+ All Categories
Home > Documents > Possible Endocrine Disruptive Effects on the Nervous and ...

Possible Endocrine Disruptive Effects on the Nervous and ...

Date post: 25-Nov-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
55
Possible Endocrine Disruptive Effects on the Nervous and Immune Systems from Exposure to Butylated Hydroxyanisole (BHA), Tebuconazole, and Genistein in Foods Julia Dankanich Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 45 hp till masterexamen, 2014 Biology Education Centre, Uppsala University, and The Swedish National Food Agency Supervisor: Jan Örberg, Anneli Widenfalk and Kettil Svensson External opponent: Linus Forslund
Transcript
Page 1: Possible Endocrine Disruptive Effects on the Nervous and ...

Possible Endocrine Disruptive Effects on theNervous and Immune Systems from Exposureto Butylated Hydroxyanisole (BHA),Tebuconazole, and Genistein in Foods

Julia Dankanich

Degree project in biology, Master of science (2 years), 2014Examensarbete i biologi 45 hp till masterexamen, 2014Biology Education Centre, Uppsala University, and The Swedish National Food AgencySupervisor: Jan Örberg, Anneli Widenfalk and Kettil SvenssonExternal opponent: Linus Forslund

Page 2: Possible Endocrine Disruptive Effects on the Nervous and ...

  1  

Table  of  Contents  ABSTRACT  ......................................................................................................................................  3  

ABBREVIATIONS  .............................................................................................................................  4  

1.  INTRODUCTION  ..........................................................................................................................  6  1.1.   Aim  of  thesis  ........................................................................................................................  6  

2.  BACKGROUND  ............................................................................................................................  7  2.1.  PUBLIC  AWARENESS  AND  THE  ENDOCRINE  DISRUPTOR  HYPOTHESIS  ..........................................................  7  2.2.  POLICY  IMPLICATIONS  ......................................................................................................................  7  

2.2.1.  Knowledge  gaps  and  future  needs  ......................................................................................  7  2.3  SIGNIFICANCE  OF  THE  ENDOCRINE  DISRUPTOR  HYPOTHESIS  ......................................................................  8  2.4.  WHY  ARE  CHEMICALS  TO  BLAME?  ......................................................................................................  8  

3.  NEUROENDOCRINE  SYSTEM  .......................................................................................................  9  3.1.  OVERVIEW  .....................................................................................................................................  9  3.2.  RECEPTORS  IN  THE  NERVOUS  SYSTEM  ................................................................................................  10  3.3.  NEUROENDOCRINE  ANATOMY  .........................................................................................................  10  3.4.  NEUROENDOCRINE  AXES  ................................................................................................................  11  

3.4.1.  HPA  Axis  ............................................................................................................................  11  3.4.2.  HPG  axis  ............................................................................................................................  13  3.4.3.  HPT  axis  .............................................................................................................................  15  

4.  IMMUNE  SYSTEM  ......................................................................................................................  16  4.1.  OVERVIEW  ...................................................................................................................................  16  4.2.  LYMPHOCYTE  MATURATION  AND  SELECTION  ......................................................................................  17  4.3.  LYMPHOCYTE  ACTIVATION  ..............................................................................................................  18  4.4.  IMMUNE  DEVELOPMENT  AND  PROGRAMMING  ...................................................................................  18  4.5.  CYTOKINES  ...................................................................................................................................  19  4.6.  THE  INFLAMMATORY  RESPONSE  .......................................................................................................  20  

5.  CROSSTALK  BETWEEN  THE  IMMUNE  AND  NEUROENDOCRINE  SYSTEMS  AND  ITS  IMPLICATIONS  IN  DEVELOPMENTAL  PROGRAMMING  ...........................................................................................  21  

6.  BHA  ...........................................................................................................................................  23  6.1.  EXPOSURE  ANALYSIS  ......................................................................................................................  23  

6.1.1.  Exposure  via  food  ..............................................................................................................  23  6.1.2.  Exposure  via  food  contact  materials  .................................................................................  24  

6.2.  BHA  AS  AN  ENDOCRINE  DISRUPTOR  ..................................................................................................  24  6.3.  BHA  EXPOSURE  AND  IMMUNE  EFFECTS  .............................................................................................  25  6.4.  BHA  EXPOSURE  AND  NEUROENDOCRINE  EFFECTS  ................................................................................  25  6.5.  CONCLUSION  ................................................................................................................................  26  

7.  GENISTEIN  .................................................................................................................................  26  7.1.  EXPOSURE  ANALYSIS  ......................................................................................................................  27  7.2.  GENISTEIN  AS  AN  ENDOCRINE  DISRUPTOR  ..........................................................................................  28  7.3.  GENISTEIN  EXPOSURE  AND  IMMUNE  EFFECTS  .....................................................................................  28  7.4.  GENISTEIN  AND  NEUROENDOCRINE  EFFECTS  .......................................................................................  30  7.5.  CONCLUSION  ................................................................................................................................  31  

8.  TRIAZOLE  FUNGICIDES  ...............................................................................................................  32  8.1.  EXPOSURE  ANALYSIS  ......................................................................................................................  33  8.2.  TEBUCONAZOLE  AS  AN  ENDOCRINE  DISRUPTOR  ...................................................................................  33  

Page 3: Possible Endocrine Disruptive Effects on the Nervous and ...

  2  

8.3.  TEBUCONAZOLE  EXPOSURE  AND  IMMUNE  EFFECTS  ..............................................................................  33  8.4.  TEBUCONAZOLE  EXPOSURE  AND  NEUROENDOCRINE  EFFECTS  .................................................................  34  8.5.  CONCLUSION  ................................................................................................................................  34  

9.  DISCUSSION  ..............................................................................................................................  35  

10.  CONCLUSION  ...........................................................................................................................  39  

11.  ACKNOWLEDGEMENTS  ............................................................................................................  39  

REFERENCES  ..................................................................................................................................  40  

APPENDIX  I  ...................................................................................................................................  46  

APPENDIX  II  ..................................................................................................................................  48    

Page 4: Possible Endocrine Disruptive Effects on the Nervous and ...

  3  

Abstract    Endocrine  disrupting  compounds   interfere  with  the  endocrine  system  in   intact  organisms  and  can   lead   to   adverse   health   outcomes   on   reproduction,   development,   and   other   body   systems.  The   aim   of   this   report  was   to   consolidate   previous   research   findings   in   a   literature   study   in  order   to   examine   the   effects   of   exposure   to   endocrine   disrupting   compounds   via   food   on  primarily   the  nervous   and   immune   systems.   Three   compounds  with   known  endocrine   effects  were  studied.  These  compounds  included  the  food  additive  butylated  hydroxyanisole  (BHA),  the  triazole   fungicide   tebuconazole,   and   the   phytoestrogen   genistein.   These   compounds   were   of  interest   because   of   their   prevalence   in   food,   indicating   that   humans   are   commonly   exposed.  Estimates  based  on  food  consumption  show  that  humans  are  unlikely  to  be  exposed  to  BHA  and  tebuconazole  at  doses  higher  than  the  acceptable  daily  intake.  However,  both  compounds  have  been  shown  to  modulate   levels  of   intracellular  Ca2+   in  vitro.  Although  the  results   from   in  vitro  studies  have  unclear  implication  for  human  health,  modifications  of  calcium  can  interfere  with  cell  signaling,  lymphocyte  activation,  and  the  propagation  of  an  action  potential  in  the  nervous  system.   Exposure   to   genistein   varies   substantially,   but   exposure   of   western   consumers   is  estimated  to  occur  at   levels  far   lower  than  those  seen  to  have  effects   in  experimental  animals.  Based  on  the  findings  in  this  thesis,  all  three  investigated  compounds  have  endocrine  disrupting  properties  and  have  the  potential  to  exert  effects  on  the  immune  and  nervous  systems.      

Page 5: Possible Endocrine Disruptive Effects on the Nervous and ...

  4  

Abbreviations    ACTH       adrenocorticotropin      ADH       anti  diuretic  hormone  ADI       acceptable  daily  intake  APC       antigen  presenting  cell  AR       androgen  receptor  AVP       arginine  vasopressin  AVPV       anteroventral  periventricular  nucleus    BCR       B  cell  receptor  BHA       butylated  hydroxyanisole  CEHOS       Danish  centre  on  endocrine  disrupters  CH       congenital  hypothyroidism  CRH       corticotrophic  releasing  hormone    DDT       dichloro-­‐diphenyl-­‐trichloroethane  DES       Diethylstilbestrol  DRP       detailed  review  paper  ED       endocrine  disruption  EDC       endocrine  disrupting  compound  EFSA       European  Food  and  Safety  Authority    ER       estrogen  receptor  FSH       follicle  stimulating  hormone  GA       gestational  age  GC       glucocorticoid    GI       gastrointestinal  (tract)  GnRH       gonadotropin-­‐releasing  hormone  GR       glucocorticoid  receptor  HHPS       hypothalamo-­‐hypophysial  portal  system  HPA       hypothalamic-­‐pituitary-­‐adrenal  HPG       hypothalamic-­‐pituitary-­‐gonadal      HPT       hypothalamic-­‐pituitary-­‐thyroid  IPCS       international  programme  on  chemical  safety    LBD       ligand  binding  domain  LH       luteinizing  hormone  MH       maternal  hypothyroidism  MHC                                                                      major  histocompatibility  complex    MPL                                                                        maximum  permitted  level      MR       mineralocorticoid  receptor    NOAEL/NOEL     no  observed  (adverse)  effect  level    NTP       national  toxicology  program  OECD       organization  for  economic  co-­‐operation  and  development  P-­‐gp       P-­‐glycoprotein  PCB       polychlorinated  biphenyl  ppb       parts-­‐per-­‐billion  PR       progesterone  receptor    PVN       parvocellular  nucleus  SERM       selective  estrogen  receptor  modulator    SDN-­‐POA     sexually  dimorphic  nucleus  of  the  preoptic  area  TCDD       2,3,7,8-­‐tetrachlorodibenzodioxin    TCR       T  cell  receptor  TG       thyroglobulin  

Page 6: Possible Endocrine Disruptive Effects on the Nervous and ...

  5  

TR       thyroid  hormone  receptor  TRH       thyroid  releasing  hormone  TSH       thyroid  stimulating  hormone  WHO       World  Health  Organization  

                                                                   

   

Page 7: Possible Endocrine Disruptive Effects on the Nervous and ...

  6  

1.  Introduction    Endocrine  disrupting  compounds  (EDCs)  are  compounds  that  interfere  with  the  action  of  hormones  and  arrest  the  processes  that  hormones  facilitate,  and  may  thereby  disrupt  homeostasis,  modify  developmental,  reproductive,  neurological,  behavioral  and  immune  functions  in  humans  and  animals  [1].      In  2002,  a  report  entitled  Global  Assessment  of  the  State-­‐of-­‐the-­‐Science  of  Endocrine  Disruptors  was  published  and  developed  by  the  International  Programme  on  Chemical  Safety  (IPCS),  a  joint  programme  of  the  World  Health  Organization  (WHO),  the  United  Nations  Environment  Programme  (UNEP),  and  the  International  Labour  Organization  (ILO).  The  IPCS  report  provides  a  working  definition  of  an  endocrine  disruptor  as,         "…an  exogenous  substance  or  mixture  that  alters  function(s)  of  the  endocrine  system  and  consequently  causes  adverse  health  effects  in  an  intact  organism,  or  its  progeny,  or  (sub)  populations.  A  potential  endocrine  disruptor  is  an  exogenous  substance  or  mixture  that  possesses  properties  that  might  be  expected  to  lead  to  endocrine  disruption  in  an  intact  organism,  or  its  progeny,  or  (sub)  populations."  [1]    

The  purpose  of  the  2002  IPCS  report  was  to  consolidate  the  available  scientific  knowledge  in  order  to  determine  whether  effects  seen  in  wildlife,  such  as  reproductive  toxicity,  could  be  attributed  to  chemicals  in  the  environment  [2].        From  the  1990s,  when  the  issue  of  EDCs  first  blew  up,  until  today,  much  progress  has  been  made  on  characterizing  endocrine  disruptors  and  testing  chemicals  for  endocrine-­‐disrupting  properties.  Likewise,  more  is  known  about  where  and  how  EDCs  target  several  body  systems,  such  as  the  reproductive  and  thyroid  systems.  More  research  is  still  needed,  and  emerging  findings  give  rise  to  new  questions.  While  there  is  a  plethora  of  information  available  about  the  reproductive  effects  of  several  well-­‐documented  synthetic  chemicals  that  are  EDCs,  the  effects  of  natural  compounds  such  as  phytoestrogens  on  the  endocrine  system  are  still  debated.  These  compounds  are  found  in  soya  and  other  plants,  mimicking  estrogen  and  acting  like  the  hormone  in  humans.      In  addition  to  reproductive  effects,  compounds  with  endocrine  effects  may  also  adversely  impact  other  body  systems,  such  as  the  nervous  and  immune  systems.  Effects  on  these  two  systems  have  been  sparsely  researched,  especially  in  comparison  to  other  areas.  Much  more  research  is  needed  into  what  happens  when  certain  chemicals  interfere  with  the  proper  programming  of  these  systems.  Fetal  programming  refers  to  the  idea  that  adverse  environmental  conditions  in  utero  can  interrupt  the  processes  of  cell  differentiation  and  proliferation,  altering  fetal  growth  [3].  These  interruptions  can  influence  the  setup  of  homeostatic  control  mechanisms,  leading  to  long-­‐lasting  health  effects.      

1.1. Aim  of  thesis    The  aim  of  this  thesis  is  to  give  an  overview  of  the  issues  surrounding  endocrine  disruptors.  These  issues  include  examining  the  available  data  to  determine  the  specific  pathways  with  which  certain  compounds  or  groups  of  compounds  impact  the  human  body.  Specific  pathways  of  interest  include  those  encompassing  the  neuroendocrine  and  immune  systems.  While  not  meant  as  a  comprehensive  report  covering  all  possible  mechanisms  of  action  or  all  known  details  pertaining  to  specific  body  systems,  this  thesis  summarizes  and  condenses  details  while  referencing  several  excellent  sources  that  can  provide  readers  with  further  information.      Additionally,  this  report  also  wishes  to  examine  the  individual  contribution  of  the  antioxidant  butylated  hydroxyanisole  (BHA),  the  phytoestrogen  genistein,  and  tebuconazole,  a  triazole  

Page 8: Possible Endocrine Disruptive Effects on the Nervous and ...

  7  

pesticide,  on  pathways  susceptible  to  endocrine  disruption  that  may  lead  to  adverse  effects  or  programming  defects  in  the  neuroendocrine  and  immune  systems.    

2.  Background  2.1.  Public  awareness  and  the  endocrine  disruptor  hypothesis  In  1962,  Rachel  Carson's  Silent  Spring  first  alerted  the  public  about  the  effects  of  pesticides  in  the  environment.  Carson  specifically  singled  out  the  pesticide  DDT  (dichloro-­‐diphenyl-­‐trichloroethane)  for  its  eggshell  thinning  and  cause  of  declining  bird  populations  [4].  Endocrine  disruption  gained  momentum  in  the  1990s  when  several  articles  detailing  the  health  implications  of  compounds  like  polychlorinated  biphenyls  (PCBs)  and  diethylstilbestrol  (DES)  were  published.  In  her  book,  Our  Stolen  Future,  Dr.  Theo  Colborn  details  the  history  of  DES,  a  potent  estrogenic  drug  given  to  pregnant  mothers  to  prevent  spontaneous  abortion/miscarriage.  Years  later,  it  was  discovered  that  daughters  who's  mothers  had  taken  DES  developed  an  entire  slew  of  adverse  symptoms,  including  reproductive  organ  dysfunction,  reduction  in  fertility,  immune  system  disorders,  and  early  onset  of  a  rare  form  of  cancer,  vaginal  clear  cell  adenocarcinoma  [5].  Growing  public  concern  linked  chemical  exposure  with  birth  defects,  sexual  abnormalities,  and  declining  human  sperm  counts  [6].  In  the  mid  90s,  reports  in  the  British  Medical  Journal  indicated  a  50%  drop  in  male  sperm  count  based  on  studies  from  the  US,  Europe,  and  other  parts  of  the  world  [7].      

2.2.  Policy  Implications  In  1996,  scientists,  policymakers,  NGOs,  and  organizations  like  the  OECD  (organization  for  economic  co-­‐operation  and  development),  WHO,  and  CEFIC  (European  chemical  industry  council)  assembled  in  a  workshop  in  Weybridge,  United  Kingdom,  to  discuss  the  issue  of  endocrine  disruptors  on  human  and  environmental  health  [8].  Although  participants  succeeded  in  defining  an  endocrine  disruptor,  further  action  didn't  come  until  the  European  Parliament  took  up  the  resolution  to  investigate  endocrine  disruptors  in  1998.  On  the  heels  of  this  resolution,  the  European  Commission  developed  short-­‐,  medium-­‐,  and  long-­‐term  goals  addressing  the  problem  of  EDCs.  These  goals  were  part  of  the  European  Commission  Strategy  for  Endocrine  Disruptors,  which  focuses  on  identifying  the  causes  and  consequences  of  endocrine  disruption  (ED)  and  on  designing  appropriate  policy  actions  on  the  basis  of  the  precautionary  principal  [8].        Currently,  the  goals  listed  in  the  community  strategy  are  still  valid,  and  the  latest  update  to  the  strategy  was  published  in  August  2011.  It  can  be  accessed  via  http://ec.europa.eu/environment/chemicals/endocrine/pdf/sec_2011_1001.pdf    (Sec(2012)1011)      

2.2.1.  Knowledge  gaps  and  future  needs  Despite  a  surge  in  understanding,  significant  knowledge  gaps  exist  in  multiple  facets  of  ED.  These  gaps  are  especially  emphasized  in  terms  of  mixtures  and  the  effects  of  low-­‐dose  exposure.  Individuals  are  rarely  exposed  to  isolated  chemicals;  most  exposure  occurs  in  the  form  of  mixtures,  of  which  the  effects  are  not  necessarily  the  sum  of  the  effects  of  individual  compounds  [9].  Mixture  effects  should  be  kept  in  mind  as  a  testament  to  real-­‐world  exposure  situations.      Additional  issues  arise  in  the  question  of  identifying  EDCs.  Traditional  testing  strategies  tend  to  establish  a  linear  dose-­‐response  curve,  with  more  dramatic  effects  seen  at  higher  doses  and  a  NOAEL/NOEL,  or  the  no  observed  (adverse)  effect  level  at  a  low  dose.  This  follows  the  'dose  makes  the  poison'  mantra  in  toxicology,  illustrating  that  responses  at  high  doses  can  predict  those  at  low-­‐doses  (due  to  the  graphical  relationship).  In  contrast,  studies  of  natural  hormones  

Page 9: Possible Endocrine Disruptive Effects on the Nervous and ...

  8  

and  EDCs  commonly  show  graphical  responses  that  are  not  linear,  such  as  U-­‐shaped  curves,  where  effects  are  seen  at  the  extremes,  to  inverted  U-­‐shaped,  where  the  effects  occur  between  a  particular  range  of  concentrations.  These  are  called  non-­‐monotonic  responses  [10].      A  'low-­‐dose  effect'  is  defined  by  the  National  Toxicology  Program  (NTP)  as  "any  biological  change  occurring  in  the  range  of  typical  human  exposure  or  occurring  at  doses  lower  than  those  typically  used  in  standard  testing  protocols"  [10].  The  debate  about  low-­‐dose  effects  is  whether  doses  in  this  range,  or  exposure  so  low  it  is  in  the  parts-­‐per-­‐billion  (ppb)  range,  matter.  According  to  Vandenberg  et  al.,  [10]  epidemiological  data  [11-­‐16]  supports  associations  between  disease  endpoints  and  contaminants  in  human  tissue  in  the  ppb  range,  indicating  that  low  levels  of  exposure  matter.  This  observation  becomes  a  heated  debate  in  the  realm  of  policy.  If  EDCs  exert  adverse  effects  at  environmentally  relevant  doses,  at  what  point  can  a  'safe'  level  of  exposure  be  established?  This  problem  has  not  yet  been  resolved.      In  addition  to  the  graphical  relationships  of  exposure  and  effect,  it  is  important  to  understand  the  necessity  of  establishing  testable  toxicological  endpoints  for  further  examination.  The  ability  of  a  compound  to  interact  with  the  endocrine  system  may  not  necessarily  produce  an  adverse  outcome,  and  the  complexity  of  possible  pathways  of  interaction  makes  it  essential  to  define  what  an  adverse  outcome  looks  like.  This  is  something  the  European  Food  and  Safety  Authority  (EFSA)  is  currently  looking  into.  This  also  makes  it  difficult  to  develop  test  methods  and  screening  assays:  endocrine  disruption  is  not  an  endpoint,  but  rather  a  mode  of  action.  While  testing  and  screening  methods  are  still  under  development,  the  OECD  has  integrated  several  Test  Guidelines  tailored  to  EDCs  into  a  Conceptual  Framework.  Tests  are  organized  into  five  levels  of  complexity,  largely  dealing  with  the  ability  of  compounds  to  disrupt  the  estrogen,  androgen,  and  thyroid  (EAT)  pathways.  Additionally,  a  detailed  review  paper  (DRP)  supplied  by  the  OECD  details  guidance  on  testing  approaches  that  can  be  used  to  assess  the  actions  and  toxicity  of  EDCs  on  pathways  missing  from  current  Test  Guidelines.  The  Conceptual  Framework  can  be  found  in  Appendix  1,  and  the  detailed  review  paper  can  be  accessed  via  http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2012)23&doclanguage=en    

2.3  Significance  of  the  endocrine  disruptor  hypothesis    According  to  the  WHO,  the  principal  causes  of  human  death  around  the  world  are  due  to  chronic,  non-­‐infectious  diseases.  This  includes,  but  is  not  limited  to  asthma,  birth  defects,  neurodevelopmental  disorders,  cancer,  diabetes,  obesity,  cardiovascular  disease,  and  autoimmune  disorders.  Many  of  these  are  increasing  [1].  Adult  cancers  are  exceedingly  common,  with  breast  cancer,  prostate,  cervical  cancers,  colorectal,  stomach,  liver,  oesophageal,  head,  neck,  and  bladder  cancers  listed  as  the  top  ten  most  common  cancers  globally.  In  some  countries  rates  of  thyroid  disease  are  increasing  in  children.  Pediatric  leukemia  and  brain  cancer  incidence  has  also  increased.  Many  of  these  diseases  are  common  in  highly  industrialized  countries  [1].  The  human  genome  has  not  changed  so  significantly  to  be  responsible  for  the  rapid  increase  and  prevalence  of  non-­‐infectious  diseases  of  this  nature.  However,  the  environment  continuously  changes,  and  new  chemicals  are  introduced  on  a  daily  basis.          

