, D52) BUSHING TO-220 JUNHO

1 R3 RES.WW. 0.1R 3WS NKNP Synton-Tech

1 R13 RES.MO. 10- 2W Synton-Tech

3 R130, R131, R111 RES.CR. 10- 2WS Synton-Tech

1 D48 P6KE200A DO-15 PANJIT

1 D50 UF4007 DO-41 PANJIT

1 D1 STTH310 3A 1000V / UF5407G DII

1 C109 CAP.ELE 1000uF 10V 10*16KY SU'SCON

1 R1 RES.CR. 1M 1/4W

3 RS12A, RS12A-1, RS12B COPPER 0.002-

1 F1 MST 5A/250V CONQUER

2 LF1.LF3 0.8*25t L=3mH+30% L=2.5mm MEIHUA (ASC-2203V-GH)25T

1 L2 POT3319 0.1Φ*50t*61t L=0.68uH MEIHUA

1 L3 T80-26+UL L=120uH±20% MEIHUA

1 L5 DR6*8 L=3.6uH MEIHUA

2 L6, L9 R8*20+UL L=0.8uH 2.4Φ*5.5t J.X.E. J-YH-R8*20-789

Page 31: Onsemi ATX PSU Design

30

1 T1 YC3501 L=0.63mH Ls=80uH MEIHUA

1 T2 EE25 MEIHUA

1 MOV TVR10471KSY TKS

1 IC10 NCP1027P065G DIP-8 ON

4 IC23, IC12, IC20, IC21 PHOTO PC817B DIP-4P SHARP

1 D54 1N4734A 1W 5.32-5.88V

2 D122, D123 1N4006

1 C4-1 CAP.PEI 0.022uF 630V

1 C4 CAP.PEI 0.033uF 630V PAC R75PI2330JEMEJ

2 C1, C6 CAP.MEF 0.47uF 400V P=10 UTX

1 CX3 CAP.MPP 0.33uF 275vac p=15 UTX

1 CX2 CAP.MPP 0.47uf 275V HQX P=15 UTX

1 C100 CAP.ELE 22uF 450V 8*11 SU'SCON

1 C55 CAP.ELE 2.2uF 50V 5*11

1 C2 CAP.ELE 220uf 450V NDB

1 C56 CAP.ELE 47uF 25V 5*11 NDB

1 C105 CAP.ELE 220uF 25V 6.3*11 NDB

1 C103 CAP.ELE 10uF 50V 5*11 NDB

1 C104 CAP.ELE 100uF 35V 6*11 NDB

5 C136, C137, C138, C139, C140 CAP.ELE 2200uF 16V 10*25 KZE NDB

1 C108 CAP.ELE 2200uF 10V 10*16 NDB

1 C110 CAP.CER 1000PF 1KV Y5P P=5 SEC 2Y5P102K102C56E

2 C130, C131 CAP.CER 560PF 1KV Y5P SEC

1 C146 CAP.ELE 220uF 16V 6.3*11

2 CY3, CY4 CAP.CER 4700PF Y2 SEC

1 CY6 CAP.CER 2200PF Y1 SEC

3 J4, J5, J6 JUMP 0.8Φ P=12.5mm

3 J7, J19, J22 JUMP 0.8Φ P=20mm

8 J1, J2, J3, J8, J11, J15, J18, J24 JUMP 0.8Φ P=10mm

1 J23 JUMP 0.8Φ P=5mm

1 MB CONNECT MB CONNECT 24-PORT EVERBIZ

1 CPU CONNECT CPU CONNECT 4-PORT(2*2) EVERBIZ

3 P3, P4, P5 SATA+SATA CONNECT EVERBIZ

2 P6, P7 SATA CONNECT EVERBIZ

2 P8, P9 FDD CONNECT 4-PORT EVERBIZ

2 HS3, HS4 HEAT SINK 28*38*5 CU1.2t Taizhi

1 CON1 WAFER 3.96(3-1)PIN 180° SUNDA

8 J10, J12, J13, J14, J16, R9, J20, R105 RES.SMD 0- 5% 0805

1 J9 RES.SMD 33- 5% 0805

1 J21 RES.SMD 0- 5% 1206

1 R3-1 RES.SMD 0.5- 1% 2512

5 R5, R10, R11, R133, R140 RES.SMD 10K 5% 0805

2 R7, R8 RES.SMD 1.8M 5% 0805

2 R12, R12A RES.SMD 24K 5% 0805

Page 32: Onsemi ATX PSU Design

31

1 R54 RES.SMD 47K 1% 0805

1 R55 RES.SMD 82.5K 1% 0805

1 R56 RES.SMD 12K 5% 0805

1 R57 RES.SMD 23.2K 5% 0805

2 R51, R6 RES.SMD 3.3M 5% 0805

1 R52 RES.SMD 3.6K 1% 0805

2 R81, R82 RES.SMD 499K 1% 0805

1 R83 RES.SMD 6.8K 1% 0805

2 R99, R100 RES.SMD 2.2M 5% 0805

1 R101 RES.SMD 27K 5% 0805

1 R102 RES.SMD 78.7K 1% 0805

1 R103 RES.SMD 3.3K 5% 1206

6 R142, R147, R148, R250, R253, R150 RES.SMD 1K 5% 0805

2 R108, R109 RES.SMD 10K 1% 0805

1 R110 RES.SMD 100- 5% 0805

2 R132, R141 RES.SMD 2.2- 5% 0805

1 R134 RES.SMD 6.2K 5% 0805

1 R135 RES.SMD 3.3K 5% 0805

2 R137, R138 RES.SMD 10- 5% 0805

1 R53 RES.SMD 10- 5% 1206

1 R143 RES.SMD 68K 5% 0805

1 R144 RES.SMD 18K 1% 0805

1 R145 RES.SMD 4.7K 1% 0805

2 R146, R149 RES.SMD 22- 5% 0805

1 R251 RES.SMD 4.7K 5% 0805

1 R252 RES.SMD 470- 5% 0805

1 R269 RES.SMD 330- 5% 0805

1 C5 CAP.MON 220P 50V 0805 X7R

1 C50 CAP.MON 0.47uF 50V X7R 0805

2 C101, C102 CAP.MON 0.01uF 50V X7R 0805

2 C107, C54 CAP.MON 0.22uF 50V X7R 0805

3 C53, C144, C145 CAP.MON 1000PF 50V X7R 0805

3 C134, C132, C52 CAP.MON 0.1uF 50V X7R 0805

1 C141 CAP.MON 0.022uF 50V X7R 0805

1 D51 ES1D 1A 200V SMA TSC

4 D5, D72, D73, D49 DIO.NR LL4148 TSC

2 D77, D78 DIO.ZEN RLZ7.5B ROHM

2 Q16, Q17 MMBT2222 SOT23

1 IC1 NCP1654A 65Khz SO-8 ON

2 IC11, IC16 TL431 ON

2 IC14, IC15 NCP4302 SO-8 ON

1 PCB CEM-1 1oz 1.6t 145*108.5 NO.SPB011V5

Table 19: Main Board (PFC Stage, Synchronous Rectification Output Stage)

Page 33: Onsemi ATX PSU Design

32

QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of figure 14)

1 C220 CAP.ELE 2200uF 16V 10*25 NDB 1 L11 BEAD RH035100ST-A8 1 RS33 COPPER 0.002- Tzai Yuan 1 C208 CAP.ELE PSC 680uF 10V 10*11.5 NDB

5 C206, C207, C215, C218, C219 CAP.ELE 2200uF 16V 10*25 NDB

1 C260 CAP.ELE 10uF 50V 5*11 KY NDB 1 C142 CAP.ELE 330uF 25V 8*15 KY NDB 1 C143, C200, C200A CAP.ELE 220uF 25V KY 6.3*11 NDB 1 C209 CAP.PEI 0.47uF 100V P=10 欣統 1 C262 CAP.ELE 100uF 25V 6.3*11 NDB 1 D110 1N4744 1 Q21 S8050L-C EBC TO92 UTC 1 L7 HKH080 L=6.8uH 1 L8 HKH080 L=6.8uH MEIHUA HKH-080CE/034 1 L9 DR6*8 L=3.6uH MEIHUA 2 L10, L13 R6*20+UL L=3.0uH±20% 1.2Φ*11.5t MEIHUA R6*20-0003 1 RS5 R8*20+UL L=1uH±20% 1 TM1 T10K TKS TTC05103KSY 1 TM2 T204K TKS TTC05204KSY 1 HS7 HEAT SINK 25.5*12.5 Cu1.2t Taizhi 2 HS8, HS9 HEAT SINK 40.5*12.5 Cu1.2t Taizhi 1 CON3 WAFER P=2.5*2 90° SUNDA 1 P4(CTL3-PCB) Pin Header 3pin 90° P=2.54mm SUNDA 1 P5(CTL3-PCB) Pin Header 6pin 90° P=2.54mm SUNDA 1 PPTC Fuse 1A 1206 CONQUER nSMD100 3 R266, R300, R302 RES.SMD 10K 5% 0805 1 R203 RES.SMD 27K 1% 0805 2 R204, R210 RES.SMD 5.11K 1% 0805 4 R212, R214, R213, R215 RES.SMD 10- 5% 0805 1 R206 RES.SMD 75K 5% 1206 1 R216 RES.SMD 18K 5% 1206 1 R209 RES.SMD 16K 1% 0805