2.4.  Why  are  chemicals  to  blame?    Although  lifestyle  factors  such  as  diet  and  exercise  play  a  role  in  disease  manifestation,  increasing  disease  rates  tend  to  be  correlated  with  industrialization.  The  nature  of  the  illnesses  listed  in  the  previous  paragraph  can  be  associated  with  the  abnormal  functioning  of  the  endocrine  system.  Some  classes  of  industrial  chemicals  closely  resemble  endogenous  hormones,  propagating  the  belief  that  these  chemicals  mimic  human  hormones  by  binding  to  receptors  and  arresting  the  processes  that  hormones  facilitate.  The  most  widely  agreed  upon  and  well-­‐studied  mechanism  of  action  for  endocrine  disruption  is  in  the  ability  of  exogenous  chemicals  to  bind  to  

Page 10: Possible Endocrine Disruptive Effects on the Nervous and ...

  9  

and  activate  nuclear  hormone  receptors,  disrupting  the  carefully  regulated  process  of  homeostasis  [2].        The  activation  of  intracellular  receptors,  such  as  those  found  in  the  cytoplasm  and  nucleus,  is  known  as  the  classical  genomic  pathway,  and  involves  the  glucocorticoid  (GR),  mineralocorticoid  (MR),  progesterone  (PR),  androgen  (AR),  and  aryl  hydrocarbon  (AhR)  receptors.  The  estrogen  receptor  (ER)  is  found  in  the  nucleus  [17].  Structurally,  nuclear  receptors  contain  a  DNA  binding  domain  and  a  ligand-­‐binding  domain  (LBD),  along  with  a  hinge  region  connecting  the  two  domains.  The  compact  structure  of  the  LBD  is  made  up  of  11  helices  and  a  12th  helix  (H12)  acting  as  a  movable  lid  'protecting'  the  entrance  to  the  binding  pocket.  The  receptor  is  kept  inactive  by  heat  shock  proteins  or  co-­‐repressors  bound  to  the  ligand-­‐binding  domain.  When  a  ligand  interacts  with  the  LBD,  it  changes  the  position  of  H12  and  exposes  the  docking  site,  enabling  co-­‐activator  proteins  to  bind  to  helices  in  the  region  [18].  This  binding  facilitates  dimerization  of  the  receptor  with  another  receptor  (in  the  case  of  steroids)  or  with  retinoid  X  receptor  (RXR).  The  dimer  or  heterodimer  can  then  translocate  into  the  nucleus  where  it  interacts  with  hormone  response  elements  on  the  promoter  regions  of  DNA  sequences,  leading  to  the  transcription  of  genes  [19].      Additionally,  ligands  can  work  as  agonists  and  promote  transcription,  or  antagonists  and  prevent  transcription.  Ligands  that  act  as  agonists  move  H12,  enabling  the  co-­‐activators  to  bind  to  the  docking  site  of  the  LBD.  Ligands  that  are  antagonists  prevent  the  movement  of  H12,  thereby  blocking  any  docking  site  where  co-­‐activators  can  bind.  An  excellent  review  of  nuclear  receptors  and  their  modulators  has  been  written  by  Burris  et  al  [17].      Hormone  receptors  can  also  be  found  on  the  cell  membrane.  Cell  surface  receptors  have  a  similar  domain  structure  as  nuclear  receptors.  The  ligand  recognition  domain  is  exposed  on  the  outer  surface,  and  a  7-­‐transmembrane  domain  or  a  single  transmembrane  domain  spans  the  plasma  membrane.  The  carboxyl  terminal  domain  is  located  inside  the  cell.  Binding  of  a  ligand  to  the  LBD  triggers  the  activation  of  intracellular  second  messenger  systems  that  mediate  downstream  effects  and  ultimately  lead  to  biological  effects,  such  as  changes  in  metabolism.  Typically,  responses  triggered  by  membrane  receptors  occur  much  more  rapidly  than  those  triggered  by  nuclear  receptors,  nicknaming  this  pathway  the  'rapid  action,'  or  non-­‐genomic  pathway  [20].      Although  many  chemicals  implicated  as  EDCs  act  by  binding  to  nuclear  hormone  receptors,  adverse  effects  associated  from  EDC  exposure  may  not  end  at  the  target  organ;  unfavorable  outcomes  can  occur  in  different  areas  of  the  body  as  a  result  of  crosstalk  between  several  body  systems,  making  it  difficult  to  predict  the  consequences  of  exposure.    

3.  Neuroendocrine  system    3.1.  Overview    The  cells  of  the  nervous  system  include  neurons  and  their  supporting  glial  cells  [21].  Neurons  are  specialized  to  send  information  rapidly  and  consist  of  a  cell  body  and  axonal  protrusion.  An  electrochemical  impulse,  or  action  potential,  is  sent  from  its  starting  region  at  the  axon  hillock  to  its  ending  place  at  the  axon  terminals  where  neurotransmitters  are  released  into  the  synaptic  cleft  that  bridges  the  distance  between  two  neurons.  This  action  potential  is  dependent  upon  an  electrochemical  gradient  involving  the  rush  of  ions  and  calcium  (Ca2+)  into  the  cell,  depolarizing  the  membrane  and  leading  to  the  ultimate  release  of  the  neurotransmitters.  [21].      Glial  cells  include  microglial  and  astrocytes  and  serve  as  support  and  immune  cells  in  the  central  nervous  system,  or  CNS,  providing  nutrition  for  neurons,  as  well  as  regulating  

Page 11: Possible Endocrine Disruptive Effects on the Nervous and ...

  10  

inflammatory  processes  via  cytokine  release.  Glial  cells  can  detect  pathogens  both  in  the  CNS  and  in  the  periphery  through  humoral  and  neuroendocrine  circuits,  demonstrating  the  degree  of  crosstalk  that  occurs  between  the  immune  and  neuroendocrine  systems  [22].        

3.2.  Receptors  in  the  nervous  system    There  are  two  types  of  neurotransmitter  receptors:  ionotropic  (ligand-­‐gated  receptors)  and  metabotropic  (G-­‐protein  coupled  receptors).  The  binding  of  a  neurotransmitter  to  an  ionotropic  receptor  induces  the  formation  of  a  pore  in  the  receptor  through  which  ions  in  the  synapse  can  enter.  The  types  of  ions  that  can  move  through  the  pore  are  dependent  on  the  neurotransmitter-­‐receptor  binding.  For  instance,  the  binding  of  acetylcholine  (Ach)  to  nicotinic  receptors  enables  Na+  to  enter  through  the  pore  and  induce  an  excitatory  postsynaptic  potential,  due  to  the  positive  charge  of  these  ions.  In  contrast,  binding  of  the  neurotransmitter  GABA  to  nicotinic  receptors  leads  to  the  influx  of  Cl-­‐.  Chloride  anions  (Cl-­‐),  induce  an  inhibitory  postsynaptic  potential,  thereby  preventing  an  action  potential  in  the  postsynaptic  neuron  [23].        The  second  types  of  neurotransmitter  receptors  are  metabotropic  receptors,  or  G-­‐protein  coupled  receptors.  When  a  neurotransmitter  binds  to  a  metabotropic  receptor,  a  G  protein  on  the  intracellular  portion  of  the  receptor  is  activated,  initiating  the  activation  of  second  messengers  in  a  signal  transduction  cascade  and  leading  to  changes  in  the  neuron.  Often,  activation  of  muscarinic  receptors,  which  are  metabotropic  receptors,  initiates  a  signal  transduction  cascade  that  also  leads  to  the  opening  of  a  membrane  pore  and  allows  for  the  transport  of  ions  from  the  outside  into  the  inside  of  the  cell  [23].      

3.3.  Neuroendocrine  anatomy      The  nervous  and  endocrine  systems  are  physically  connected  at  the  hypothalamus,  the  brain  region  that  acts  as  a  major  regulator  of  homeostasis.  The  hypothalamus  integrates  internal  and  external  factors,  such  as  nutrition,  metabolism,  temperature,  photoperiod,  etc.  and  sends  hormonal  messages  to  the  periphery  via  the  pituitary  gland,  located  just  underneath  [24].    The  hypothalamus  contains  groups  of  neurons  organized  into  nuclei.  One  major  group  of  neurons  is  found  in  the  parvocellular  nucleus  (PVN);  these  neurons  mediate  crosstalk  with  the  pituitary  gland  and  secrete  the  hormones  oxytocin  and  vasopressin  from  the  posterior  lobe  of  the  pituitary  [25].  Two  hypothalamic  nuclei  important  in  the  programming  of  sexual  behavior  are  the  anteroventral  periventricular  nucleus  (AVPV)  and  the  sexually  dimorphic  nucleus  of  the  preoptic  area  (SDN-­‐POA).  These  areas  contain  a  high  volume  of  receptors  for  estrogens,  androgens,  and  progesterone.  Evidence  from  studies  in  rodents  indicates  that  neonatal  imprinting  of  sex-­‐specific  behaviors  is  dependent  upon  signals  from  endogenous  hormones  binding  to  their  respective  receptors  in  the  AVPV  and  SDN-­‐POA  during  narrow  critical  windows.  The  activation  of  receptors  in  these  regions  sets  up  the  proper  neural  circuitry  and  hormonal  axes  that  enable  reproduction  and  sexual  behavior  in  adulthood  [26].      The  hypothalamus  coordinates  hormone  release  with  the  pituitary  gland,  which  is  composed  of  the  posterior  and  anterior  lobes.  The  posterior  lobe  is  effectively  an  extension  of  the  hypothalamus,  while  the  anterior  lobe  is  connected  to  the  hypothalamus  by  a  region  of  interlacing  blood  vessels.  This  network  of  shared  blood  vessels  is  called  the  hypothalamo-­‐hypophyseal  portal  system  (HHPS).  When  signals  from  the  PVN  have  targets  in  the  anterior  pituitary,  chemical  messengers  released  from  nerve  terminals  are  leaked  into  the  HHPS.  They  can  then  bind  to  receptors  on  the  cells  of  the  anterior  pituitary  [25].  Figure  3.1  details  the  relationship  between  the  hypothalamus  and  both  lobes  of  the  pituitary  and  shows  which  hormones  are  released.      

Page 12: Possible Endocrine Disruptive Effects on the Nervous and ...

11    

   Figure  3.1.  The  posterior  pituitary  is  a  direct  extension  of  the  hypothalamus.  Neurosecretory  cells  from  the  hypothalamic  parvocellular  nucleus  (PVN)  extend  into  the  posterior  lobe,  signaling  the  pituitary  to  release  the  hormones  oxytocin  and  anti-­‐diuretic  hormone  (ADH)  into  blood  vessels.  (Arginine  vasopressin  (AVP)  released  by  the  posterior  pituitary  functions  as  (ADH))  The  anterior  pituitary  is  a  separate  gland  from  the  hypothalamus  and  receives  messages  from  the  CNS  via  the  hypothalamo-­‐hypophyseal  portal  system  (HHPS).  Corticotropic  cells  from  the  anterior  pituitary  respond  to  specific  signals,  releasing  the  hormones  shown  in  the  right  pane  of  the  figure  [27].      

3.4.  Neuroendocrine  Axes  

3.4.1.  HPA  Axis  An  axis  generally  refers  to  a  group  of  glands  that  signal  each  other  in  sequence.  Endocrine  axes  are  tightly  regulated  in  order  to  maintain  homeostasis  and  prevent  large  swings  in  hormone  levels.      The  hypothalamic-­‐pituitary-­‐adrenal  (HPA)  axis  is  primarily  involved  with  the  regulation  of  metabolism  in  vertebrates.  The  HPA  axis  also  plays  an  important  role  in  the  immune  system  and  has  effects  on  growth,  timing  of  puberty,  development  of  reproductive  organs,  cardiovascular  effects,  ionic  regulation,  and  memory  [25].  Figure  3.2  shows  a  schematic  drawing  of  the  HPA  axis.  Table  3.1  describes  the  hormones  involved  in  HPA  axis  signaling.    

 Figure  3.2.  Hypothalamic-­‐Pituitary-­‐Adrenal  axis.  Corticotropin  releasing  hormone  (CRH)  released  from  the  hypothalamus  stimulates  the  anterior  pituitary  to  secrete  adrenocorticotropin  (ACTH)  into  the  bloodstream.  ACTH  acts  on  the  adrenals,  leading  to  the  synthesis  of  glucocorticoids  (GC).                    

Page 13: Possible Endocrine Disruptive Effects on the Nervous and ...

12    

Table  3.1.  Important  hormones  of  the  HPA,  HPG,  and  HPT  axis        

   HPA  AXIS  

   

   

Hormone   Site  of  Production  

Target  Tissue   Function   Reference  

CRH-­‐corticotropin  releasing  hormone  

Hypothalamus  (PVN)    

CRH-­‐R  in  corticotropic  cells  

Leads  to  release  of  ACTH  from  anterior  pituitary    

[25]  

 AVP-­‐arginine  vasopressin  

 Hypothalamus  

(PVN)  

 V1aR  in  cell  membrane  of  

anterior  pituitary  

 Aids  CRH  in  release  of  ACTH  from  anterior  pituitary  

 

 ACTH-­‐

adrenocorticotropin  

 Corticotropic  cells  of  anterior  

pituitary  

 Melanocortin  

receptors  in  ZF/ZR  cells  of  adrenal  

cortex  

 Leads  to  secretion  of  

glucocorticoids  and  adrenal  androgens  

 

 GC-­‐glucocorticoids  

 Adrenocortical  

cells  

 GR1/GR2  in  cytoplasm  of  

virtually  all  cells    

 Metabolic  homeostasis,  immunosuppressive,  

 

     HPG  AXIS  

   

 Hormone  

 Site  of  

Production  

 Target  Tissue  

 Function  

 Reference      

GnRH-­‐gonadrotropin-­‐releasing  hormone  

Hypothalamus     Anterior  pituitary   Leads  to  secretion  of  gonadotropins  FSH  and  LH  

[25]  

     

FSH-­‐follicle  stimulating  hormone  

     

Anterior  pituitary  

       

Gonads  

 Females:  cyclic  recruitment  of  follicles  during  follicular  phase  

 Males:  controls  activity  of  Sertoli  

cells  &  promotes  spermatogenesis    

 

 LH-­‐luteinizing  hormone  

 Anterior  pituitary  

 Gonads  

 Females:  ovulation  &  formation  

of  corpus  luteum      

Males:  synthesis  of  androgens  in  Leydig  cells    

 

     HPT  AXIS  

   

 Hormone  

 Site  of  

Production  

 Target  Tissue  

 Function  

 Reference  

 TRH-­‐thyrotropin  releasing  hormone  

 Hypothalamus  

(PVN)  

 Thyrotrophs  in  anterior  pituitary  

 Leads  to  secretion  of  TSH  from  

anterior  pituitary  

[25]  

 TSH-­‐thyroid  

stimulating  hormone  

 Thyrotrophs  in  anterior  pituitary  

 Follicle  cells  in  thyroid  gland  

 Leads  to  iodide  uptake  in  thyroid  

cells;  synthesis,  oxidation,  iodination  of  thyroglobin;  

production  of  thyroid  hormones    

 

Thyroid  hormones  T3  and  T4    

Thyroid  colloid  cells  

Multiple  tissue  targets:  receptors  found  in  nervous  

system  and  nearly  all  cells    

Neurogenesis,  metabolism,  growth    

 

     CRH  produced  by  the  PVN  is  released  into  the  HHPS  vessels,  where  it  binds  to  its  receptor  (CRH-­‐R)  in  the  corticotropic  cells  of  the  anterior  pituitary.  Receptor  binding  initiates  the  formation  of  cyclic  adenosine  monophosphate  (cAMP),  a  second  messenger  molecule  important  for  signal  transduction  pathways.  The  production  of  cAMP  activates  phosphokinase  A  (PKA),  which  leads  

Page 14: Possible Endocrine Disruptive Effects on the Nervous and ...

13    

to  an  increase  of  available  calcium  (Ca2+)  ions.  The  surge  in  Ca2+  releases  adrenocorticotropic  hormone  (ACTH)  from  cells.  ACTH  travels  to  the  adrenals,  where  it  interacts  with  melanocortin  receptors  in  the  adrenal  cortex.  In  a  similar  pattern  as  CRH,  binding  of  ACTH  to  its  receptor  leads  to  the  synthesis  of  cAMP,  ultimately  inducing  the  adrenals  to  secrete  glucocorticoids  (GC)  and  adrenal  androgens.  In  humans,  the  main  glucocorticoid  is  cortisol  [25].        There  are  two  types  of  glucocorticoid  receptors:  the  type  I  mineralocorticoid  receptor  (MR)  and  the  type  II  glucocorticoid  receptor  (GR).  Both  receptors  belong  to  the  nuclear  hormone  superfamily  of  ligand-­‐activated  transcription  factors  and  induce  gene  transcription  via  the  classical  genomic  pathway.  Glucocorticoid  receptors  can  also  be  found  on  cell  or  mitochondrial  membranes.  Activation  of  membrane  receptors  initiates  the  rapid  response,  or  non-­‐genomic  pathway,  initiating  second-­‐messenger  signal  transduction  cascades  [3].      The  HPA  axis  is  regulated  by  a  system  of  negative  feedback  through  which  circulating  GCs  can  bind  to  receptors  in  several  places,  including  MR  in  the  hippocampus,  CRH  neurons  in  the  PVN  of  the  hypothalamus,  and  GR  in  pituitary  corticotropes.  Binding  to  these  receptors  halts  the  HPA  axis  from  releasing  additional  signals  to  continue  GC  secretion,  thus  limiting  how  much  cortisol  is  in  the  blood  [25].    

3.4.1.1.  HPA  axis  and  programming    In  utero,  fetal  exposure  to  low-­‐levels  of  maternal  GC  through  the  placenta  facilitates  the  normal  development  of  the  HPA  axis.  During  development,  GCs  accelerate  the  maturation  of  fetal  tissues  and  organs,  initiate  the  development  of  axon  terminals,  aid  in  the  remodeling  of  axons  and  dendrites,  and  modulate  the  processes  behind  neural  survival  and  apoptosis.  However,  too  high  levels  of  GC  prove  to  be  detrimental  to  the  sensitive  fetus,  as  they  can  have  negative  effects  on  neuronal  migration,  leading  to  the  inappropriate  development  of  the  cerebral  cortex  [3].  Additionally,  studies  have  shown  that  excessive  fetal  exposure  to  elevated  levels  of  GCs  "resets"  the  sensitivity  of  the  developing  HPA  axis  by  down  regulating  the  number  of  GR  and  MR.  The  down  regulation  of  receptors  impairs  normal  feedback  regulation  of  the  HPA  axis.  Often,  these  changes  persist  into  adulthood,  with  adults  who  were  subjected  to  high  levels  of  GC  in  utero  having  higher  than  normal  blood  plasma  levels  of  cortisol.  Studies  indicate  that  long-­‐term  effects  of  elevated  levels  of  GC  are  contributors  of  cardiovascular  and  metabolic  diseases  [3].        To  prevent  excess  cortisol  from  reaching  the  developing  fetus,  the  placenta  synthesizes  the  enzyme  11β-­‐hydroxysteroid  dehydrogenase  2  (11β-­‐HSD2).  This  enzyme  oxidizes  80-­‐90%  of  maternal  glucocorticoids  before  they  can  cross  the  placenta  and  enter  fetal  circulation.  The  remaining  10-­‐20%  of  maternal  GC  does  enter  fetal  circulation.  As  gestation  progresses,  the  expression  and  activity  of  11β-­‐HSD2  steadily  increases  until  about  gestational  age  38-­‐40  weeks.  At  this  point,  the  activity  of  the  enzyme  sharply  declines,  enabling  a  greater  amount  of  maternal  GC  to  enter  fetal  circulation.  This  speeds  up  the  organ  maturation  process  in  time  for  delivery.  Another  protective  mechanism  in  the  placenta  is  the  expression  of  P-­‐glycoprotein  (P-­‐gp)  drug  transporter.  While  unspecific  to  glucocorticoids,  P-­‐gp  regulates  the  kinds  of  endogenous  compounds  that  can  be  transferred  between  mother  and  fetus  [3].      