5 R254, R259, R260, R261, R262 RES.SMD 47- 5% 0805

1 R255 RES.SMD 470- 1% 0805 1 R256 RES.SMD 240- 1% 0805 1 R257 RES.SMD 100- 1% 0805 1 R258 RES.SMD 200- 1% 0805 1 R263 RES.SMD 2K 5% 0805 1 R264 RES.SMD 2.2K 5% 0805

5 R265, R267, R301, R202, R208 RES.SMD 1K 5% 0805

1 R268 RES.SMD 62K 1% 0805 1 R303 RES.SMD 15- 5% 0805 2 C209, C209-1 CAP.MON 0.22uF 50V X7R 1812

14

C204, C213, C216, C217, C250, C252, C253, C254, C255, C256, C257, C258, C259, C261

CAP.MON 0.1uF 50V X7R 0805

2 C202, C211 CAP.MON 100P 50V X7R 0805 2 C203, C212 CAP.MON 0.056uF 50V X7R 0805

Page 34: Onsemi ATX PSU Design

33

1 C251 CAP.MON 0.47uF 16V X7R 0805 2 D100, D103 ES1D 1A 200V SMA TSC 2 D101, D102 DIO.SB SR24 2A 40V SMA PANJIT

6 D104, D105, D112, D113, D106, D107 DIO.ZEN LL4148 TSC

2 D120, D121 DIO.ZEN RLZ6.2B ROHM 1 Q20 MMBT2222 SOT23 4 Q32, Q33, Q34, Q35 NTD4809N-D 58A 30V DPAK ON 1 IC17 PS223 SOP-16 SITI 2 IC18, IC19 NCP1587 SO-8 ON 1 IC20 TL431 ON 1 PCB FR4 1oz 1.6t 62*83.5 NO.PB011V5-CTL3

Table 20: DC-DC Converter Stage, Supervisory Stage (referred to as CTL2 in schematics of figure 14)

Page 35: Onsemi ATX PSU Design

34

P/N QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14 )

1 C58 CAP.ELE 4.7uF 50V KMG 5*11 NDB 1 C60 CAP.ELE 47/25V KMG 5*11 NDB 1 C64 CAP.ELE. 10uF 25V NDB

1 P2 (CTL2-PCB) Pin Header 3pin 90° P=2.54mm SUNDA 1 P3 (CTL2-PCB) Pin Header 13pin 90° P=2.54mm SUNDA 1 HS 25*16*8 1 PCB HOLD RCC-5 KANGYANG

4 R55, R69, R70, R84 RES.SMD 1K 5% 0805 2 R56, R57 RES.SMD 30K 5% 0805 1 R58 RES.SMD 15K 5% 0805 1 R59 RES.SMD 6.8K 5% 0805 1 R60 RES.SMD 8.2K 1% 0805 1 R61 RES.SMD 150K 5% 0805 1 R62 RES.SMD 2K 5% 0805 2 R64, R73 RES.SMD 1.1K 1% 0805