3.4.2.  HPG  axis  The  hypothalamic-­‐pituitary-­‐gonadal  axis  is  primarily  involved  in  reproduction  and  germ  cell  production.  During  early  development,  the  HPG  axis  regulates  the  differentiation  of  the  sex-­‐specific  phenotype  by  inducing  primary  sexual  characteristics  and  sex-­‐specific  behavior,  which  is  dependent  on  sex-­‐specific  expression  of  endogenous  hormones  [25].  The  AVPV  and  SDN-­‐POA  expresses  ER,  AR,  and  PR  in  a  sexually  dependent  manner.  Female  rats  have  a  larger  AVPV  in  comparison  to  males,  while  males  have  a  larger  SDN-­‐POA  [26].  Figure  3.3  shows  the  flow  of  hormones  to  the  various  glands  that  make  up  this  axis.  Table  3.1  describes  the  hormones  involved  in  HPG  axis  signaling.  

Page 15: Possible Endocrine Disruptive Effects on the Nervous and ...

14    

 

 Figure  3.3.  Hypothalamic-­‐pituitary-­‐gonadal  axis.  Gonadotropin-­‐releasing  hormone  (GnRH)  from  the  hypothalamus  acts  on  receptors  in  the  anterior  pituitary,  leading  to  the  release  of  follicle  stimulating  hormone  (FSH)  and  luteinizing  hormone  (LH).  FSH  and  LH  act  on  the  gonads,  facilitating  the  synthesis  of  sex  steroids.      Gonadrotropin-­‐releasing  hormone  (GnRH)  is  released  from  the  hypothalamus  and  acts  on  receptors  in  the  anterior  pituitary.  In  response  to  GnRH,  the  anterior  pituitary  releases  two  gonadotropins:  follicle-­‐stimulating  hormone  (FSH)  and  luteinizing  hormone  (LH).  These  hormones  have  their  target  receptors  in  the  gonads.  In  females,  FSH  recruits  follicles  during  the  follicular  phase,  while  a  surge  in  LH  leads  to  ovulation  and  the  formation  of  the  corpus  luteum.  In  males,  LH  regulates  androgen  synthesis  in  Leydig  cells,  while  FSH  controls  the  activity  of  Sertoli  cells  and  induces  spermatogenesis  in  combination  with  androgens.  The  functions  of  FSH  are  generally  attributed  to  making  gametes,  while  LH  is  credited  with  the  synthesis  of  the  sex  steroids  from  the  precursor  cholesterol.  Steroid  hormones  act  by  binding  to  nuclear  receptors,  but  they  can  also  activate  the  non-­‐genomic  pathway  via  a  G-­‐protein  coupled  receptor.  The  HPG  axis  is  regulated  by  a  system  of  negative  feedback,  where  sex  steroids  bind  to  receptors  in  the  hypothalamus  and  pituitary,  inhibiting  the  production  of  GnRH.  Additionally,  inhibin  hormone  produced  by  the  gonads  acts  on  receptors  in  the  pituitary,  suppressing  FSH  secretion  [25,  28].  

3.4.2.1.  HPG  axis  and  programming    During  early  development,  sex  steroids  play  an  active  role  in  the  differentiation  of  a  sex-­‐specific  phenotype,  as  well  as  in  proper  sexual  differentiation  of  the  brain,  which  is  essential  in  achieving  reproductive  competence  in  adulthood  [26].  Development  of  the  male  duct  system  is  dependent  on  the  expression  of  the  SRY  gene,  found  on  the  Y  chromosome,  during  days  41  to  44  of  gestation  in  humans.  In  undifferentiated  gonads,  both  male  and  female  ducts  exist,  with  the  Müllerian  ducts  giving  rise  to  the  female  duct  system  and  the  Wolffian  ducts  giving  rise  to  male  specific  organs.  SRY  degenerates  the  Müllerian  ducts  and  leads  to  the  expression  of  androgens  from  fetal  Leydig  cells.  Testosterone  from  Leydig  cells  facilitates  the  formation  of  male  specific  sexual  organs  and  ducts,  such  as  the  epididymis,  vas  deferens,  seminal  vesicles,  prostate,  and  ejaculatory  ducts.  In  the  absence  of  SRY,  Müllerian  ducts  persist  and  Wolffian  ducts  regress,  leading  to  the  development  of  ovarian  follicles  and  uterus  and  vagina  [29].      Male  and  female  differences  are  not  confined  to  the  duct  systems-­‐there  are  also  anatomical  differences  in  the  brain  of  males  and  females.  These  differences  include  total  brain  volume,  relative  sizes  of  hippocampus  and  corpus  callosum,  cortical  thickness  and  symmetry,  the  proportion  of  lipid  content  to  gray  matter,  and  the  distribution  of  androgen  and  estrogen  receptors.  As  already  mentioned,  female  rats  have  a  larger  AVPV  in  comparison  to  males,  while  male  rats  have  a  larger  SDN-­‐POA  [26].  The  AVPV  controls  the  preovulatory  surge  in  levels  of  GnRH/LH  in  female  rats.  In  rats,  steroid  feedback  in  the  AVPV  imprints  the  surge  in  GnRH/LH  before  ovulation.  This  imprinting  must  occur  by  postnatal  day  5,  or  female  rats  are  unable  to  exhibit  a  surge  [26].  An  increase  in  GnRH  in  the  pituitary  prompts  the  release  of  LH,  which  stimulates  ovulation.  If  females  are  unable  to  exhibit  a  surge  in  both  hormones,  ovulation  does  not  occur  and  the  female  will  be  infertile  [30].  While  the  function  of  the  AVPV  is  less  known  in  

Page 16: Possible Endocrine Disruptive Effects on the Nervous and ...

15    

males,  male  rats  that  are  neonatally  stressed  have  a  larger  AVPV  and  are  less  likely  to  ejaculate,  suggesting  that  these  males  have  been  feminized  and  that  AVPV  size  is  inversely  correlated  with  masculine  sexual  behavior.  Inversely,  the  SDN-­‐POA  is  approximately  5-­‐fold  larger  in  male  rats.  Female  rats  given  testosterone  on  gestational  days  18-­‐20  (but  not  earlier),  or  on  postnatal  days  2-­‐5  had  larger  than  normal  SDN-­‐POA  volumes.  Castrating  male  rats  during  postnatal  day  1  leads  to  a  smaller  SDN-­‐POA  volume  [26].      Steroid  hormones  drive  the  organization  of  appropriate  neural  pathways  specific  for  male  and  female  differentiation  and  can  exert  their  organizational  effects  by  binding  to  their  receptors  in  the  AVPV  and  SDN-­‐POA.  The  disruption  of  receptor  binding  results  in  abnormal  organization  of  the  brain,  which  can  be  seen  in  rodent  models  where  the  volumes  of  the  AVPV  or  SDN-­‐POA  have  been  affected,  resulting  in  feminization  of  males  or  masculinization  of  females.  The  absence  of  fetal  imprinting  by  steroid  hormones  prevents  the  occurrence  of  sex-­‐specific  mating  behaviors  in  adulthood  [26].    

3.4.3.  HPT  axis  The  hypothalamic-­‐pituitary-­‐thyroid  axis  is  primarily  involved  with  the  regulation  of  thyroid  hormones.  Thyroid  hormones  (T3  and  T4)  are  essential  for  neurodevelopment,  growth,  and  metabolism.  Figure  3.4  shows  the  flow  of  hormones  to  the  various  glands  that  make  up  this  axis.  Table  3.1  describes  the  hormones  involved  in  HPT  axis  signaling.      

 Figure  3.4.  Hypothalamic-­‐pituitary-­‐thyroid  axis.  Thyrotropin  releasing  hormone  (TRH)  from  the  hypothalamus  stimulates  the  anterior  pituitary  to  release  thyroid  stimulating  hormone  (TSH).  TSH  acts  on  thyroid  receptors  in  thyroid  follicle  cells  and  leads  to  the  production  of  thyroid  hormones  T3  and  T4.      Thyrotropin  releasing  hormone  (TRH)  produced  by  the  PVN  is  released  into  the  HHPS  vessels,  where  it  binds  to  its  receptor  TRH-­‐R  located  in  the  plasma  membrane  of  thyrotrophs  in  the  anterior  pituitary.  TRH-­‐R  is  a  G-­‐protein  coupled  receptor;  the  phosphorylation  of  TRH-­‐R  leads  to  the  activation  of  second  messenger  systems  and  downstream  kinases  that  result  in  the  synthesis  of  thyroid  stimulating  hormone  (TSH)  from  anterior  pituitary  thyrotrophs  [25].  TSH  binds  to  cell  surface  receptors  of  thyroid  follicle  cells,  activating  second  messenger  signal  cascades  and  resulting  in  multiple  effects  such  as  the  increased  uptake  of  iodide  into  thyroid  cells,  synthesis  and  oxidation  of  thyroglobin  (TG),  iodination  of  tyrosyl  residues  on  TG,  and  production  of  thyroid  hormones  T3  and  T4  [25].  Additionally,  TSH  stimulates  the  endocytosis  of  T3  and  T4  from  thyroid  colloid  into  central  circulation.      Thyroid  hormones  are  lipophilic  and  can  passively  diffuse  across  cell  membranes  in  target  tissues,  although  specialized  transporters  have  been  identified  for  them  as  well  [25].  Inside  the  cell,  thyroid  hormone  binds  to  thyroid  hormone  receptor  (TR),  which  exists  in  three  major  subtypes  (TRα,  TRβ1,  TRβ2).  Receptors  tend  to  be  tissue  and  temporal  specific.  The  biologically  active  form  of  thyroid  hormone  is  T3,  and  deiodinases  in  target  tissues  and  cells  convert  T4  into  T3.  These  enzymes  are  also  responsible  for  the  synthesis  and  breakdown  of  thyroid  hormones  [25].  T3  has  near  equal  affinity  for  all  three  subtypes,  and  binds  with  50  fold  greater  affinity  for  

Page 17: Possible Endocrine Disruptive Effects on the Nervous and ...

16    

the  TR  than  T4.  TR  is  part  of  the  nuclear  family  of  receptors,  and  binding  of  T3  activates  the  genomic  pathway,  leading  to  transcription  of  genes  involved  in  development,  growth,  and  metabolism.  Negative  feedback  in  the  HPT  axis  results  from  the  binding  of  T3  to  TRβ,  reducing  levels  of  TRH  and  TSH  [25].    

3.4.3.1.  HPT  axis  and  programming  Thyroid  hormones  (TH)  regulate  the  processes  behind  the  growth  of  dendrites  and  axons,  formation  of  synapses,  and  migration  and  myelination  of  neurons  [31].  In  humans,  generation  of  neurons  occurs  during  weeks  5-­‐20  of  gestation;  the  fetus  does  not  begin  secreting  its  own  thyroid  hormones  until  gestational  weeks  18-­‐22.  This  means  that  the  TH  necessary  for  neurogenesis  comes  from  the  mother  and  crosses  the  placenta  to  bind  to  TH  receptors  in  different  developing  fetal  brain  regions  [32].  T3  is  detected  in  the  fetal  brain  in  the  first  trimester,  while  T4  in  the  brain  can  be  detected  between  weeks  11  and  14.  Levels  of  type  II  5-­‐monodeiodinase  (the  enzyme  that  converts  T4  into  T3)  are  detected  in  brain  tissue  up  until  weeks  19-­‐22  of  gestation.  Maternal  T3  peak  around  weeks  15-­‐18,  coinciding  with  the  onset  of  fetal  thyroid  hormone  production  [31].  Animal  models  of  thyroid  deficiency  have  shown  that  the  need  for  TH  differs  among  brain  regions,  with  basal  ganglia  needing  TH  earlier  than  the  hippocampus.  Posterior  regions  of  the  cerebral  cortex  bind  TH  earlier  than  anterior  regions.  In  human  development,  the  thyroid  gland  first  appears  during  the  first  trimester,  and  it  is  fully  functional  at  birth  [32,  33].    Severe  deficiencies  of  TH  during  human  development  are  associated  with  irreversible  damage  to  multiple  organ  systems  [33].  For  instance,  maternal  hypothyroidism  (MH)  and  congenital  hypothyroidism  (CH)  are  two  models  of  TH  inadequacy  during  gestation  and  early  life,  and  are  associated  with  cognitive  and  motor  defects,  as  well  as  reduced  IQ  scores.  Because  the  fetus  begins  secreting  its  own  TH  during  the  second  half  of  gestation,  the  effects  of  MH  typically  impact  development  only  during  the  first  half  of  gestation.  CH  is  caused  by  a  structural  or  functional  abnormality  in  the  development  of  the  thyroid  gland,  which  has  a  greater  impact  in  the  brain  in  the  second  half  of  gestation.  Additionally,  TH  insufficiency  is  associated  with  compromised  development  of  the  hippocampus,  the  area  of  the  brain  largely  responsible  for  memory.  In  children  with  varying  degrees  of  hypothyroidism,  both  MH  and  CH  groups  exhibit  memory  defects  with  differences  in  the  types  of  defects.  For  instance,  MH  leads  to  greater  difficulty  in  event  recall,  while  spatial  memory  tasks  are  affected  in  CH  groups.  Additionally,  the  size  and  structural  integrity  of  the  hippocampus  is  affected  in  children  with  MH  and  CH  [33].  Screening  for  CH  is  possible  and  effects  of  hypothyroidism  can  be  made  better  with  thyroxine  supplementation.  Besides  lower  IQ  scores  and  effects  on  memory,  severe  mental  retardation  occurs  if  CH  is  left  untreated  [34].      Goiter  is  a  condition  often  caused  by  lack  of  iodine  in  the  diet.  The  enzyme  thyroid  peroxidase  catalyzes  the  iodination  of  thyroglobulin  (TG)  in  thyrotrophs  and  the  oxidative  coupling  of  diiodothyronine,  resulting  in  thyroid  hormone  formation.  A  lack  of  iodine  makes  it  impossible  to  iodinate  TG,  thereby  inhibiting  the  production  of  thyroid  hormones.  Lack  of  circulating  T3  and  T4  interferes  with  the  negative  feedback  mechanisms  of  the  HPT  axis,  and  the  anterior  pituitary  incrementally  produces  TSH,  leading  to  the  growth  of  the  thyroid  gland.  This  condition  is  known  as  goiter  [35].    

4.  Immune  System    4.1.  Overview    The  immune  system  can  be  divided  into  two  branches,  the  first  consisting  of  non-­‐specialized  defenses  such  as  physical  barriers  (skin  and  mucous  membranes),  mechanical  barriers  (cilia  on  epithelial  cells  that  'flush'  bacteria  away),  and  phagocytic  immune  cells  that  engulf  foreign  

Page 18: Possible Endocrine Disruptive Effects on the Nervous and ...

17    

bacteria.  This  branch  is  often  referred  to  as  the  innate  immune  system.  The  second  branch  of  the  immune  system  is  generally  referred  to  as  the  specialized  branch  of  the  immune  system,  or  the  adaptive  immune  system,  and  primarily  consists  of  B  and  T  lymphocytes.  These  cells  distinguish  between  the  types  of  bacteria  and  viruses  that  make  their  way  into  the  body  by  responding  to  specific  recognition  patterns  (antigens)  on  the  surfaces  of  foreign  cells.  In  contrast  to  the  innate  immune  system,  adaptive  immune  cells  have  the  ability  to  'remember'  the  distinctive  shapes  of  bacterial  antigens,  ensuring  that  defenses  can  be  mobilized  quickly  and  efficiently  upon  second  exposure  to  pathogens  [36].  Different  types  of  B  and  T  lymphocytes  and  their  functions  are  summarized  in  Table  4.1.    

Table  4.1.  Characteristics  and  functions  of  B  and  T  lymphocytes  [37].  (CD  =  'cluster  of  differentiation';  describes  cell  surface  molecules.  INF=  'interferons';  refers  to  proteins  released  by  host  cells  in  response  to  pathogens.  IL=  'interleukin';  refers  to  proteins  that  mediate  communication  between  cells;  MHC  =  major  histocompatibility  complex;  APC  =  antigen  presenting  cell;  Treg  =  regulatory  T  cells  [36-­‐40].

T  Cells    Types   Characteristics/Description   Function  Effector/Helper     Execute  immune  functions;  CD4+  

glycoprotein  expressed  on  surface  Activate  cytotoxic  T  cells,  B  cells;  bind  to  MHC  II  on  APC;  secrete  cytokines  assisting  in  immune  response    

Cytotoxic     CD8+  glycoprotein  expressed  on  surface   Destroy  infected  cells;  bind  to  MHC  I  on  APCs    

Memory     Either  CD4+  or  CD8+;  typically  express  CD45RO  on  surface  

Long-­‐lived  cells;  quickly  become  effector  T  cells  after  re-­‐exposure  to  cognate  antigen      

Regulatory   CD4+  Treg  or  adaptive  Treg   Maintain  immune  tolerance      

Natural  Killer  T  cells    

Contain  a    T  cell  receptor  and  surface  marker  CD1d  

Release  cytokines  (IL-­‐2,  IL-­‐4)  and  INFγ.  Recognizes  bacterial  glycoproteins      

B  Cells    Types   Characteristics/Description   Function  Effector   Activated  B  cell;  contains  extensive  amount  

of  rough  ER    

Production  of  antibodies    

Plasma   Type  of  mature  effector  cell   Rapidly  dividing,  short-­‐lived  cells  with  primary  purpose  to  secrete  antigens      

Memory     CD27+  glycoprotein  expressed  on  surface     Long-­‐lived  cells;  quickly  become  effector  B  cells  after  re-­‐exposure  to  cognate  antigen    

 

4.2.  Lymphocyte  maturation  and  selection  The  main  task  of  the  immune  system  is  to  distinguish  host  cells  from  non-­‐host  cells.  A  dysfunctional  immune  system  that  cannot  tell  the  difference  manifests  in  autoimmune  disorders.  In  these  cases,  the  body  wreaks  havoc  on  its  own  organs  or  cells,  resulting  in  massive  cell  death.  In  order  to  prevent  self-­‐reactivity,  there  are  sophisticated  measures  of  selection  processes  in  the  maturation  of  B  and  T  cells.      Both  B  and  T  cells  are  made  in  primary  lymphoid  organs,  or  the  organs  where  lymphocytes  originate.  B  cells  are  manufactured  in  the  bone  marrow,  while  T  cells  are  produced  in  the  thymus.  Both  cell  types  undergo  an  extensive  process  of  selection  for  self-­‐reactivity  in  their  respective  primary  lymphoid  organs.  B  cells  that  react  too  strongly  to  self-­‐antigens  are  given  the  opportunity  to  rearrange  their  B  cell  receptors  (BCR).  If  they  continue  to  react  to  self-­‐antigens,  they  undergo  apoptosis.  T  cells  differentiate  into  cells  expressing  specific  cell  surface  molecules,  referred  to  as  'CD'  or  'cluster  of  differentiation'  molecules.  The  expression  of  specific  CD  types  gives  T  lymphocytes  their  unique  identities,  and  T  cells  can  differentiate  into  CD4+  or  CD8+  cells.  Only  lymphocytes  that  pass  the  selection  process  are  allowed  to  migrate  to  secondary  lymphoid  organs,  the  organs  where  lymphocytes  reside  in,  such  as  the  spleen  and  lymph  nodes.  

Page 19: Possible Endocrine Disruptive Effects on the Nervous and ...

18    

Here  they  await  stimulation  by  Helper  T  cells  or  antigen-­‐presenting  cells  (APC)  to  mature,  produce  antibodies,  and  fulfill  their  functions  as  summarized  in  Table  4.1  [36,  37,  40].      

4.3.  Lymphocyte  activation  Naïve  B  and  T  cells  have  not  yet  been  exposed  to  an  antigen  and  must  be  activated  by  APCs.  Examples  of  APCs  include  macrophages,  dendritic  cells,  epithelial  cells,  fibroblasts,  and  B  lymphocytes  themselves.  These  cells  engulf  bacteria,  break  it  down  into  its  peptide  components,  and  present  pieces  of  the  bacterial  peptides  on  a  protein  complex  called  the  major  histocompatibility  complex  (MHC).  There  are  two  types  of  MHC:  the  MHA  I  and  MHC  II  complexes.  Virtually  all  nucleated  cells  are  able  to  present  an  antigen  on  an  MHC,  but  only  APCs  are  able  to  activate  Helper  T  cells  by  presenting  antigen  via  the  MHC  II  complex.  Presenting  an  antigen  on  the  MHC  I  complex  is  a  signal  that  infected  cells  uses  to  mark  them  for  destruction  [36,  40].      The  process  of  activating  naïve  T  cells  involves  the  release  of  cytokines,  the  chemical  messengers  of  the  immune  system.  Essentially,  activated  CD4+  cells  become  Helper  T  cells;  these  cells  co-­‐stimulate  naïve  B  cells  to  produce  antigen-­‐specific  antibodies.  CD8+  T  cells  that  interact  with  MHC  I  become  Cytotoxic  T  cells.  Cytotoxic  T  cells  release  specific  proteins  into  the  infected  cell  to  promote  apoptosis.  The  ability  of  cytotoxic  T  cells  to  destroy  infected  cells  is  known  as  the  Th1  response,  or  the  cell-­‐mediated  immune  response.  B  cells  are  key  players  of  the  humoral  response,  or  the  Th2  response.  The  two  responses  overlap  and  work  together  to  rid  the  body  of  bacteria  or  other  foreign  entities  [36,  37].      