6 R63, R67, R72, R79, R80, R86 RES.SMD 10K 5% 0805

1 R65 RES.SMD 18- 5% 1206 1 R66 RES.SMD 5.1K 5% 0805 2 R68, R71 RES.SMD 10- 5% 0805 1 R74 RES.SMD 3.3K 5% 0805 1 R76 RES.SMD 1.8K 5% 0805 1 R77 RES.SMD 33- 5% 0805 1 R88 RES.SMD 100- 5% 0805 1 R85 RES.SMD 470K 5% 0805 1 R87 RES.SMD 22K 5% 0805 1 R89 RES.SMD 4.7K 5% 0805 1 C59 CAP.MON 2200PF 50V X7R 0805 2 C61, C65 CAP.MON 0.1uF 50V X7R 0805

1 C62 CAP.MON 0.068uF 50V X7R 0805 1 C63 CAP.MON 0.01uF 50V X7R 0805 3 C66, C67, C57 CAP.MON 1uF 25V X7R 0805

1 D20 UF 1A600V / US1J PANJIT 4 D21, D24, D25, D29 DIO.ZEN. LL4148 TSC 1 D22 DIO.ZEN. RLZ7.5B ROHM 1 D23 DIO.ZEN. RLZ3.6B ROHM 2 Q5, Q12 MMBT2907 PANJIT 1 Q11 2SC4672 ROHM 1 Q14 2SA1797 ROHM

1 IC2 NCP1396A SO-16 ON 2 IC3, IC4 TL431 ON 1 IC5 LM393 SO-8 ON LM393D

1 PCB FR4 1oz 1.6t 44*56 NO.SPB011V4-CTL2

Table 21: HB Resonant LLC-Stage (referred to as CTL1 in schematics of figure 14)

Page 36: Onsemi ATX PSU Design

35

QTY SYMBOL DESCRIPTION VENDOR VENDOR P/N Mechanical and Miscellaneous Items

1 SW1 0-1 4P 10A Look SW SWEETA SS21-BBIWG-R 1 SW-INLET UL1015#18 L=115mm CHARNG MIN 1 SW-INLET UL1015#16 L=60mm White CHARNG MIN 1 SW-INLET UL1015#16 L=60mm Black CHARNG MIN 1 INLET(G)-GND UL1015#18 L=125mm CHARNG MIN 1 CORE(INLET-GND) RH16*9*17 1 DTOD-BOARD 1 FAN 80*80*25mm 12V SUNON 2 CY1, CY2 CAP.CER 4700PF Y2 SEC 1 CX1 CAP.MPP 1uF 275VAC HQX P=22.5 UTX 1 AC INLET 10A/15A 250V SWEETA SC-9-1 1 CASE CASE 150.2*140*84mm 1 CASE CASE 140*148.2*85.5mm 1 MYLAR MYLAR FILM 165*110*0.35mm JUNHO 2 SCREW(AC INLET) SCREW F3*10 ISO(BLACK) LONGFEI 4 SCREW(CASE) SCREW F3*6 ISO(BLACK) LONGFEI 1 SCREW(INLET-GND)) SCREW F3*5 ISO(BLACK) LONGFEI 4 SCREW(S1~S4) SCREW MAIN BOARD M3*4 ISO LONGFEI 4 SCREW(FAN) SCREW I5*10 TAP (BLACK) LONGFEI 1 SCREW(GND) SCREW K/NUT 8#32T LONGFEI 1 FAN GUARD 80*80mm COLOR-GOLD PRO-CROWN 1 SANP BUSHING NB-27A KANGYANG

Table 22: Mechanical and Miscellaneous Items

Page 37: Onsemi ATX PSU Design

36

8. Resources/Contact Information Data sheets, applications information and samples for the ON Semiconductor components are available at www.onsemi.com. Links to the datasheets of the main components used in this design are included in the Appendix. Authors of this document are: Edward Weng, Patrick Wang, Roman Stuler, and Laurent Jenck.

9. Appendix Link to ON Semiconductor’s web site:

ON Semiconductor Home Page Industry information links:

ENERGY STAR 80 PLUS Efficiency Requirements Climate Savers Computing Initiative IEC61000-3-2 Requirements ATX 12 V Form Factor European Union (EU) Energy Star Page

Additional collateral from ON Semiconductor: NCP1654 Continuous conduction mode PFC controller NCP1396 Resonant mode controller with high voltage drivers NCP4302 Synchronous rectification controller NCP1587 Low voltage synchronous buck controller

NCP1027 High voltage integrated switcher NTD4809 Single N-Channel MOSFET 30 V, 58 A MBR20L45 20 A, 45 V dual schottky rectifier


Recommended