4.4.  Immune  development  and  programming  Just  like  the  nervous  system,  the  immune  system  is  sensitive  to  external  disturbances  during  the  prenatal  and  early  postnatal  periods  of  development.  A  wide  range  of  factors  can  establish  the  trajectory,  or  course,  of  tissue  function  in  adulthood  and  risk  of  disease.  Figure  4.2  describes  the  relative  timeline  of  'critical  windows'  occurring  in  the  development  of  the  immune  system.  These  events  include  the  seeding  of  non-­‐immune  tissues  with  the  precursors  of  specialized  immune  cells  (or  cells  that  will  become  microglia,  alveolar  macrophages,  Kupffer  cells,  skin  dendritic  cells,  Langerhans  cells,  testicular  macrophages,  specialized  gastrointestinal  tract  immune  residents)  the  positive  and  negative  selection  of  thymocytes,  macrophage  maturation  near  birth,  and  the  postnatal  maturation  of  dendritic  cells  to  protect  against  hyperinflammation  after  birth  [41].      

   Figure  4.2.  Relative  timeline  of  windows  of  immune  vulnerability  in  humans  and  rodents.  Days  and  weeks  refer  to  gestational  days  and  weeks,  respectively  [42].      

Page 20: Possible Endocrine Disruptive Effects on the Nervous and ...

19    

Prenatal  chemical  exposure  can  alter  innate  immune  function;  mice  prenatally  exposed  to  tetrachlorodibenzodioxin  (TCDD)  and  presented  with  influenza  virus  after  birth  displayed  abnormal  signaling  of  epithelial  and  endothelial  cells  in  the  lung,  leading  to  excessive  neutrophil-­‐driven  inflammation  that  did  not  resolve  appropriately.  Lung  damage,  bronchial  pneumonia,  and  increased  mortality  occurred  [41].  In  a  different  animal  model,  perinatal  exposure  of  Wistar  rats  to  bisphenol  A  (BPA)  at  the  level  of  the  NOAEL  (5  mg/kg  bw/day)  resulted  in  female  adults  with  altered  architecture  of  tight-­‐junctions  in  between  gut  epithelial  cells  and  an  impaired  immune  response  in  the  colon  [41,  43].      Importantly,  these  animal  studies  show  that  prenatal  exposure  to  chemicals  can  predispose  the  subjects  to  misregulated  inflammation  as  adults;  however,  the  symptoms  may  not  show  up  until  the  appropriate  host  challenge  is  administered.  Thus,  in  TCDD  treated  mice,  lung  damage  and  abnormal  epithelial  cell  signaling  did  not  occur  until  the  mice  were  given  influenza.  Similarly,  in  BPA-­‐treated  rats,  misregulated  inflammation  did  not  occur  until  presented  with  allergens  in  adulthood  [43].      

4.5.  Cytokines    Cytokines  are  exchanged  throughout  the  interaction  of  B  and  T  cells,  macrophages,  and  the  components  of  the  innate  and  adaptive  immune  systems.  Their  signaling  pathways  facilitate  inflammatory  processes  and  responses  of  immune  cells  to  various  stimuli,  described  in  Table  4.2.  Cytokine  signaling  is  not  solely  confined  to  the  immune  system,  as  nearly  all  nucleated  cells  secrete  cytokines  (e.g.  glial  cells,  liver  cells)  [22,  44].      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 21: Possible Endocrine Disruptive Effects on the Nervous and ...

20    

Table  4.2.  Cytokines  of  the  immune  system  and  their  effects.  'IL'  refers  to  'interleukin'  [39,  45].    Cytokine/functional  class  

Cell  source   Cell  Target   Primary  effects   Other  effects  

IL-­‐1  (pro-­‐inflammatory  cytokines)    

Monocytes  Macrophages  Fibroblasts  Epithelial  cells  Endothelial  cells  Astrocytes    

T  cells;  B  cells  Endothelial  cells  Hypothalamus  Liver  

Co-­‐stimulatory  molecule  Activation  (inflammation)  Fever    

Increase  innate  immune  response  

IL-­‐2  (lymphocyte  growth  factors)    

T  cells;  NK  cells   T  cells  B  cells  Monocytes  

Growth    Growth    Activation    

Th1/Th2  polarization  

IL-­‐4  (lymphocyte  growth  factors)  

   T  cells  

Naïve  T  cells    T  cells  B  cells  

Differentiation  into  a  Th2  cell  Growth  Activation  and  growth;  isotype  switching  to  IgE    

Th1/Th2  polarization  

IL-­‐5  (Th2  cytokine)  

T  cells   B  cells  Eosinophil  

Growth  and  activation  

Increase  antibody  production    

IL-­‐6    

T  cells;  Macrophages;  fibroblasts  

T  cells;  B  cells;      Mature  B  cells    Liver  

Costimulatory  molecule  Growth  (in  humans)  Acute  phase  reactants    

B  cell  activation  

IL-­‐8  family    (chemostatic)  

Macrophages;  epithelial  cells;  platelets    

Neutrophils   Activation  and  chemotaxis    

Increases  cell  activation  

IL-­‐10  (anti-­‐inflammatory  cytokines)  

T  cells  (Th2)   Macrophages    T  cells  

Inhibits  APC  activity  Inhibits  cytokine  production  

Decreases  expression  of  inflammatory  genes;  decreases  cytokine-­‐mediated  lethality      

IL-­‐12  (Th1  cytokine)  

Macrophages;  NK  cells  

Naïve  T  cells   Differentiation  into  Th1  cell    

Increases  Th1  response  

IFNγ  (Th1  cytokine;  type  II  interferon)  

T  cells;  NK  cells   Monocytes  Endothelial  cells  Many  tissue  cells,  esp  macrophages  

Activation  Activation    Increased  MHC  I  &  II    

Increases  Th1  response  

TNFα  (pro-­‐inflammatory  cytokines)  

Macrophages;  T  cells  

Similar  to  IL-­‐1   Similar  to  IL-­‐1   Increases  inflammatory  mediators,    Increases  innate  immune  response  

 

4.6.  The  inflammatory  response  Inflammation  is  the  immune  system’s  response  to  stress  or  infection.  Injured  tissues  generate  local  pro-­‐inflammatory  stimuli  to  drive  acute  inflammation,  such  as  the  release  of  histamine  and  secretion  of  cytokines.  As  a  result  of  histamine  release,  tight  junctions  in  between  endothelial  cells  of  blood  capillaries  in  damaged  tissues  become  'leaky,'  enabling  proteins,  leukocytes,  and  other  molecules  from  the  blood  or  lymphatics  to  access  the  site  of  injury.  Leukocytes  are  attracted  to  the  injured  tissue  due  to  the  signaling  of  the  pro-­‐inflammatory  cytokines  IL-­‐1β  and  TNFα.  Edema  in  damaged  tissues  occurs  as  a  result  of  the  arrival  of  fluid  from  the  vascular  compartment.  Endothelial  cells  become  activated,  releasing  additional  cytokines  to  attract  and  

Page 22: Possible Endocrine Disruptive Effects on the Nervous and ...

21    

activate  other  cells,  such  as  neutrophils.  Endothelial  cells  also  express  tissue  factors  on  their  surfaces,  which  aids  in  coagulation.  Neutrophils  and  other  leukocytes  attach  themselves  to  the  vascular  endothelium,  and  platelets  enter  the  vessels.  Fibrin  protein  is  deposited  to  'plug'  or  clot  the  wound,  followed  by  the  aggregation  of  platelets  in  the  injured  area.  Macrophages  and  phagocytes  deposited  into  the  area  engulf  bacteria  and  release  proteases  and  oxidants.  This  response  is  terminated  once  the  invader  is  destroyed  or  the  injury  is  repaired.  Failure  to  remove  the  agent  that  initiated  the  response  will  lead  to  chronic  inflammation,  which  can  cause  tissue  damage.  Upon  termination  of  acute  inflammation,  leukocytes  and  macrophages  either  undergo  apoptosis  or  drain  back  into  the  lympathics  [45].    

In  the  initial  stages  of  inflammation,  the  rapid  release  of  cytokines  from  cells  is  known  as  'cytokine  storm.'  This  response  of  the  body  serves  to  limit  or  clear  infections  while  buying  time  for  the  more  efficient  adaptive  immune  response  to  be  established.  However,  in  cases  of  severe  bacterial  infection,  cytokine  synthesis  may  become  deregulated  and  the  inflammatory  response  goes  into  overdrive.  This  leads  to  a  condition  known  as  sepsis,  which  contributes  to  organ  failure  and  can  be  lethal.  In  contrast,  extreme  down-­‐regulation  of  the  inflammatory  response  can  also  be  lethal,  as  this  suppresses  the  immune  system  and  makes  the  host  extremely  sensitive  to  bacterial  infections  [46].    

In  addition  to  activating  the  adaptive  immune  system,  pro-­‐inflammatory  cytokines  activate  the  hypothalamic-­‐pituitary-­‐adrenal  axis.  Glucocorticoids  suppress  inflammation  and  protect  local  tissues  from  prolonged  exposure  to  cytokines  [47,  48].  TNFα,  IL-­‐1β,  IL-­‐6,  IL-­‐2,  and  IFN-­‐γ  can  also  act  directly  on  the  pituitary  and  adrenals,  resulting  in  increases  in  ACTH  and  cortisol.  In  cases  of  chronic  inflammation,  abnormal  HPA  axis  response  has  been  implicated.  Some  patients  with  rheumatoid  arthritis  have  inappropriately  low  amounts  of  ACTH  in  serum  in  comparison  to  the  degree  of  inflammation.  This  impairment  in  the  production  of  ACTH  results  in  decreases  in  cortisol  and  in  adrenal  androgens,  and  thus  the  inflammatory  response  is  unchecked  [48].      The  ‘checking’  of  inflammatory  processes  by  glucocorticoids  is  one  example  of  crosstalk  between  the  immune  and  neuroendocrine  systems.  Inflammatory  events  occurring  during  critical  windows  of  neural  development  are  also  implicated  in  behavioral  and  psychological  disorders,  such  as  autism  or  schizophrenia  [49].  These  are  discussed  in  section  5.      

5.  Crosstalk  between  the  immune  and  neuroendocrine  systems  and  its  implications  in  developmental  programming    Based  on  the  development  of  the  three  major  neuroendocrine  axes,  HPA,  HPG,  and  HPT,  it  is  clear  that  aberration  in  the  normal  patterns  of  development—e.g.  a  lack  of  steroid  hormones  binding  to  their  appropriate  receptors  in  the  AVPV  and  SDN-­‐POA,  maternal  iodine  deficiency  or  absence  of  TH  crossing  the  placenta  during  the  first  half  of  gestation,  or  too  high  levels  of  maternal  GCs  crossing  the  placenta—can  lead  to  abnormal  patterns  in  behavior  and  impaired  cognitive  function  in  the  newborn,  with  some  of  these  behaviors  persisting  to  adulthood.  There  is  also  evidence  that  early  immune  insults,  such  as  bacterial  or  viral  infections,  have  permanent  programming  effects  on  the  nervous  system  and  may  even  be  linked  to  psychiatric  disorders  [49].      Crosstalk  between  the  immune  and  nervous  system  occurs  in  the  form  of  transport  of  cytokines  through  the  blood  brain  barrier  (BBB)  from  the  periphery  and  vice  versa,  and  via  the  neuronal  activation  of  the  HPA  axis  to  execute  tasks  in  the  periphery,  such  as  the  stress  response  (discussed  in  section  4.5).  The  CNS  has  its  own  resident  immune  cells  in  the  form  of  microglia  and  astrocytes,  as  well  as  perivascular  macrophages,  endothelial  cells,  oligodendrocytes,  and  neurons.  These  cell  types  fulfill  immune  functions  in  the  brain  [49].  In  an  excellent  review  article  written  by  Bilbo  and  Schwarz  [49],  the  authors  stress  that  cytokines  are  essential  for  

Page 23: Possible Endocrine Disruptive Effects on the Nervous and ...

22    

normal  synaptic  plasticity  and  learning  and  memory  behaviors.  They  emphasize  the  importance  of  IL-­‐1β  in  the  hippocampus;  mice  lacking  IL-­‐1β  or  its  receptor  have  dramatically  impaired  hippocampal-­‐dependent  learning  and  memory.  The  opposite  is  also  true.  Inflated  levels  of  IL-­‐1β  within  the  brain  are  associated  with  memory  impairments,  which  can  be  seen  in  patients  that  have  cognitive  deficiencies  and  suffer  from  chronic  inflammatory  diseases  like  Alzheimer's,  autoimmune  diseases,  or  AIDS-­‐related  dementia  [49].  Adult  rats  neonatally  infected  with  E.  coli  showed  no  differences  in  the  expression  of  IL-­‐1β  in  comparison  to  non-­‐neonatally  infected  controls.  However,  adult  challenge  with  LPS  (which  mimics  the  effects  of  E.  coli)  in  the  neonatally  infected  rats  immediately  unregulated  gene  expression  of  IL-­‐1β,  its  receptor,  and  caspase  1  (enzyme  that  cleaves  IL-­‐1β  into  its  active  form).  This  does  not  happen  in  control  rats.  As  IL-­‐1  is  a  pro-­‐inflammatory  cytokine  (Table  4.2),  researchers  have  suggested  that  early-­‐life  infection  programs  the  brain  to  shift  to  a  pro-­‐inflammatory  phenotype  when  presented  with  immune  challenge  in  adulthood,  which  leads  to  cognitive  defects  and  memory  impairments  [49].      This  is  consistent  with  the  "two  hit  hypothesis"  of  schizophrenia,  which  postulates  that  the  combination  of  underlying  vulnerability  and  a  precipitating  event  is  needed  for  the  illness  to  manifest.  For  instance,  immune  activation  indirectly  increases  the  risks  of  cognitive  defects  via  the  long-­‐term  programming  of  neuroimmune  responses  that  interfere  with  learning  and  memory  processes.  To  lend  support  for  this  hypothesis,  treatment  of  newborn  rats  or  mice  with  Poly  IC  (polyinosinic:polycytidylic  acid:  synthesis  double-­‐stranded  RNA  molecule  used  as  a  viral  mimic)  is  used  as  an  animal  model  for  schizophrenia.  These  animals  display  the  symptoms  associated  with  humans  who  have  the  disorder,  such  as  the  inability  to  ignore  irrelevant  environmental  stimuli  and  defects  in  reversal  learning  of  a  previously  learned  task.  The  behavioral  defects  in  Poly  IC  treated  animals  can  be  reversed  by  acute  administration  of  antipsychotic  and  psychomimetic  drugs,  consistent  with  human  treatments  for  the  disorder.  Prenatal  exposure  to  Poly  IC  causes  changes  in  neurotransmitter  function,  such  as  reduced  levels  of  GABA  (an  inhibitory  neurotransmitter-­‐section  3.2).  During  an  object  recognition  task,  the  pattern  of  neuronal  activation  in  the  hippocampus  of  prenatally  treated  rats  was  different  in  comparison  to  controls,  indicating  that  in  addition  to  neurotransmission  being  different,  the  overall  function  of  the  neuronal  circuit  is  significantly  altered  after  prenatal  treatment  with  Poly  IC.  Treatment  of  pregnant  dams  with  Poly  IC  also  exhibited  effects  in  offspring,  as  the  excitatory  postsynaptic  potential  in  the  hippocampus  was  affected  in  pups,  and  offspring  displayed  impaired  long-­‐term  potentiation  in  the  hippocampus  (process  of  synaptic  strengthening)  and  decreases  in  pre-­‐synaptic  proteins,  which  could  lead  to  disparities  in  synapse  number  [49].      The  present  thesis  cannot  describe  the  plethora  of  advancements  that  have  been  made  in  regard  to  early-­‐life  immune  challenge  and  its  effects  on  neurological  pathways  and  behavior  in  adults.  However,  evidence  from  scientific  literature  supports  the  idea  that  exposure  to  compounds  or  agents  affecting  hormone  levels,  cytokines,  and/or  receptors  in  the  developing  brain  leads  to  permanent  differences  in  the  neuronal  circuitry  of  adults  in  comparison  to  offspring  where  these  insults  did  not  happen  [49].  There  are  a  number  of  protective  mechanisms  in  the  brain  that  strive  to  normalize  development  and  prevent  death  and  serious  injury  to  the  developing  fetus  when  it  is  presented  with  sub-­‐optimal  conditions,  which  will  also  not  be  covered  in  this  thesis.  Despite  protective  mechanisms,  development  is  nevertheless  affected  in  one  way  or  another.  The  goal  of  this  report  was  to  determine  possible  pathways  with  which  chemicals  can  disrupt  the  normal  developmental  processes  or  the  activities  of  the  immune  and  nervous  systems.  These  possible  pathways  include  disturbances  in  programming  of  the  HPA,  HPG,  and  HPT  axes,  and  disturbances  in  the  timing  and  programing  of  immune  system  development.  As  evidence  of  the  crosstalk  between  the  immune  and  nervous  systems  show,  disturbing  organizational  events  in  one  system  is  enough  to  exert  permanent  changes  in  the  other  system,  causing  behavioral,  cognitive,  or  reproductive  disturbances.      

Page 24: Possible Endocrine Disruptive Effects on the Nervous and ...

23    

The  second  half  of  this  thesis  examines  the  contributions  of  the  antioxidant  butylated  hydroxyanisole  (BHA),  the  phytoestrogen  genistein,  and  the  triazole  fungicide  tebuconazole  on  adverse  effects  in  immune  and  nervous  system  functions.    

6.  BHA  The  first  compound  examined  is  the  food  additive  tert-­‐butylhydroxyanisole  (BHA).  BHA  is  a  mixture  of  two  isomers,  2-­‐tert-­‐butyl1-­‐4-­‐hydroxyanisole  and  3-­‐tert-­‐butyl1-­‐4-­‐hydroxyanisole.  Their  structures  are  shown  in  Figure  6.1.  It  is  primarily  used  as  an  antioxidant  and  preservative  in  food  (especially  in  food  with  a  high  fat  content),  food  packaging,  and  some  medicines  [50].      

 Studies  of  the  absorption,  distribution,  metabolism,  and  excretion  in  rats,  rabbits,  dogs,  monkey,  and  humans  have  shown  that  BHA  is  rapidly  absorbed  from  the  gastrointestinal  (GI)  tract,  metabolized,  and  excreted  mainly  in  urine  and  feces.  Major  metabolites  include  glucuronides,  sulphates  and  free  phenols.  tert-­‐Butylhydroquinone  (TBHQ)  is  the  most  relevant  metabolite  and  is  also  authorized  for  use  as  an  antioxidant  in  the  EU,  alone  or  in  combination  with  other  antioxidants,  such  as  BHA  [51].        The  latest  evaluation  of  BHA  as  a  food  additive  was  done  by  EFSA  in  2011.  EFSA  set  the  acceptable  daily  intake  (ADI)  to  1.0  mg/kg  bw/day,  revising  it  from  the  earlier  ADI  of  0.5  mg/kg  bw/day.  The  ADI  of  0.5  mg/kg  bw/day  was  based  on  proliferative  changes  in  the  rat  forestomach,  and  the  update  was  made  on  the  premise  that  humans  lack  a  forestomach.  To  obtain  the  updated  ADI,  EFSA  used  the  NOAEL  of  100  mg/kg  bw/day  for  growth  retardation,  increased  mortality,  and  behavioral  effects  observed  in  rat  pups  and  an  uncertainty  factor  of  100  [51].      

6.1.  Exposure  analysis    

6.1.1.  Exposure  via  food    Based  on  country-­‐specific  data  from  national  dietary  surveys  found  in  the  Comprehensive  Food  Consumption  Database,  EFSA  was  able  to  carry  out  a  refined  exposure  assessment  for  BHA.  17  different  European  countries  provided  data  on  food  consumption.  Because  the  actual  levels  of  BHA  in  food  are  unknown,  EFSA  used  the  maximum  permitted  levels  (MPLs)  instead  to  calculate  exposure;  using  MPLs  makes  EFSA's  exposure  assessment  conservative,  since  actual  levels  found  in  food  are  likely  to  be  below  the  MPLs.  The  results  of  the  estimated  ranges  of  exposure  based  on  EFSA's  calculations  are  shown  in  Table  6.1.                

Figure  6.1.  Structure  of  2-­‐tert-­‐butyl1-­‐4-­‐hydroxyanisole  and  3-­‐tert-­‐butyl1-­‐4-­‐hydroxyanisole  (left)  compared  to  17-­‐β-­‐estradiol  (right).    

Page 25: Possible Endocrine Disruptive Effects on the Nervous and ...

24    

Table  6.1.  Summary  of  estimated  ranges  of  exposure  to  BHA  (mg/kg  bw/day)  in  five  population  groups  in  Europe.  The  values  in  black  are  an  average  from  the  data  submitted  by  the  17  European  countries.  The  values  in  red  are  country-­‐specific  results  for  Sweden  [51].    Estimated  exposure  using  MPLs  

Toddlers    

Children      

Adolescents    

Adults    

 Elderly    

Mean    

0.04-­‐0.23     0.08-­‐0.36    0.25  

0.06-­‐0.18  0.13  

0.03-­‐0.12  0.11    

0.02-­‐0.11  

High  level  (95th  per.)    

0.14-­‐0.57   0.26-­‐0.60    0.47  

0.12-­‐0.38  0.29  

0.08-­‐1.12  0.21  

0.05-­‐0.72  

 

6.1.2.  Exposure  via  food  contact  materials    BHA  exposure  from  its  use  in  food  contact  materials  would  be  0.43,  0.6,  1.3  and  2.5  mg/kg  bw/day  for  adults  and  the  elderly,  adolescents,  children  and  toddlers,  respectively,  assuming  that  consumers  from  all  the  population  groups  also  consume  1  kg  of  food  packed  in  plastics  containing  BHA  at  the  maximum  permitted  quantity  of  30  mg/kg  foods  [51].      

6.2.  BHA  as  an  endocrine  disruptor    The  Danish  Centre  on  Endocrine  Disruptors  (CEHOS)  has  determined  BHA  to  be  a  category  1  endocrine  disruptor  based  on  adverse  effects  in  vivo  where  an  endocrine  disrupting  mode  of  action  was  highly  plausible.  These  effects  included  altered  oestrous  cycles  and  sperm  morphology,  and  decreased  sperm  number  in  developmental  in  vivo  rat  studies  [50].  In  vitro,  BHA  reduced  the  binding  of  17β-­‐estradiol  to  the  fish  ER  at  concentrations  up  to  1  mM  [52].  BHA  was  found  to  stimulate  gene  transcription  at  concentrations  between  10-­‐5  and  10-­‐4  M  [52].  In  the  E-­‐SCREEN  assay,  BHA  was  shown  to  promote  the  proliferation  of  MCF7  human  breast  cancer  cells  at  a  concentration  of  50  μM  [53].  Soto  et  al.,  [53]  calculated  a  relative  proliferative  effect  of  BHA  in  comparison  to  estradiol  and  found  that  the  relative  proliferative  effect  of  BHA  was  30%,  indicating  it  is  a  partial  agonist  [53].        In  the  uterotrophic  assay,  BHA  increased  uteri  organ  weights  of  immature  female  rats  at  doses  ranging  from  50  to  500  mg/kg  bw/day.  However,  there  were  no  effects  on  androgen-­‐dependent  accessory  sex  organs  of  castrated  male  rats  dosed  with  BHA  from  50  to  500  mg/kg  bw/day  in  the  Hershberger  assay  [54].      An  in  vivo  study  where  pregnant  pigs  were  exposed  to  0,  50,  200,  or  400  mg/kg  bw/day  found  no  adverse  reproductive  effects  on  offspring  at  any  of  the  doses  tested.  However,  in  the  dams,  thyroid  and  liver  weights  were  slightly  increased  in  the  highest  dose  groups,  and  histopathological  changes  in  the  thyroid  were  observed  at  the  low  dose  of  50  mg/kg  bw/day  [55].      A  one-­‐generational  study  by  Jeong  et  al.,  [56]  where  7-­‐week  old  male  and  female  Sprague-­‐Dawley  rats  were  fed  by  gavage  BHA  dissolved  in  corn  oil  at  doses  of  0,  10,  100,  or  500  mg/kg  bw/day  from  pre-­‐breeding  until  weaning  found  that  F0  males  had  decreased  levels  of  serum  testosterone  and  thyroid  hormones  at  the  100  and  500  dose  levels.  F1  male  and  female  offspring  receiving  exposure  from  the  mother  (at  the  500  level)  experienced  a  decrease  in  thyroid  hormones  and  testosterone,  along  with  decreased  reproductive  organ  weights,  delayed  puberty  and  sexual  maturation,  decreased  body  and  brain  weights,  shortened  anogenital  distance  at  post  natal  day  21,  and  dysfunction  of  androgen-­‐dependent  organs  in  males.  Females  in  the  F1  generation  had  decreased  weights  of  reproductive  organs  and  abnormal  thyroid  histology  [56].      

Page 26: Possible Endocrine Disruptive Effects on the Nervous and ...

25    

6.3.  BHA  exposure  and  immune  effects  There  is  evidence  that  BHA  can  influence  intracellular  concentrations  of  calcium  (Ca2+)  [57].  Ca2+  is  essential  for  a  multitude  of  cellular  processes,  including  protein  kinase  signaling,  mitochondrial  physiology,  apoptosis,  and  cell  adhesion  and  migration  of  B  cells.  In  B  lymphocytes,  appropriate  levels  of  Ca2+  lead  to  the  translocation  of  transcription  factor  NF-­‐κB  into  the  nucleus.  NF-­‐κB  is  generally  involved  in  the  transcription  of  IFNγ,  which  increases  the  Th1  immune  response  [58].  In  T  cells,  antigen  activation  is  reliant  on  two  signals:  the  increase  in  intracellular  Ca2+  and  the  activation  of  protein  kinase  C  (PKC).  Studies  of  BHA  on  intracellular  Ca2+  levels  often  produce  confusing  results.  David  et  al.,  [59]  concluded  that  BHA  exposure  in  vitro  at  concentrations  between  250  μM  to  2  mM  increases  levels  of  intracellular  calcium  in  a  dose-­‐dependent  manner  in  various  cell  types,  including  human  umbilical  vein  endothelial  cells,  rat  cardiomyocytes,  baby  hamster  kidney  cells,  and  rat  pituitary  cells  [59].  In  a  different  in  vitro  study,  Dornand  and  Gerber  [57]  found  that  BHA  at  a  concentration  of  40  μM  prevented  an  increase  in  intracellular  Ca2+  levels  in  thymocytes  and  splenocytes,  and  may  affect  PKC  activation  of  T  cells  [57].        In  Dornand's  and  Gerber's  study  [57],  BHA  suppressed  the  activation  of  murine  thymocytes  and  splenocytes  in  a  dose-­‐dependent  manner  [57].  In  T  cells,  sustained  increases  in  Ca2+  allow  the  translocation  of  transcription  factor  NFAT  from  the  cytoplasm  and  into  the  nucleus,  where  it  can  activate  the  transcription  of  IL-­‐2  and  IL-­‐4  and  promote  the  Th2  response  [60].  In  their  study,  Dornand  and  Gerber  found  that  treatment  of  thymocytes  at  concentrations  of  15±2  μM  inhibited  50%  of  IL-­‐2  secretion  in  activated  T  cells.  40  μM  BHA  decreased  the  expression  of  IL-­‐2  receptor  on  activated  splenocytes  [57].      In  an  in  vivo  experiment,  Hung  et  al.,[61]  orally  exposed  mice  to  BHA.  Exposed  mice  had  increased  levels  of  T  cells,  which  is  the  opposite  of  Dornand  and  Gerber's  results.  In  Hung's  study,  BHA  promoted  phagocytosis  by  macrophages  in  peripheral  blood,  but  it  decreased  B  cell  levels.  Due  to  the  increase  in  levels  of  T  cells  and  promotion  of  phagocytosis  in  normal  mice,  this  group  concluded  that  BHA  supports  immune  responses.  However,  they  stressed  a  need  for  further  investigation  [61].*      

6.4.  BHA  exposure  and  neuroendocrine  effects  Vorhees  et  al.,  [62]  exposed  Sprague-­‐Dawley  rats  to  BHA  daily  in  the  diet  from  pre-­‐mating  until  after  weaning,  with  the  F1  generation  being  subsequently  exposed  in  food  after  weaning  until  90  days  of  age.  Doses  of  BHA  were  measured  as  percentages  of  the  wet  weight  of  the  diet,  and  included  0.50%  BHA  (BHA-­‐50),  0.25%  (BHA-­‐25),  0.125%  (BHA-­‐12)  and  control  group.  The  BHA-­‐50  group  corresponds  to  approximately  0.42  g/kg  bw/day  during  prebreeding  and  gestation  to  0.80  g/kg  bw/day  during  lactation.  The  BHA-­‐25  group  corresponds  to  about  0.21  g/kg  bw/day  from  prebreeding  and  gestation  to  0.44  g/kg  bw/day  during  lactation.  The  BHA-­‐12  group  corresponds  to  about  0.10  g/kg  bw/day  during  prebreeding  and  gestation  to  0.22  g/kg  bw/day  during  lactation.      Exposed  and  control  rats  underwent  a  series  of  behavioral  tests  to  determine  whether  BHA  affected  motor  functions  or  learning,  and  brains  of  exposed  rats  were  autopsied  to  determine  whether  there  were  differences  in  neuronal  cell  density  in  various  brain  regions.  The  autopsy  results  show  no  differences  in  the  brains  of  exposed  and  control  rats,  and  there  were  no  statistically  significant  differences  in  the  results  of  behavioral  tests  between  BHA-­‐exposed  and  control  rats  except  for  the  auditory  startle  parameter.  Auditory  startle  typically  measures  sensory  defects,  and  in  this  case  it  was  performed  in  pre-­‐weaned  rats  [62].  In  comparison  to  the  other  groups,  pre-­‐weaned  rats  in  the  BHA-­‐50  and  BHA-­‐25  groups  both  showed  delayed  development  of  the  auditory  startle  response  by  roughly  a  day  and  a  half.  Regardless  of  this  delay,  the  researchers  concluded  that  BHA  is  not  a  potent  behavioral  toxin  [62].    

*the  original  article  could  not  be  located,  so  these  results  were  taken  from  the  abstract,  and  thus  the  dose  levels  mice  were  exposed  to  are  unknown.    

Page 27: Possible Endocrine Disruptive Effects on the Nervous and ...

26    

 Very  few  studies  look  into  the  behavioral  effects  of  BHA  or  the  affects  this  compound  might  have  on  the  nervous  system  and  on  the  developing  brain.        

6.5.  Conclusion  According  to  EFSA's  estimations  of  human  exposure  to  BHA  through  food,  it  is  unlikely  that  humans  would  be  exposed  to  BHA  at  levels  higher  than  the  ADI  of  1.0  mg/kg  bw/day.  Of  course,  EFSA  based  its  exposure  estimations  on  MPL  levels,  rather  than  on  actual  levels  found  in  food  because  information  about  levels  in  food  are  lacking  [51].  However,  it  is  unlikely  that  levels  in  food  would  be  higher  than  the  MPLs,  suggesting  that  the  estimated  exposure  using  MPLs  offers  a  conservative  estimation  of  the  exposure  situation  to  the  five  different  population  groups  of  toddlers,  children,  adolescents,  adults,  and  elderly.  Based  on  BHA  exposure  via  food  contact  materials  such  as  plastic  lunch  boxes,  EFSA  estimated  that  exposure  to  BHA  may  actually  occur  at  levels  higher  than  the  ADI  and  can  be  up  to  2.5  mg/kg  bw/day  [51].      According  to  CEHOS,  BHA  is  a  category  1  endocrine  disruptor  [50].  Evidence  of  its  endocrine  disrupting  properties  is  based  on  in  vitro  assays  including  the  E-­‐SCREEN  assay,  where  BHA  led  to  the  proliferation  of  human  breast  cancer  cells  [53],  and  in  vivo  studies,  where  BHA  increased  uteri  weights  in  immature  female  rats  [54].  BHA  was  also  found  to  have  effects  on  levels  of  thyroid  hormones  and  calcium  concentrations  [56,  57].  Its  effects  on  intracellular  Ca2+  are  difficult  to  categorize,  as  studies  have  led  to  different  conclusions.  However,  BHA  may  very  likely  have  effects  on  the  immune  system  in  terms  of  lymphocyte  activation  and  cytokine  production  due  to  its  ability  to  modulate  calcium  levels  [57,  59].  There  is  a  lack  of  behavioral  studies  in  animals  treated  with  BHA,  and  the  few  studies  that  look  into  neurobehavioral  parameters  of  BHA  exposure  have  found  that  young  rats  treated  with  BHA  have  delayed  development  of  the  auditory  startle  response  [62].  Undoubtedly,  there  is  in  general  a  lack  of  studies  examining  the  disruptive  potential  of  BHA  on  the  endocrine  system.  The  in  vivo  studies  examined  in  this  report  that  showed  adverse  effects  in  exposed  animals  occur  at  exposure  that  is  higher  than  the  NOAEL  of  100  mg/kg  bw/day.  Thus,  it  is  not  considered  likely  that  the  current  exposure  levels  of  consumers  to  BHA  causes  endocrine  disruption.  

7.  Genistein    The  second  compound  examined  is  the  phytoestrogen  genistein.  Phytoestrogens  are  non-­‐steroidal  compounds  structurally  similar  to  natural  estrogens  found  in  mammals.  Isoflavones  are  the  most  common  types  of  phytoestrogen  and  are  found  in  soya  products.  Other  types  of  phytoestrogens  include  coumestans,  lignans,  and  stilbens  [63].  Genistein  is  a  specific  type  of  isoflavone  found  in  soya  products.  Soy  is  made  infamous  due  to  claims  that  it  has  protective  effects  against  various  cancers,  such  as  breast  and  prostate  cancer.  However,  epidemiological  and  animal  studies  have  shown  variable  effects  [64].        The  structure  of  genistein  is  shown  in  figure  7.1.      

 Figure  7.1.  Structure  of  genistein  and  estradiol.      

Page 28: Possible Endocrine Disruptive Effects on the Nervous and ...

27    

Genistein  is  metabolized  differently  in  rodents,  pigs,  monkeys,  and  humans  [51].  Likewise,  there  is  large  variation  in  individual  metabolism  of  genistein  between  members  of  the  same  species  [53].      In  humans,  genistein  is  rapidly  absorbed  following  oral  intake.  In  plants,  phytoestrogens  bound  to  a  sugar  derivative  are  in  their  inactive  glycoside  form.  Upon  ingestion,  gut  microflora  convert  the  glycoside  into  the  biologically  active  aglycone  form.  The  activity  of  the  aglycone  is  mainly  confined  to  the  GI  tract,  as  aglycones  passing  through  intestinal  epithelial  cells  are  conjugated  with  glucuronic  acid  or  sulfate  before  they  enter  circulation.  Once  conjugated,  the  compound  is  no  longer  bioactive  [65].  Roughly  10%  of  ingested  genistein  circulates  in  the  aglycone  form.  Genistein  aglycone  can  enter  tissues  more  readily  than  genistein  glycoside,  although  tissues  hosting  de-­‐conjugation  enzymes  may  metabolize  genistein  into  the  active  form  [66].  Conjugated  isoflavones,  genistein  included,  can  undergo  enterophepatic  circulation  and  return  to  the  intestine  to  be  de-­‐conjugated  and  metabolized  further  [65,  66].        There  is  considerable  individual  variation  in  the  absorption  and  metabolism  of  genistein.  The  National  Toxicology  Program  distinguishes  the  half-­‐life  between  free  and  total  genistein,  with  total  genistein  being  the  amount  of  genistein  bound  to  glucuronic  acid  or  sulfate.  The  absorption  half-­‐life  for  free  genistein  is  estimated  to  be  between  2  and  7  hours  and  between  6  and  13  hours  for  total  genistein  [66].  Excretion  of  isoflavones  occurs  mostly  via  urine.  The  excretion  half-­‐life  for  genistein  is  between  3  and  8  hours  [67].  In  infants,  urinary  excretion  of  genistein  is  typically  lower  compared  to  adults  fed  the  equivalent  amounts  of  isoflavones,  indicating  slower  renal  excretion  in  young  individuals.  After  ingestion  of  soymilk,  excretion  peaked  between  8  and  10  hours  after  consumption  in  infants,  and  95%  of  the  compound  was  recovered  after  24  hours  in  urine  [66].        

7.1.  Exposure  Analysis    In  soybeans  the  isoflavones  content  varies  between  560  and  3810  mg/kg  depending  on  the  variety  of  bean  and  its  growing  conditions,  and  genistein  makes  up  approximately  50%  of  this  content  [65].  There  is  no  ADI  for  soy  isoflavones  or  phytoestrogens,  and  rates  of  consumption  vary  widely.  Estimates  for  the  average  daily  intake  of  soy  and  isoflavones  in  Asian  countries  ranges  from  1  mg/kg  bw/day  [67]  to  between  20  and  150  mg/kg  bw/day  [64].  Japanese  men  and  women  consuming  a  traditional  soy-­‐based  diet  have  mean  plasma  isoflavone  concentrations  of  1  μM  [67].  In  western  countries,  the  daily  intake  of  soy  is  estimated  to  be  only  about  2  mg  to  1  g  daily  [64],  i.e.  0.033-­‐16.7  mg/kg  bw  for  a  woman  with  a  body  weight  of  60  kg.  Plasma  concentrations  of  isoflavones  in  Europeans  and  North  Americans  are  less  than  0.07  μM  for  omnivores  and  0.4  μM  for  vegetarians  [67].    A  study  of  Japanese  infants  conducted  by  Adlercreutz  et  al.,  [68]  demonstrates  that  isoflavones  cross  the  placenta  and  gain  access  to  the  developing  fetus.  In  this  study,  concentrations  of  isoflavones  in  cord  blood  and  in  amniotic  fluid  were  0.2-­‐0.3  μM,  which  was  similar  to  maternal  plasma  concentrations  (0.2  μM)  [68].  Trace  amount  of  isoflavones  can  also  be  found  in  breast  milk.  Concentrations  of  isoflavones  in  the  breast  milk  of  mothers  eating  a  soy-­‐rich  diet  range  from  10  to  70  nM,  while  mothers  who  do  not  actively  consume  soy  have  breast  milk  concentrations  between  18  and  56  nM  [67].        The  high  human  consumption  of  isoflavones  occurs  in  infants  fed  soy-­‐based  formula.  While  isoflavone  content  of  formula  varies,  it  averages  40  μg  total  isoflavones  per  gram  of  formula.  A  typical  newborn  or  infant  fed  soy-­‐based  formula  ingests  roughly  6-­‐11  mg/kg  bw  isoflavones  a  day,  which  is  higher  than  the  average  for  adults  consuming  a  traditional  soy  based  Asian  diet  (0.3-­‐1.2  mg/kg/day)  [69].  These  infants  have  plasma  isoflavone  concentrations  between  2.4  and  

Page 29: Possible Endocrine Disruptive Effects on the Nervous and ...

28    

6.5  μM,  an  amount  that  is  up  to  approximately  5-­‐fold  higher  than  the  average  plasma  concentrations  reported  for  Japanese  women  (1  μM)  [67].        An  analysis  of  240  foods  from  the  UK  was  done  by  Kuhnle  et  al.,  [70]  to  determine  their  phytoestrogen  content.  Among  the  foods  with  the  highest  genistein  content  are  soybeans  and  soya  flour,  with  cooked  soybeans  averaging  at  10664  μg/100  g,  and  soya  flour  at  62125  μg/100  g.  The  complete  results  from  Kuhnle  et  al.,  [70]  can  be  found  in  Appendix  II.        

7.2.  Genistein  as  an  endocrine  disruptor    Figure  6.1  shows  that  genistein  and  estradiol  are  structurally  similar.  Due  to  this  similarity,  genistein  can  bind  both  ERα  and  β,  with  a  preference  for  the  latter.  ERβ  is  largely  expressed  in  the  ovary,  prostate,  lung,  GI  tract,  bladder,  central  nervous  system,  and  hematopoietic  system  [64].        Collectively,  phytoestrogens  are  often  described  as  SERMs-­‐selective  estrogen  receptor  modulators.  This  means  that  in  one  tissue  or  during  a  specific  point  in  development  (e.g.  puberty),  genistein  can  act  as  an  ER  agonist  and  in  a  different  tissue  type  or  even  in  the  same  tissue  but  during  a  different  point  in  development,  genistein  can  act  as  an  ER  antagonist.  Genistein's  indiscriminant  behavior  makes  it  exceedingly  difficult  to  define  how  the  compound  will  act  in  different  tissues  at  different  time  periods  and  what  the  downstream  effects  might  be  [64].    Morito  et  al.,  [71]  in  an  in  vitro  competition  binding  assay  demonstrated  that  genistein  binds  to  ERβ  as  strongly  as  17  β-­‐estradiol,  although  it  does  not  induce  transcription  to  the  same  extent.  In  order  to  induce  the  same  level  of  transcription  as  estradiol,  104  times  the  amount  of  genistein  is  needed.  In  the  same  study,  the  authors  found  that  the  glycoside  form  binds  poorly  to  both  ERα  and  β.  Glycosides  are  also  poor  inducers  of  transcription.  Compared  to  glycosides,  aglycones  have  a  stronger  affinity  for  the  ER  [71].  Using  the  uterotrophic  assay  on  ovariectomized  mice,  Ohta  et  al.,  [72]  determined  the  extent  of  agonism  or  antagonism  of  36  different  chemicals,  including  genistein  and  genistin,  the  inactive  glycoside.  This  study  was  done  according  to  OECD  test  guidelines  No.  440.  The  group  found  that  both  compounds  showed  agonistic  and  antagonistic  activity  and  could  compete  with  17-­‐α  ethynyl  estradiol  for  binding  to  ERα.  A  dose  of  220.2  mg/kg  bw/day  genistein  induced  a  10%  uterotrophic  effect,  while  only  63.5  mg/kg  bw/day  was  enough  to  inhibit  the  effects  induced  by  17-­‐α  ethynyl  estradiol,  demonstrating  the  compounds'  abilities  to  bind  to  ERα  and  compete  with  estradiol  [72].      A  one-­‐generational  developmental  study  was  done  by  Jefferson  et  al.,  [73]  in  which  female  CD-­‐1  mice  were  subcutaneously  injected  with  genistein  dissolved  in  corn  oil  for  the  first  5  days  of  life  at  the  doses  of  0.5,  5,  or  50  mg/kg  bw/day.  These  mice  were  bred  to  control  male  mice  of  the  same  strain,  and  pups  were  sexed  and  counted  when  born.  The  group  found  that  mice  exposed  to  the  highest  dosage  failed  to  deliver  live  pups.  This  study  was  repeated  with  a  different  group  of  genistein-­‐treated  mice  and  the  same  results  were  obtained.  The  authors  attributed  these  results  to  genistein-­‐induced  malformations  in  the  ovaries,  such  as  multi-­‐oocyte  follicles  and  attenuated  cell  death  of  oocytes  [73,  74].        

7.3.  Genistein  exposure  and  immune  effects    In  vitro  studies  indicate  that  genistein  at  high  concentrations  has  effects  on  various  immune  system  cells.  However,  these  concentrations  are  not  expected  to  be  reached  in  humans  consuming  a  soy  diet,  so  the  physiological  relevance  of  these  findings  is  uncertain.  In  vitro  studies  show  that  genistein  can  influence  cytokine  production  and  secretion,  often  promoting  Th2  immunity  [65].  It  can  activate  natural  killer  (NK)  cells  of  the  innate  immune  system  at  

Page 30: Possible Endocrine Disruptive Effects on the Nervous and ...

29    

concentrations  between  0.1  and  0.5  μM.  Genistein  has  also  been  shown  to  inhibit  histamine  release  from  basophils  in  vitro  [75].      In  vivo  studies  using  animal  models  tend  to  have  inconsistent  results  in  terms  of  the  effects  of  genistein  and  other  soy  isoflavones  on  the  immune  system.      In  a  mouse  model  of  multiple  sclerosis,  sub-­‐cutaneous  injection  of  200  mg/kg  genistein  bw/day  for  7  days  improved  the  myelin  profile  in  the  brain  and  inhibited  the  secretion  of  pro-­‐inflammatory  cytokines  in  the  brain  [76].    In  an  in  vivo  study  conducted  by  Yellayi  et  al.,  [77]  genistein  was  shown  to  have  a  suppressive  effect  on  the  immune  system  of  mice.  C57BL/6  mice  were  given  subcutaneous  injections  of  genistein  at  doses  of  8,  20,  80,  or  200  mg/kg  bw  genistein  once  daily  for  7  or  21  days.  Genistein  reduced  the  weight  and  size  of  the  thymus  in  a  dose  dependent  manner,  leading  to  thymic  atrophy  and  rapid  apoptosis  of  thymocytes  [77].  Thymic  weight  in  mice  injected  with  80  mg/kg  genistein  decreased  by  62%  after  7  days;  mice  injected  with  80  mg/kg  for  21  days  had  a  73%  decrease  in  thymic  weight.  An  analysis  of  thymocytes  revealed  that  mice  given  daily  injections  of  200  mg/kg  genistein  for  7  days  experienced  near  total  elimination  of  CD4+/CD8-­‐  thymocytes  and  a  severe  inhibition  of  double  positive  CD4+/CD8+  thymocytes.  80  mg/kg  genistein  injection  suppressed  both  humoral  and  cell  mediated  immunity,  reducing  specific  antibody  titers  by  80%.  This  was  also  seen  in  a  dose-­‐dependent  manner,  as  8  mg/kg  genistein  reduced  antibody  titers  by  50%.  The  authors  determined  that  a  daily  subcutaneous  injection  of  8  mg/kg  bw  genistein  in  mice  produces  peak  plasma  blood  levels  comparable  to  4  month  old  human  infants  fed  soy-­‐based  infant  formula  [77].      Asthma  patients  with  a  high  intake  of  soy  experience  better  lung  function  and  reduced  airway  inflammation  caused  by  eosinophils,  indicating  that  isoflavones  may  be  beneficial  in  allergy  [78,  79].  In  peanut  allergy  mouse  models,  an  isoflavone  diet  containing  1,500  ppm  (roughly  equivalent  to  225  mg/kg  bw/day)  of  genistein  and  diadzein  each  suppressed  peanut-­‐induced  anaphylaxis  by  subduing  the  degranulation  of  mast  cells,  thus  inhibiting  histamine  [65].  C3H/HeJ  mice  were  either  fed  a  soy-­‐free  diet  or  one  containing  1,500  ppm  isoflavones  (225  mg/kg  genistein  bw/day  and  225  mg/kg  daidzein  bw/day)  for  2-­‐3  weeks.  Mice  in  both  groups  were  subsequently  sensitized  once  weekly  with  crude  peanut  solution  (10  mg)  and  cholera  toxin  (20  μg)  for  a  period  of  5  weeks,  and  then  boosted  with  50  mg  peanut  solution  and  20  μg  cholera  toxin  for  2  weeks.  Mice  fed  the  soy-­‐free  diet  and  those  fed  the  isoflavone  rich  diet  were  challenged  twice  in  30-­‐minute  intervals  with  200  mg  of  peanut  oil,  and  physical  symptoms  of  anaphylaxis  (scratching  and  rubbing  around  the  snout  and  head,  puffiness  around  eyes  and  snout,  diarrhea,  wheezing,  labored  respiration,  no  activity  after  prodding,  tremor,  convulsions,  and  death)  were  scored  based  on  the  severity  of  symptoms.  Mice  given  the  soy-­‐free  diet  had  severe  symptoms  of  anaphylaxis,  while  only  60  to  65%  of  mice  in  the  soy-­‐fed  diet  showed  symptoms  of  anaphylaxis  that  were  significantly  less  severe  in  comparison  to  those  fed  the  soy-­‐free  diet  [80].  The  authors  contribute  the  ability  of  soy  isoflavones  to  reduce  allergy  symptoms  to  their  suppression  of  the  immune  system  and  ability  to  inhibit  the  response  of  dendritic  cells  and  CD4+  T  cells  [80].      In  vivo  rodent  studies  in  which  Siebel  et  al.,  [81,  82]  aimed  to  demonstrate  the  protective  effects  of  a  phytoestrogen  rich  diet  against  inflammatory  bowel  disease  showed  that  in  rats,  pre  and  postnatal  dietary  exposure  to  isoflavones  did  not  provide  protection  against  the  development  of  inflammatory  bowel  disease  and  in  fact  enhanced  the  extent  of  acute  inflammation  in  rats.  Female  Wistar  rats  were  divided  into  two  groups:  one  group  receiving  a  diet  (ad  libitum)  depleted  in  isoflavones  (less  than  10  μg/g  of  genistein  and  daidzein)  and  another  receiving  a  diet  (ad  libitum)  rich  in  isoflavones  (240  μg/g  genistein  and  232  μg/g  daidzein).  Both  groups  of  females  were  mated  and  kept  on  their  respective  diets  during  pregnancy  and  lactation,  

Page 31: Possible Endocrine Disruptive Effects on the Nervous and ...

30    

throughout  which  the  pups  were  either  exposed  to  a  phytoestrogen-­‐rich  (PRD)  or  phytoestrogen-­‐depleted  (PDD)  diet.  The  daily  intake  of  isoflavones  was  calculated  to  be  approximately  4431  to  4584  μg  per  animal  per  day  in  the  phytoestrogen-­‐rich  diet  in  comparison  to  <210  μg  isoflavone  per  day  in  the  phytoestrogen-­‐depleted  diet.  At  11  weeks  of  age,  colitis  was  induced  in  the  pups  by  2,4,6-­‐trinitrobenzenesulfonic  acid  (TNBS).  The  extent  of  inflammation  was  stronger  in  the  PRD  animals  in  comparison  to  the  PDD  group.  Siebel  et  al.,  [81]  concluded  that  further  investigations  are  warranted  in  order  to  determine  the  role  of  diets  rich  in  phytoestrogens  and  inflammation.      In  contrast,  Siebel  conducted  another  in  vivo  study  [82]  in  which  male  Wistar  rats  were  dosed  with  100  mg/kg  bw  genistein  by  gavage  daily  for  14  days.  These  rats  were  then  exposed  to  TNBS  in  order  to  induce  colitis  in  the  same  way  as  in  the  previous  study.  In  comparison  to  the  controls,  genistein-­‐treated  rats  had  decreased  inflammation  in  the  colon,  leading  the  authors  to  conclude  that  genistein  exerted  beneficial  anti-­‐inflammatory  effects  at  the  exposure  dose  of  100  mg/kg  bw/day  in  rats.  Although  not  a  parameter  in  the  study,  genistein-­‐exposed  rats  had  lower  wet  weights  of  seminal  vesicles  and  prostates  than  the  controls  [82].  This  study  in  contrast  to  the  first  shows  the  indiscriminate  actions  of  phytoestrogens.  Life-­‐long  exposure  to  a  diet  high  in  isoflavones  increased  inflammation  in  rat  models  of  inflammatory  bowel  disease,  while  14  day  exposure  to  100  mg/kg  bw/day  of  genistein  had  the  opposite  effect  and  exerted  anti-­‐inflammatory  effects  in  the  same  rat  models  [81,  82].      

7.4.  Genistein  and  neuroendocrine  effects  Losa  et  al.,  [83]  subcutaneously  injected  newborn  Long  Evans  rat  pups  10  or  1  mg/kg  bw  genistein  every  24  hours  for  4  days.  The  group  then  sampled  sections  of  the  anterioventral  periventricular  nucleus  (AVPV)  and  arcuate  nucleus  (ARC)  from  the  brains  of  exposed  and  control  individuals  in  order  to  determine  whether  neonatal  genistein  exposure  effected  the  expression  of  the  kisspeptin  (KISS)  protein  family.  KISS  initiates  puberty  by  stimulating  the  release  of  GnRH,  and  the  major  populations  of  KISS  neurons  are  located  in  the  AVPV  and  ARC  of  the  hypothalamus.  Genistein  exposed  individuals  experienced  earlier  vaginal  opening  in  comparison  to  controls,  with  the  high  dose  group  achieving  puberty  before  the  low  dose  exposure  group.  Additionally,  neonatal  genistein  exposure  decreased  the  fiber  density  of  KISS  neurons  in  the  AVPV  of  female  rats.  Normally,  AVPV  fiber  density  increases  closer  to  puberty  in  females,  assisting  the  characteristic  release  of  GnRH.  This  was  not  the  case  in  the  10  mg/kg  bw  genistein  treatment  group,  who  had  fiber  densities  in  the  AVPV  more  typical  of  male  brains.  The  group  concluded  that  in  rats,  genistein  exposure  during  the  neonatal  critical  period  can  defeminize  the  hypothalamus.  In  the  highest  dose  group,  KISS  fiber  densities  persisted  into  adulthood,  indicating  that  the  effects  were  permanent  [83].      Animal  behavioral  tests  for  anxiety  using  the  elevated  plus  maze  and  memory  tests  using  the  radial  arm  maze  have  shown  that  lifelong  exposure  to  dietary  phytoestrogens  (from  conception  until  adulthood)  reduces  anxiety  behaviors  in  male  and  female  rats.  Lephart  et  al.,  [84]  fed  male  and  female  Long  Evans  rats  four  different  diets:  one  containing  0  ≤  5  ppm  isoflavones  (0.25  mg/kg  bw/day,  referred  to  as  the  AIN-­‐76  diet),  a  phyto-­‐free  diet  containing  10-­‐15  ppm  isoflavones  (0.5-­‐0.75  mg/kg  bw/day),  a  phyto-­‐200  diet  containing  200  ppm  isoflavones  (10  mg/kg  bw/day)  or  a  phyto-­‐600  diet  containing  600  ppm  isoflavones  (30  mg/kg  bw/day).  Serum  genistein  levels  in  rats  given  the  phyto-­‐600  diet  were  117  ±  5  ng/mL.  Those  consuming  the  phyto-­‐free  diet  had  serum  genistein  levels  of  6  ±  1  ng/mL.  In  memory  tasks  using  the  radial  arm  maze,  only  males  and  females  fed  the  phyto-­‐600  diet  with  their  counterparts  fed  the  phyto-­‐free  diet  were  compared  to  determine  the  effects  of  dietary  phytoestrogens  in  learning  and  memory  tasks  [84].      

Page 32: Possible Endocrine Disruptive Effects on the Nervous and ...

31    

Generally,  males  consistently  outperform  females  in  tasks  related  to  spatial  memory.  Spatial  memory  can  be  experimentally  measured  in  rats  by  the  8  arm  radial  maze,  in  which  food  deprived  animals  retrieve  a  food  reward  from  the  different  arms  and  animals  are  scored  by  speed,  accuracy,  and  number  of  errors.  In  this  maze,  males  fed  the  phyto-­‐free  and  females  fed  the  phyto-­‐600  diet  acquired  accuracy  faster  than  males  and  females  in  the  opposite  group  (males  fed  the  phyto-­‐600  and  females  fed  the  phyto-­‐free  were  slow  to  acquire  accuracy).  This  suggests  that  the  effects  of  dietary  isoflavones  are  sex  specific.  Lephart  et  al.,  [84]  then  switched  diets  in  some  of  the  young  rats  from  the  phyto-­‐600  group,  feeding  them  the  phyto-­‐free  diet  for  50  days.  Thus,  males  normally  consuming  a  diet  rich  in  phytoestrogens  (phyto-­‐600  with  30  mg/kg  bw/day)  began  consuming  one  containing  less  than  1  mg/kg  bw/day  of  isoflavones.  The  same  was  done  in  females.  The  rats  that  had  their  diets  switched  were  then  placed  in  a  4-­‐arm  radial  maze  and  their  accuracy  in  finding  a  food  reward  was  measured  (the  amount  of  reference  errors  made  was  counted).  Rats  in  the  switched  diet  group  were  compared  to  rats  that  continued  with  their  normal  diets.  A  dietary  change  from  lifelong  phytoestrogen  consumption  (phyto-­‐600)  to  one  devoid  of  phytoestrogens  (phyto-­‐free)  resulted  in  improvements  and  greater  accuracy  of  male  rats  in  the  maze.  Males  who  had  their  diets  switched  committed  less  reference  errors  than  males  fed  the  phyto-­‐600  diets.  In  females,  switching  diets  from  the  phyto-­‐600  to  the  phyto-­‐free  diet  led  to  female  rats  showing  less  accurate  spatial  memory  in  the  radial  maze.  The  researchers  hypothesized  that  the  phytoestrogen  induced  sex-­‐reversal  of  visual  spatial  memory,  leading  to  enhanced  spatial  memory  in  females  but  compromised  spatial  memory  in  males,  was  due  to  changes  in  brain  structure  and  function  within  the  frontal  cortex,  a  brain  region  correspondingly  high  in  expression  of  ERβ  [84].      Besides  measuring  learning  and  memory,  Lephart  et  al.,  [84]  also  measured  anxiety  by  using  an  elevated  plus  maze  (two  open  and  two  closed  arms  with  a  roof  are  elevated  in  the  shape  of  a  plus  sign).  Anxiety  was  measured  by  the  amount  of  time  animals  spent  in  the  closed  arms.  Females  and  males  from  ANF-­‐76,  phyto-­‐free,  phyto-­‐200,  and  phyto-­‐600  groups  were  evaluated.  A  dose-­‐dependent  reduction  in  anxiety  parameters  was  observed  in  males,  with  males  fed  the  phyto-­‐600  diet  displaying  the  lowest  anxiety  parameters  and  those  fed  the  ANF-­‐76  diet  having  the  highest.  Female  anxiety  behavior  displayed  the  same  patterns,  although  the  influence  of  dietary  isoflavones  was  not  as  robust  as  in  males  [84].        

7.5.  Conclusion  Due  to  the  prevalence  of  soy  and  its  importance  as  a  major  staple  diet  in  certain  parts  of  the  world,  some  humans  are  likely  to  be  exposed  to  isoflavones  on  a  daily  basis.  There  is  also  great  individual  variation  in  the  absorption  and  metabolism  of  genistein,  and  plasma  concentrations  can  range  from  1  μM  in  Asian  consumers  to  0.07  μM  in  Westerners,  because  to  both  differences  in  consumption  patterns  and  individual  variations  in  metabolism  [67].  The  greatest  exposure  occurs  in  infants  fed  soy-­‐based  infant  formula,  with  formula  containing  an  average  of  40  μg  isoflavones  content  per  gram  of  formula  [69].  Infants  consuming  soy-­‐based  formula  typically  have  average  plasma  isoflavone  concentrations  between  2.4  and  6.5  μM  [67].      It  is  known  that  genistein  binds  to  and  competes  with  17β-­‐estradiol  for  binding  to  the  ER  [71].  Due  to  its  properties  as  a  SERM,  it  is  difficult  to  predict  the  behavior  of  genistein  or  the  consequences  of  exposure.  Animal  studies  examining  immune  effects  resulting  from  genistein  exposure  often  demonstrate  that  genistein  has  suppressive  effects  on  the  immune  system,  which  are  beneficial  in  mediating  the  effects  of  inflammation  or  allergic  reactions.  However,  at  least  one  study  has  indicated  that  animals  fed  a  lifelong  diet  containing  isoflavones  may  actually  experience  increased  inflammation  during  colitis  in  comparison  to  animals  not  consuming  isoflavones  [81,  82].  In  behavioral  and  anxiety  tests,  phytoestrogens  appear  to  be  beneficial  in  decreasing  anxiety  in  rats,  with  a  greater  anxiety-­‐relieving  properties  in  males  than  in  females.  

Page 33: Possible Endocrine Disruptive Effects on the Nervous and ...

32    

Likewise,  isoflavones  seem  to  have  a  sexually  dimorphic  influence  on  visual  and  spatial  memory,  enhancing  spatial  memory  in  females  while  inhibiting  it  in  males  [84].      More  studies  should  be  undertaken  in  order  to  determine  the  effects  of  dietary  phytoestrogen  exposure  on  neuroendocrine  and  immune  parameters.  Monitoring  or  cohort  studies  can  be  done  on  infants  consuming  soy-­‐based  formula  in  order  to  better  determine  whether  high  levels  of  plasma  isoflavones  at  an  early  life  stage  can  have  effects  on  the  endocrine,  nervous,  or  immune  systems  later  in  life.    

8.  Triazole  fungicides  The  third  compound  examined  is  tebuconazole,  part  of  the  group  of  triazole  fungicides.  Triazoles  belong  to  the  class  of  conazole  pesticides.  They  are  used  worldwide  for  protection  of  cereal  grain,  vegetables,  fruits,  and  flower  production.  Triazoles  are  also  used  as  pharmaceuticals  for  the  treatment  of  human  fungal  infections,  such  as  vaginal  mycosis  in  pregnant  women  and  thrush  in  infants  [85].  Figure  8.1  illustrates  the  structure  of  tebuconazole.      

   Figure  8.1.  Structure  of  tebuconazole.        Conazoles  inhibit  the  enzyme  lanosterol  14-­‐α-­‐demethylase  (also  called  CYP51),  which  regulates  the  synthesis  of  ergosterol,  an  essential  component  of  the  fungal  cell  wall  [85,  86].  The  inhibition  of  ergosterol  causes  the  fungus  to  grow  abnormally,  resulting  in  death.  Evidence  indicates  that  triazoles  may  also  bind  to  human  cytochrome  P450  (CYP)  enzymes,  including  aromatase  (CYP19),  the  enzyme  that  converts  testosterone  into  estradiol,  thus  giving  triazoles  their  status  as  endocrine  disruptors  [85].  In  studies  where  animals  have  been  exposed  to  triazoles,  diverse  effects  have  been  observed  including  craniofacial  and  brain  malformations,  variations  in  the  urinary  tract,  and  decreased  fetal  weight.  Triazoles  have  been  implicated  in  reproductive  toxicity  as  they  have  been  shown  to  impair  fertility,  prolong  gestation,  and  reduce  pup  survival  and  litter  weights  [77].  Triazoles  are  also  hepatotoxic  and  induce  liver  effects  ranging  from  enzyme  induction  to  inflammation  and  necrosis,  with  possible  liver  outcomes  contributing  to  tumors  in  thyroid  follicular  cells  [87].        Tebuconazole  is  rapidly  absorbed  and  widely  distributed  to  different  tissues  in  mammals,  with  high  concentration  residues  found  in  kidneys  and  liver.  The  compound  does  not  have  the  potential  to  accumulate  and  is  excreted  extensively,  mostly  in  feces  [87].  Tebuconazole  is  a  moderate  acutely  toxic  substance  in  rats,  with  an  LD50  of  1700  mg/kg  bw.  In  sub  chronic  to  chronic  toxicity  tests  (90  days  and  1  year)  carried  out  in  rats,  rabbits,  and  dogs,  the  lowest  relevant  NOAEL  was  found  to  be  3  mg/kg  bw/day  due  to  hypertrophy  in  the  zona  fasciculate  of  the  adrenals  in  dogs  exposed  for  1  year.  Based  on  this  NOAEL  (3  mg/kg  bw/day)  and  an  uncertainty  factor  of  100,  the  ADI  of  tebuconazole  was  established  to  be  0.03  mg/kg  bw/day  [87].      Tebuconazole  is  extensively  metabolized  into  triazole  alanine  in  wheat  grains  and  peanut  kernels.  In  all  other  plant  parts,  tebuconazole  metabolism  occurs  at  a  very  low  extent.  When  it  does  occur,  the  metabolites  are  1,2,4-­‐triazole  and  triazole  acetic  acid  [87].  Depending  on  the  

Page 34: Possible Endocrine Disruptive Effects on the Nervous and ...

33    

commodity,  consumers  can  be  exposed  to  both  the  parent  compound  and  its  metabolites.  Tebuconazole’s  metabolites  may  also  have  effects  on  the  endocrine  system  separate  from  the  effects  of  the  parent  compound.  The  ADI  for  the  metabolites,  which  are  also  produced  by  other  substances  belonging  to  the  triazole  group,  are  as  follows:  triazole  alanine  at  0.1  mg/kg  bw/day;  1,2,4-­‐triazole  at  0.02  mg/kg  bw/day;  triazole  acetic  acid  at  0.02  mg/kg  bw/day  [87].    

8.1.  Exposure  analysis  Taking  into  account  chronic  toxicity,  the  highest  theoretical  maximum  daily  intake  (a  measure  of  chronic  exposure)  of  tebuconazole  was  calculated  to  be  16.8%  of  the  ADI  (or  5.04  µg/kg  bw/day)  in  the  WHO  Cluster  B  group,  using  the  EFSA  pesticide  residue  intake  model  [88].  More  extensive  risk  and  consumer  assessment  needs  to  be  done  that  also  takes  into  consideration  the  exposure  to  tebuconazole's  metabolites  [87].      

8.2.  Tebuconazole  as  an  endocrine  disruptor    Kjaerstad  et  al.,  [85]  found  that  tebuconazole  was  anti-­‐estrogenic,  inhibiting  the  estrogen-­‐induced  proliferation  of  MCF-­‐7  cells  at  a  concentration  of  1.6  μM  in  vitro.  Tebuconazole  was  also  an  AR  antagonist  at  a  concentration  of  3.1  μM  in  vitro.  Also  in  vitro,  the  concentrations  of  progesterone  increased  at  doses  from  3  to  10  μM,  while  concentrations  of  testosterone  and  estradiol  decreased  between  the  doses  3  and  30  μM.  Kjaerstad  suggests  that  the  effects  of  tebuconazole  on  hormone  levels  is  possibly  due  to  the  inhibition  of  the  enzyme  that  converts  progesterone  into  testosterone,  CYP17  [85].        In  vivo  studies  have  shown  effects  in  animals  exposed  to  tebuconazole  at  doses  higher  than  the  NOAEL  of  3  mg/kg  bw/day  [89,  90].  For  instance,  in  vivo  exposure  of  pregnant  rats  to  tebuconazole  at  the  LOAEL  (10  mg/kg  bw/day)  leads  to  F1  generation  females  with  reduced  uterus  weights  and  males  with  reduced  epididymis  weights  [89,  90].  Pregnant  rats  gavaged  with  100  mg  tebuconazole/kg  bw/day  from  gestational  day  7  to  postnatal  day  16  gained  less  weight  and  had  longer  gestational  periods  than  controls.  Additionally,  postnatal  death  of  the  pups  occurred  in  this  dose  group,  which  was  not  seen  in  the  control  group  [90].  In  a  different  study  [89],  a  greater  number  of  dead  pups  were  seen  in  litters  in  which  dams  were  orally  given  60  mg  tebuconazole/kg  bw/day,  an  effect  that  was  not  seen  in  the  lower  dose  groups  of  0,  6,  or  20  mg/kg  bw/day  [89].      Other  effects  of  tebuconazole  exposure  in  utero  include  the  feminization  of  male  offspring;  dams  exposed  to  doses  of  0,  50,  or  100  mg/kg  bw/day  via  gavage  between  GD  7  and  16  gave  birth  to  male  pups  with  an  increased  number  of  nipples  in  both  the  50  and  100  mg/kg  bw/day  dose  groups.  Male  pups  of  dams  given  100  mg/kg  bw/day  in  utero  had  decreased  serum  testosterone  concentrations  during  gestational  day  21.  Males  of  dams  in  the  low  dose  group  (50  mg/kg  bw/day),  but  not  the  high  dose  group,  had  increases  in  serum  progesterone  levels.  Female  fetuses  exposed  in  utero  to  50  or  100  mg  tebuconazole/kg  bw  had  increased  anogenital  distances  at  birth  [90].  The  dams  dosed  with  50  and  100  mg/kg  bw/day  experienced  a  sevenfold  increase  in  plasma  progesterone  levels,  which  is  consistent  with  the  in  vitro  studies  performed  by  Kjaerstad  et  al.  [85].      

8.3.  Tebuconazole  exposure  and  immune  effects    In  general,  there  is  a  lack  of  studies  detailing  the  effects  of  tebuconazole  on  the  immune  system.  One  study  by  Moser  et  al.,  [89]  examines  immune,  nervous,  and  reproductive  effects  of  tebuconazole  on  pregnant  dams  and  their  pups.  Pregnant  dams  were  fed  tebuconazole  at  doses  of  0,  6,  20,  or  60  mg/kg  bw/day  from  gestational  day  14  until  postnatal  day  7.  The  F1  generation  was  subsequently  fed  the  same  doses  from  postnatal  day  (PND)  7  until  PND  42.  The  exposure  period  was  chosen  to  mimic  the  exposure  period  until  puberty.  Both  F0  and  F1  generation  

Page 35: Possible Endocrine Disruptive Effects on the Nervous and ...

34    

males  and  females  were  assessed  for  the  immunological,  neurological,  and  reproductive  effects  (section  8.2)  of  tebuconazole  exposure.  Immunological  assessment  included  measurement  of  the  weights  of  the  spleen  and  thymus,  analysis  of  the  B,  T,  and  natural  killer  cell  response  in  the  spleen  of  F1  rats  exposed  to  three  different  mitogens,  and  a  measurement  of  cell  proliferation  using  the  plague  forming  assay.  Tebuconazole  was  found  to  decrease  spleen  weight  in  F1  males,  at  60  mg/kg  bw/day,  with  no  other  effects  seen  in  the  parameters  tested  [89].      

8.4.  Tebuconazole  exposure  and  neuroendocrine  effects  Tebuconazole  also  inhibits  voltage  gated  calcium  channels  upon  depolarization,  leading  to  reductions  in  calcium  influx  [91].  Rat  PC12  cells  (a  model  of  mature  dopaminergic  neurons)  were  exposed  to  six  azole  fungicides,  including  tebuconazole,  in  order  to  determine  their  effects  on  basal  Ca2+  and  intracellular  Ca2+  after  depolarization.  The  in  vitro  study  found  that  tebuconazole  in  combination  with  imazalil,  flusilazole,  triadimefon,  and  cyproconazole  inhibits  Ca2+  influx  into  PC12  cells  after  depolarization  in  a  concentration-­‐dependent  manner  [91].  Because  calcium  is  essential  in  neuronal  signaling,  inhibition  of  calcium  channels  during  depolarization  may  reduce  neurotransmission  in  dopaminergic  neurons  [91].      From  the  study  by  Moser  et  al.,  [89],  a  neurotoxicological  assessment  was  carried  out  including  functional  observational  battery  (FOB-­‐a  series  of  operational  and  manipulative  tests  designed  to  assess  the  neurological  integrity  of  the  test  subject),  automated  measure  of  motor  activity,  passive  avoidance  (to  test  retention  memory),  and  the  Morris  water  maze  (to  test  spatial  and  working  memory).  F1  rats  were  tested  twice:  once  during  PND  49  and  50,  and  again  during  PND  70  and  71.  While  the  researchers  did  not  see  significant  effects  of  tebuconazole  exposure  in  most  of  the  assessments  used,  it  was  found  to  significantly  alter  spatial  memory,  as  male  and  female  rats  in  the  highest  dose  group  (60  mg/kg  day)  learned  the  position  of  the  platform  in  the  Morris  water  maze  at  a  slower  rate  in  comparison  to  controls.  Females  displayed  delayed  learning  during  the  first  testing  battery  only  (PND  49  and  50)  while  males  were  slower  than  controls  during  both  testing  dates  (PND  40  and  50  and  again  PND  70  and  71)  [89].        Besides  tebuconazole,  other  triazole  fungicides  have  adverse  effects  on  the  CNS.  For  instance,  triadimefon  and  triadimenol  are  psychomotor  stimulants  in  rats,  leading  to  hyperactivity  and  similar  behaviors  to  those  seen  in  rats  given  amphetamine.  Male  Long-­‐Evans  rats  fed  a  single  oral  dose  (from  50  to  400  mg/kg  of  both  compounds;  exact  dose  not  specified  by  the  authors)  dissolved  in  corn  oil  showed  hyperactive  behavior  and  significant  increases  in  activity  measured  by  behaviors  such  as  excessive  grooming,  head  bobbing,  sniffing  and  rearing  at  doses  greater  than  50  mg/kg.  In  this  study,  tebuconazole  was  also  given  to  rats  at  doses  from  50-­‐2000  mg/kg  bw,  with  no  behavioral  outcomes.  The  author  speculates  that  the  behavioral  effects  of  triadimefon  and  triadimenol  are  due  to  the  structure  of  both  compounds.  Triadimefon  and  triadimenol  have  an  ether  oxygen,  which  is  replaced  by  a  carbon  moiety  in  other  triazoles.  The  structure  may  explain  why  these  specific  triazoles  out  of  a  total  of  16  tested  produced  hyperactive  behavior.  Both  compounds  are  thought  to  inhibit  or  decrease  the  reuptake  of  dopamine  from  the  synapse  in  nerve  terminals,  leading  to  hyperactive  behaviors  [92].      Evidence  from  a  zebrafish  study  by  Liu  et  al.,  [93]  indicates  that  triazoles  may  influence  signaling  in  the  HPT  axis.  Exposure  of  zebrafish  embryos  to  triadimefon  induced  an  upregulation  of  mRNA  expression  for  thyroid  hormone  T4  but  decreased  expression  of  thyroid  hormone  receptor  beta  (THR-­‐β).  Additionally,  expression  of  the  gene  dio1,  which  codes  for  the  deiodinase  that  converts  T4  into  T3,  was  decreased  [93].      

8.5.  Conclusion    According  to  estimation  of  chronic  exposure,  the  highest  theoretical  maximum  daily  intake  of  tebuconazole  is  expected  to  be  approximately  5  μg/kg  bw/day  [88],  which  is  below  the  ADI  of  

Page 36: Possible Endocrine Disruptive Effects on the Nervous and ...

35    

30  µg/kg  bw/day.  Evidence  of  the  endocrine  disrupting  properties  of  tebuconazole  includes  its  ability  to  inhibit  the  proliferation  of  MCF7  cells  and  antagonize  the  AR  in  vitro  [85].  In  vivo  animal  studies  have  shown  negative  effects  of  exposure  at  doses  higher  than  the  NOAEL  of  3  mg/kg  bw/day.  These  effects  include  reduced  organ  weights  and  increased  rates  of  death  in  pups  of  exposed  dams  [89,  90].      There  is  a  general  lack  of  information  detailing  immune  effects  of  chronic  exposure  to  tebuconazole,  but  one  study  [89]  was  able  to  demonstrate  that  oral  exposure  of  tebuconazole  at  60  mg/kg  bw/day  decreased  spleen  weights  of  males  exposed  in  utero.      An  in  vitro  study  by  Heusinkveld  et  al.,  [91]  showed  that  tebuconazole  in  combination  with  four  other  triazole  fungicides  inhibits  calcium  influx  into  PC12  neurons  during  depolarization  in  a  concentration-­‐dependent  manner.  Because  calcium  is  essential  in  neuronal  signaling,  inhibition  of  Ca2+  channels  may  reduce  neurotransmission  in  dopaminergic  neurons.  To  date,  Heusinkveld's  in  vitro  results  have  not  been  explored  in  vivo.  However,  an  in  vivo  study  by  Crofton  [92]  exploring  neurotoxic  effects  of  triazoles  found  that  rats  ingesting  at  least  50  mg/kg  bw  daily  of  two  other  triazole  fungicides,  triadimefon  and  triadimenol,  exhibited  hyperactive  behavior.  While  Crofton  suggested  that  the  development  of  hyperactive  behavior  was  due  to  a  decrease  in  the  reuptake  of  dopamine  from  synaptic  nerve  terminals,  and  not  due  to  calcium  inhibition,  this  study  supports  the  notion  that  triazoles  have  effects  in  the  CNS.      Based  on  the  studies  reviewed  in  this  report,  the  estimated  exposure  of  tebuconazole  does  not  indicate  that  it  induces  endocrine  disruption  in  humans,  but  the  combined  exposure  of  all  triazoles  and  their  metabolites  must  be  further  investigated.    

9.  Discussion  The  studies  mentioned  in  this  thesis  have  demonstrated  that  the  investigated  compounds  have  endocrine  disrupting  properties.  However,  the  critical  question  of  whether  exposure  via  food  to  the  endocrine  disrupting  compounds  BHA,  genistein,  and  tebuconazole  contributes  to  adverse  effects  in  the  nervous  and  immune  systems  of  humans  has  yet  to  be  answered.  Based  on  the  scientific  literature  presented  in  this  report,  it  is  clear  that  these  three  compounds  certainly  have  the  potential  to  exert  adverse  effects  in  both  systems.  Perhaps  this  question  cannot  hitherto  be  answered  within  the  current  state  of  the  science  due  to  a  lack  of  studies  as  well  as  inadequate  screening  and  testing  methods  specifically  designed  to  accommodate  immune  and  nervous  system  endpoints.  The  validated  Testing  Guidelines  (TG)  used  by  the  OECD  tailored  specifically  to  endocrine  effects  are  outlined  in  the  Conceptual  Framework  included  in  Appendix  I.  As  of  2012,  when  the  framework  was  last  revised,  only  one  TG  (OECD  TG  426)  addressed  developmental  neurotoxicity  [94]  and  there  are  no  TGs  for  immune  modalities  listed  in  the  Conceptual  Framework  document.      In  terms  of  the  compounds  BHA,  genistein,  and  tebuconazole,  all  studies  (in  vitro  and  in  vivo  alike)  have  indicated  that  exposure  or  contact  with  the  particular  compound  in  some  way  may  have  either  direct  or  indirect  effects  on  the  immune  and  nervous  system.  Effects  of  the  compounds  on  both  systems  are  summarized  in  the  conclusion  sections  6.5,  7.5,  and  8.5.  Striking  findings  from  in  vitro  studies  of  BHA  and  tebuconazole  exposure  that  should  be  explored  further  are  the  abilities  of  both  compounds  to  modify  levels  of  Ca2+  in  exposed  cells  [57,  60,  91].      For  instance,  BHA  has  the  potential  to  modify  the  lymphocytes  of  the  immune  system  by  influencing  intracellular  calcium  concentrations.  Calcium  oscillations  in  lymphocytes  act  as  signals  that  activate  B  and  T  cells  and  lead  to  the  synthesis  of  cytokines  that  can  subsequently  have  effects  on  inflammation,  growth,  or  activation  of  cells  [58].  The  ability  of  BHA  to  modify  

Page 37: Possible Endocrine Disruptive Effects on the Nervous and ...

36    

Ca2+  levels  was  observed  in  two  in  vitro  studies  (53,  55).  Interestingly,  one  study  demonstrated  that  BHA  exposure  in  human  umbilical  cord  endothelial  cells,  rat  cardiomyocytes,  and  rat  pituitary  cells  lead  to  increases  in  the  levels  of  intracellular  calcium  in  a  dose-­‐dependent  manner  [59].  The  other  study  failed  to  find  an  increase  of  intracellular  Ca2+  in  thymocytes  and  splenocytes  exposed  to  BHA  in  vitro.  In  fact,  BHA  exposure  prevented  an  increase  in  calcium  in  exposed  cells  [57].  As  both  studies  were  conducted  in  vitro,  it  is  unclear  what  the  results  could  mean  in  terms  of  a  real-­‐world  exposure  scenario.  To  my  knowledge,  there  have  not  yet  been  any  in  vivo  studies  of  BHA  exposure  on  intracellular  calcium  levels  in  mammals  in  the  scientific  literature.  In  addition  to  immune  effects,  changes  in  intracellular  calcium  levels  can  implicate  neuronal  function,  as  Ca2+  is  essential  in  the  propagation  of  an  action  potential  [91].      Tebuconazole  in  combination  with  several  other  conazole  fungicides  (imazalil,  flusilazole,  triadimefon,  and  cyproconazole)  inhibits  voltage  gated  calcium  channels  in  dopaminergic  neurons  (PC12  cells)  upon  depolarization  in  vitro.  A  greater  degree  of  inhibition  was  seen  at  higher  concentrations  of  fungicides,  indicating  that  the  inhibition  occurs  in  a  concentration-­‐dependent  manner.  Heusinkveld  et  al.,  [91]  also  pointed  out  that  the  inhibitory  effects  of  the  compounds  on  Ca2+  influx  were  additive.  Exposure  of  PC12  cells  to  a  single  fungicide  did  not  affect  basal  levels  of  calcium;  only  when  PC12  cells  were  exposed  to  a  mixture  was  basal  Ca2+  inhibited  [91].    Similar  to  the  studies  previously  described  for  BHA,  the  results  from  Heusinkveld's  study  on  tebuconazole  are  not  enough  to  explain  the  possible  in  vivo  effects  of  tebuconazole  exposure  on  intracellular  calcium  levels.  More  studies  need  to  be  done  to  elucidate  the  outcomes  of  calcium  modulation  and  what  that  modulation  means  for  the  nervous  and  immune  systems.      Calcium  levels  have  not  traditionally  been  considered  an  endpoint  conducive  to  screening  and  testing  for  EDCs.  As  a  second  messenger  molecule,  the  role  of  Ca2+  in  the  propagation  of  intra  and  extra  cellular  signaling  has  been  underappreciated.  In  the  nervous  system,  Ca2+  is  responsible  for  dopaminergic  neurotransmission,  gene  transcription,  neurodegeneration,  and  neurodevelopment  [91].  In  the  immune  system,  Ca2+  is  responsible  for  the  mobility  of  lymphocytes,  T-­‐cell  mediated  toxicity,  cell  differentiation,  and  effector  functions  [95].  Calcium  levels  in  the  blood  are  controlled  by  the  endocrine  system;  namely,  parathyroid  hormones  and  vitamin  D  increase  the  concentration  of  calcium  in  the  blood,  while  calcitonin  reduces  blood  calcium  levels  [96].  While  these  hormones  are  not  discussed  in  any  detail  in  this  report,  their  roles  as  targets  of  EDCs  should  be  considered  in  future  investigations.  Since  BHA  and  tebuconazole  can  both  modify  intracellular  calcium  levels,  it  could  be  interesting  to  note  whether  they  can  also  affect  these  hormones,  leading  to  changes  in  the  levels  of  calcium  in  the  blood.  Modifications  to  calcium  homeostasis  can  have  effects  on  intracellular  signaling,  ultimately  leading  to  downstream  or  indirect  consequences  on  programming  or  the  set-­‐up  of  homeostatic  pathways  essential  to  the  proper  function  of  the  immune  and  nervous  systems.      While  the  studies  included  in  this  report  detailing  the  effects  of  exposure  to  genistein  in  the  diet  have  not  examined  the  role  of  the  compound’s  effects  on  calcium,  some  studies  have  indicated  that  genistein  modifies  the  immune  response  and  can  play  a  role  in  immune  suppression  by  increasing  or  decreasing  inflammation  [65,  80-­‐82].  Lymphocytes  and  inflammatory  cytokines  released  from  lymphocytes  and  other  immune  cells  are  responsive  to  changes  in  intracellular  calcium  levels.  For  instance,  prolonged  increases  in  Ca2+  levels  in  B  and  T  cells  lead  to  changes  in  DNA  expression  in  these  cells  and  contribute  to  the  transcription  of  inflammatory  cytokines  [95].  Thus,  modification  of  calcium  signaling  can  be  an  important  pathway  with  which  soy  isoflavones  exert  their  effects  on  the  immune  system  and  should  be  further  explored.      Nervous  system  effects  of  BHA  are  not  well  documented  and  few  studies  have  extensively  investigated  the  consequences  of  BHA  exposure  on  neurodevelopmental  endpoints.  The  study  included  in  this  report  noted  BHA-­‐exposed  rats  exhibited  a  delay  in  the  auditory  startle  response  compared  to  control  rats  by  a  day  and  a  half  [62].  It  is  unclear  what  these  results  

Page 38: Possible Endocrine Disruptive Effects on the Nervous and ...

37    

indicate,  as  BHA  in  this  study  did  not  induce  behavioral  toxicity  in  rats  even  at  the  highest  exposure  level  of  0.80  g/kg  bw/day  (0.50%  wet  weight  of  the  diet).  There  were  no  studies  on  tebuconazole  exposure  and  neurological  effects,  although  a  study  by  Heusinkveld  et  al.,  [91]  noted  that  in  vitro  exposure  of  neurons  to  a  mixture  of  tebuconazole  and  several  other  azole  fungicides  inhibited  voltage  gated  Ca2+  channels  upon  depolarization.  Genistein  exposure  does  have  effects  on  the  nervous  system  of  mammals  that  warrant  additional  investigation.  Studies  on  neonatal  exposure  to  genistein  indicate  that  the  compound  may  have  effects  on  brain  regions  associated  with  male  and  female  behavior,  such  as  the  hypothalamus  [83].      For  instance,  subcutaneous  injection  of  10  mg/kg  genistein  bw/day  for  4  days  lead  to  female  rats  with  a  decreased  density  of  neurons  in  the  AVPV  of  the  hypothalamus,  leading  to  brains  that  resembled  those  of  males.  The  fiber  densities  of  the  affected  neurons  in  the  AVPV  persisted  into  adulthood,  indicating  that  genistein's  de-­‐feminizing  effects  were  permanent  [83].  Plasma  levels  of  isoflavones  corresponding  to  the  concentration  of  10  mg/kg  bw/day  were  not  measured,  so  it  is  unclear  whether  the  concentrations  the  animals  were  exposed  to  pose  a  threat  to  normal  development  of  the  hypothalamus  in  animals  consuming  a  standard  diet  containing  isoflavones.  Humans,  in  any  case,  consume  isoflavones  at  concentrations  lower  than  10  mg/kg  bw/day,  with  Asians  averaging  between  0.3  and  1.2  mg/kg  bw/day  [67].  Infants  fed  soy-­‐based  formula  are  the  highest  consumers  of  soy  isoflavones,  ingesting  roughly  6-­‐11  mg/kg  bw/day  of  isoflavones  [67].  These  doses  are  comparable  to  the  concentrations  given  to  rats  in  the  study  by  Losa  et  al.  [83].  A  critical  difference,  however,  is  that  infants  consume  genistein  orally,  and  the  animals  in  Losa’s  study  were  administered  genistein  via  subcutaneous  injection.  Genistein  undergoes  metabolism  in  the  infant  GI  tract  before  reaching  blood  plasma,  while  genistein  in  rats  injected  subcutaneously  skips  metabolism  in  the  GI  tract,  leading  to  a  different  plasma  concentration  in  rats.  Additionally,  genistein  typically  exists  in  its  inactive,  glycoside  form.  Ingesting  genistin  glycoside  actually  activates  the  compound  as  salivary  enzymes  and  bacterial  glycosidases  convert  genistin  into  the  aglycone  form  (genistein)  in  the  gut.  The  activity  of  activated  genistein  is  short-­‐lived  and  restricted  to  the  gut,  as  it  is  immediately  conjugated  with  glucuronides,  sulfates,  or  acetates  in  intestinal  epithelial  cells  [80].    Is  it  likely  that  exposure  to  BHA,  tebuconazole,  and  genistein  at  the  current  levels  can  lead  to  adverse  effects  in  humans?  In  all  the  studies  mentioned  in  this  report,  there  have  not  been  any  documented  adverse  effects  in  animals  exposed  to  BHA  or  tebuconazole  at  levels  lower  than  the  NOAEL.      The  NOAEL  for  BHA  was  100  mg/kg  bw/day  based  on  growth  retardation,  increased  mortality,  and  behavioral  effects  in  rat  pups.  Due  to  this  NOAEL  and  an  uncertainty  factor  of  100,  the  ADI  for  human  exposure  was  set  to  1.0  mg/kg  bw/day  by  EFSA.  Exposure  to  BHA  is  unlikely  to  occur  at  levels  higher  than  the  ADI.  According  to  EFSA  and  based  on  the  estimated  maximum  permissible  levels  (MPLs)  of  BHA  in  food,  country-­‐specific  data  for  Sweden  (Table  6.1)  indicates  a  lower  mean  level  of  exposure  in  comparison  to  other  European  countries.  However,  exposure  at  levels  higher  than  the  ADI  may  be  a  reality  in  individuals  who  are  both  exposed  via  food  and  who  use  plastic  storage  containers  to  keep  their  foodstuffs.  EFSA  estimated  that  children  and  toddlers  who  eat  1  kg  of  food  packed  in  BHA-­‐contained  plastic  at  the  maximum  allowed  levels  can  actually  be  exposed  to  BHA  at  levels  higher  than  the  ADI  [51]  (children:  1.3  mg/kg  bw/day;  toddlers:  2.5  mg/kg  bw/day).  Because  EFSA's  calculations  of  exposure  are  based  on  MPLs  and  not  on  actual  values  of  BHA  content  in  food,  this  exposure  estimate  is  likely  to  be  conservative,  meaning  humans  are  not  likely  to  be  exposed  to  BHA  at  doses  which  can  lead  to  adverse  health  effects.  However,  a  thorough  exposure  assessment  should  be  done  in  order  to  verify  that  levels  of  BHA  in  food  are  actually  below  the  MPLs  as  they  should  be,  and  that  humans  are  indeed  exposed  in  a  similar  fashion  as  estimated  by  EFSA.      Tebuconazole  exposure  is  estimated  to  be  maximally  about  17%  of  the  ADI  of  0.03  mg/kg  bw/day,  which  means  that  human  exposure  is  well  under  the  ADI  [88].  Additionally,  the  studies  

Page 39: Possible Endocrine Disruptive Effects on the Nervous and ...

38    

referenced  in  this  report  that  indicated  adverse  effects  as  a  result  of  in  vivo  tebuconazole  exposure  occurred  at  exposure  levels  higher  than  the  NOAEL  of  3  mg/kg  bw/day  [89,  90].  As  mentioned  earlier,  additional  in  vivo  testing  could  be  done  to  determine  whether  tebuconazole  exposure  at  doses  lower  than  or  close  to  the  NOAEL  can  lead  to  modifications  of  intracellular  calcium  levels  in  order  to  determine  whether  tebuconazole  can  implicate  important  signaling  pathways.  Exposure  to  tebuconazole  alone  does  not  indicate  that  adverse  effects  on  the  endocrine  system  will  occur,  especially  if  exposure  is  below  the  NOAEL.  However,  the  cumulative  exposure  of  several  triazoles  and  their  metabolites  may  lead  to  adverse  effects.  This  is  something  that  needs  to  be  further  investigated.      There  is  no  ADI  or  NOAEL  for  genistein.  In  a  search  of  the  scientific  literature,  no  studies  were  found  documenting  adverse  effects  of  phytoestrogen  or  isoflavones  exposure  on  human  health.  Contrarily,  the  isoflavones  genistein  and  daidzein  are  of  great  interest  primarily  due  to  their  prevalence  in  food  and  their  bioactivity.  These  compounds  have  received  much  attention  because  of  their  potentially  beneficial  effects  on  cancer,  cardiovascular  disease,  osteoporosis,  menopausal  symptoms,  male  infertility,  obesity,  and  type  II  diabetes  [70].  Benefits  to  these  conditions  are  credited  to  the  fact  that  the  highest  consumption  of  isoflavones  occurs  in  Asian  countries,  where  rates  of  certain  cancers  and  other  hormonal  conditions  are  far  lower  than  in  the  West  [35,  84].  In  an  EFSA  opinion  on  the  substantiation  of  health  claims  related  to  soy  isoflavones,  EFSA  concluded  that  there  was  insufficient  evidence  to  support  that  exposure  to  soy  isoflavones  had  beneficial  effects  on  the  maintenance  of  bone  mineral  density  in  post-­‐menopausal  women  [97,  98],  the  reduction  of  vasomotor  symptoms  associated  with  menopause,  protection  of  DNA,  proteins,  and  lipids  from  oxidative  damage,  or  the  maintenance  of  normal  blood  LDL-­‐cholesterol  concentrations  [97,  98]. Despite  the  absence  of  an  ADI  or  a  NOAEL,  it  seems  that  genistein  exposure  in  newborn  rat  pups  alters  brain  physiology  in  regions  associated  with  timing  of  puberty  [83].  Results  from  this  study  are  difficult  to  extrapolate  in  terms  of  human  exposure,  as  rat  pups  were  injected  subcutaneously  and  humans  are  exposed  to  genistein  orally.  Further  investigation  is  warranted  as  genistein  can  be  transported  across  the  placenta  and  bind  to  ER  in  the  underdeveloped  brain,  as  the  blood  brain  barrier  (BBB)  is  immature  in  utero  and  immediately  after  birth.    Besides  the  observation  that  inhibition  of  intracellular  calcium  was  a  common  feature  of  exposure  to  BHA  and  tebuconazole,  and  modification  of  the  immune  response  common  in  studies  involving  genistein  exposure,  effects  of  BHA,  tebuconazole,  and  genistein  on  Ca2+  should  be  investigated  further,  both  with  controlled  in  vitro  and  in  vivo  studies.  Modification  of  calcium  levels  can  have  downstream  consequences  on  cellular  signaling  pathways,  indirectly  affecting  endocrine  function  or  developmental  programming  and  leading  to  adverse  effects.  Another  important  aspect  of  endocrine  disruption  is  the  impact  of  chemicals  on  the  epigenome.  Current  screening  and  testing  methods  do  not  yet  take  into  consideration  the  epigenetic  effects  of  chemical  exposure.  Epigenetic  alterations,  while  leaving  the  DNA  intact,  can  have  effects  on  the  expression  of  proteins  and  the  availability  of  the  transcription  machinery  to  access  specific  genes  or  regions  of  the  DNA,  transcribing  important  genes.  Epigenetic  effects  are  briefly  mentioned  in  the  OECD  DRP  on  novel  in  vitro  and  in  vivo  testing  methods  [25],  but  studies  utilizing  epigenetic  endpoints  are  lacking  for  BHA,  genistein,  and  tebuconazole.  Screening  or  testing  these  compounds  for  their  impact  on  the  epigenome  could  be  something  to  do  in  the  future.  Perhaps  epigenetic  effects  may  elucidate  whether  these  compounds  impact  developmental  programming.  Effects  on  the  epigenome  may  also  shed  some  light  on  the  broader  question  of  the  relationship  between  the  increase  in  chronic,  non-­‐infectious  diseases,  such  as  neurodevelopmental  disorders,  and  their  occurrence  in  highly  industrialized  countries  where  chemical  exposure  is  the  norm  [1].    

Page 40: Possible Endocrine Disruptive Effects on the Nervous and ...

39    

10.  Conclusion  A  review  of  the  scientific  literature  was  completed  in  order  to  determine  the  issues  surrounding  endocrine  disruptors  and  to  discover  possible  contributions  of  the  antioxidant  butylated  hydroxyanisole  (BHA),  the  phytoestrogen  genistein,  and  the  triazole  fungicide  tebuconazole  on  the  development  and  function  of  the  immune  and  nervous  systems.  The  literature  revealed  that  all  three  compounds  impacted  different  aspects  of  both  body  systems,  with  BHA  and  tebuconazole  sharing  the  common  mechanisms  of  intracellular  calcium  inhibition  in  several  in  vitro  studies.  This  is  an  important  finding,  as  calcium  has  profound  effects  on  the  nervous  system,  acts  as  a  second  messenger  in  cell  signaling,  and  can  determine  the  cytokine  expression  profile  of  B  and  T  lymphocytes.  Additional  research  should  be  done  in  order  to  more  thoroughly  explore  this  observation  and  the  relationship  between  modulation  of  intracellular  calcium  levels  and  endocrine  disruption.  While  there  were  no  studies  linking  genistein  exposure  to  calcium  inhibition,  several  in  vivo  studies  demonstrated  that  genistein  was  able  to  modify  the  immune  system  of  rats.  Its  role  on  the  nervous  system  is  not  yet  clear.      Future  research  in  the  area  of  the  effects  of  endocrine  disrupting  compounds  (EDCs)  should  be  focused  on  Testing  Guidelines  for  outcomes  specific  to  the  immune  and  nervous  systems,  as  screening  and  testing  in  these  areas  is  deficient.  Additional  research  should  focus  on  the  effects  of  EDCs  on  calcium  homeostasis,  as  this  could  also  be  an  area  where  multiple  indirect  effects  occur  as  a  result  of  disruption,  leading  to  adverse  effects  on  endocrine-­‐mediated  pathways.      

11.  Acknowledgements  I  would  like  to  thank  my  thesis  supervisors  at  Livsmedelsverket,  Anneli  Widenfalk  and  Kettil  Svensson,  for  their  constant  support,  proofreading,  and  answering  of  my  many  questions.  Our  Monday  afternoon  meetings  were  something  I  very  much  looked  forward  to,  as  I  received  the  greatest  inspiration  after  our  meetings.  Additional  thanks  go  out  to  everybody  at  Livsmedelsverket  who  went  out  of  their  way  to  make  me  feel  welcome  and  who  fixed  all  the  little  things  for  me,  such  as  an  office  space  and  help  with  finding  articles.  I  would  also  like  to  thank  my  supervisor  at  Uppsala  University,  Jan  Örberg.  Although  I  was  a  bit  optimistic  with  the  timing  of  my  deadline,  you  did  not  lose  patience  with  me  and  provided  very  helpful  insight  and  comments  on  my  drafts.  Thank  you  for  being  such  a  wonderful  human  being  and  an  inspirational  professor  during  my  time  at  Uppsala.                                    

Page 41: Possible Endocrine Disruptive Effects on the Nervous and ...

40    

References    1.   IPCS,  Global  assessment  of  the  state-­‐of-­‐the-­‐science  of  endocrine  disruptors.  2002:  

Geneva,  Switzerland.  2.   WHO  and  UNEP,  State  of  the  science  of  endocrine  disrupting  chemicals  2012,  J.J.H.  

Åke  Bergman,  Susan  Jobling,  Karen  A.  Kidd,  R.  Thomas  Zoeller,  Editor.  2013:  Geneva  p.  296.  

3.   Xiong,  F.  and  L.  Zhang,  Role  of  the  hypothalamic-­‐pituitary-­‐adrenal  axis  in  developmental  programming  of  health  and  disease.  Front  Neuroendocrinol,  2013.  34(1):  p.  27-­‐46.  

4.   USEPA.  DDT-­‐A  brief  history  and  status.  May  9,  2012  [cited  2013  June  15,  2013];  Available  from:  www.epa.goc/pesticides/factsheets/chemicals/ddt-­‐brief-­‐history-­‐status.htm.  

5.   Colborn,  T.,  F.S.  vom  Saal,  and  A.M.  Soto,  Developmental  effects  of  endocrine-­‐disrupting  chemicals  in  wildlife  and  humans.  Environ  Health  Perspect,  1993.  101(5):  p.  378-­‐84.  

6.   Colborn,  T.,  J.P.  Myers,  and  D.  Dumanoski,  Our  stolen  future  :  are  we  threatening  our  fertility,  intelligence,  and  survival?  :  a  scientific  detective  story.  1996,  New  York:  Dutton.  xii,  306  p.  

7.   Our  Stolen  Future:  Human  reproduction  and  modern  risks,  in  PRI's  Environmental  News  Magazine.  1996,  Living  on  earth:  Boston,  MA.  

8.   Communities,  C.o.t.E.,  Community  Strategy  for  Endocrine  Disruptors.  1999.  706(final).  

9.   Agency,  E.E.,  The  impacts  of  endocrine  disrupters  on  wildlife,  people  and  their  environments-­‐The  Weybridge+15  (1996-­‐2011)  report.  2012,  European  Environment  Agency:  Copenhagen,  Denmark.  p.  112  pp.  

10.   Vandenberg,  L.N.,  et  al.,  Hormones  and  endocrine-­‐disrupting  chemicals:  low-­‐dose  effects  and  nonmonotonic  dose  responses.  Endocr  Rev,  2012.  33(3):  p.  378-­‐455.  

11.   Crain,  D.A.,  et  al.,  An  ecological  assessment  of  bisphenol-­‐A:  evidence  from  comparative  biology.  Reprod  Toxicol,  2007.  24(2):  p.  225-­‐39.  

12.   Vandenberg,  L.N.,  et  al.,  Urinary,  circulating,  and  tissue  biomonitoring  studies  indicate  widespread  exposure  to  bisphenol  A.  Environ  Health  Perspect,  2010.  118(8):  p.  1055-­‐70.  

13.   Hays,  S.M.  and  L.L.  Aylward,  Using  Biomonitoring  Equivalents  to  interpret  human  biomonitoring  data  in  a  public  health  risk  context.  J  Appl  Toxicol,  2009.  29(4):  p.  275-­‐88.  

14.   Clewell,  H.J.,  et  al.,  Quantitative  interpretation  of  human  biomonitoring  data.  Toxicol  Appl  Pharmacol,  2008.  231(1):  p.  122-­‐33.  

15.   Hayes,  T.B.,  et  al.,  Pesticide  mixtures,  endocrine  disruption,  and  amphibian  declines:  are  we  underestimating  the  impact?  Environ  Health  Perspect,  2006.  114  Suppl  1:  p.  40-­‐50.  

16.   Woodruff,  T.J.,  A.R.  Zota,  and  J.M.  Schwartz,  Environmental  chemicals  in  pregnant  women  in  the  United  States:  NHANES  2003-­‐2004.  Environ  Health  Perspect,  2011.  119(6):  p.  878-­‐85.  

17.   Burris,  T.P.,  et  al.,  Nuclear  receptors  and  their  selective  pharmacologic  modulators.  Pharmacol  Rev,  2013.  65(2):  p.  710-­‐78.  

Page 42: Possible Endocrine Disruptive Effects on the Nervous and ...

41    

18.   Gronemeyer,  H.,  J.A.  Gustafsson,  and  V.  Laudet,  Principles  for  modulation  of  the  nuclear  receptor  superfamily.  Nat  Rev  Drug  Discov,  2004.  3(11):  p.  950-­‐64.  

19.   Swedenborg,  E.,  et  al.,  Regulation  of  estrogen  receptor  beta  activity  and  implications  in  health  and  disease.  Cell  Mol  Life  Sci,  2009.  66(24):  p.  3873-­‐94.  

20.   Gardner,  D.G.,  D.M.  Shoback,  and  F.S.  Greenspan,  Greenspan's  basic  &  clinical  endocrinology.  8th  ed.  Lange  medical  book.  2007,  New  York:  McGraw-­‐Hill  Medical.  xiv,  1010  p.  

21.   Purves,  D.  and  S.M.  Williams,  Neuroscience.  2nd  ed.  2001,  Sunderland,  Mass.:  Sinauer  Associates.  xviii,  681,  16,  3,  25  p.  

22.   Tian,  L.,  et  al.,  Neuroimmune  crosstalk  in  the  central  nervous  system  and  its  significance  for  neurological  diseases.  J  Neuroinflammation,  2012.  9:  p.  155.  

23.   Reves,  M.  Ionotropic  vs  Metabotropic  Receptors.  [webpage  ]  2012  2012-­‐07-­‐30  [cited  2013  13  September  ];  Available  from:  http://www.interactive-­‐biology.com/3974/ionotropic-­‐vs-­‐metabotropic-­‐receptors/.  

24.   Boeree,  G.  The  emotional  nervous  system  [webpage]  2002,  2009    2013-­‐09-­‐12];  Available  from:  http://webspace.ship.edu/cgoer/limbicsystem.html.  

25.   OECD,  Detailed  review  paper  on  the  state  of  the  science  on  novel  in  vitro  and  in  vivo  screening  and  testing  methods  and  endpoints  for  evaluating  endocrine  disruptors.  OECD  Environment,  Health  and  Safety  Publications,  2012.  No.  178.  

26.   Gore,  A.C.,  Developmental  programming  and  endocrine  disruptor  effects  on  reproductive  neuroendocrine  systems.  Front  Neuroendocrinol,  2008.  29(3):  p.  358-­‐74.  

27.   Reece,  C.a.,  Biology.  8  ed.  2008:  Pearson  Benjamin  Cummings.  28.   de  Kretser,  D.M.,  et  al.,  Inhibins,  activins  and  follistatin  in  reproduction.  Hum  Reprod  

Update,  2002.  8(6):  p.  529-­‐41.  29.   Fox,  S.I.,  Human  physiology.  13th  ed.  2013,  New  York,  NY:  McGraw-­‐Hill.  xx,  752,  [57]  

p.  30.   Clarkson,  J.  and  A.E.  Herbison,  Oestrogen,  kisspeptin,  GPR54  and  the  pre-­‐ovulatory  

luteinising  hormone  surge.  J  Neuroendocrinol,  2009.  21(4):  p.  305-­‐11.  31.   Chan,  S.  and  M.D.  Kilby,  Thyroid  hormone  and  central  nervous  system  development.  J  

Endocrinol,  2000.  165(1):  p.  1-­‐8.  32.   Stenzel,  D.  and  W.B.  Huttner,  Role  of  maternal  thyroid  hormones  in  the  developing  

neocortex  and  during  human  evolution.  Front  Neuroanat,  2013.  7:  p.  19.  33.   Gilbert,  M.E.,  et  al.,  Developmental  thyroid  hormone  disruption:  prevalence,  

environmental  contaminants  and  neurodevelopmental  consequences.  Neurotoxicology,  2012.  33(4):  p.  842-­‐52.  

34.   Abduljabbar,  M.A.  and  A.M.  Afifi,  Congenital  hypothyroidism.  J  Pediatr  Endocrinol  Metab,  2012.  25(1-­‐2):  p.  13-­‐29.  

35.   Marini,  H.,  et  al.,  Update  on  genistein  and  thyroid:  an  overall  message  of  safety.  Front  Endocrinol  (Lausanne),  2012.  3:  p.  94.  

36.   Janeway,  C.,  Immunobiology  :  the  immune  system  in  health  and  disease.  5th  ed.  2001,  London  ;  New  York,  NY,  US:  Garland  Pub.  xviii,  732  p.  

37.   Alberts  B,  et  al.,  eds.  Molecular  Biology  of  the  Cell.  4  ed.  2002,  Garland  Science:  New  york.  

38.   'Cluster  of  Differentiation  (CD).'  MediLexicon.  MediLexicon  Online.  MediLexicon  International  Ltd.,  2014.  Web.  13  Jan  2014.  Available  from:  http://www.medilexicon.com/medicaldictionary.php?t=18317.  

Page 43: Possible Endocrine Disruptive Effects on the Nervous and ...

42    

39.   'Interleukin  (IL).'  Encyclopaedia  Britannica.  Encyclopaedia  Britannica  Online.  Encyclopaedia  Britannica  Inc.,  2014.  Web.  13  Jan.  2014  Available  from:  http://www.britannica.com/EBchecked/topic/290335/interleukin-­‐IL.  

40.   Warrington,  R.,  et  al.,  An  introduction  to  immunology  and  immunopathology.  Allergy  Asthma  Clin  Immunol,  2011.  7  Suppl  1:  p.  S1.  

41.   Dietert,  R.R.,  Misregulated  inflammation  as  an  outcome  of  early-­‐life  exposure  to  endocrine-­‐disrupting  chemicals.  Rev  Environ  Health,  2012.  27(2-­‐3):  p.  117-­‐31.  

42.   Dietert,  R.R.,  et  al.,  Workshop  to  identify  critical  windows  of  exposure  for  children's  health:  immune  and  respiratory  systems  work  group  summary.  Environ  Health  Perspect,  2000.  108  Suppl  3:  p.  483-­‐90.  

43.   Braniste,  V.,  et  al.,  Impact  of  oral  bisphenol  A  at  reference  doses  on  intestinal  barrier  function  and  sex  differences  after  perinatal  exposure  in  rats.  Proc  Natl  Acad  Sci  U  S  A,  2010.  107(1):  p.  448-­‐53.  

44.   Shepherd,  A.J.,  J.E.  Downing,  and  J.A.  Miyan,  Without  nerves,  immunology  remains  incomplete  -­‐in  vivo  veritas.  Immunology,  2005.  116(2):  p.  145-­‐63.  

45.   Serhan,  C.N.,  P.A.  Ward,  and  D.W.  Gilroy,  Fundamentals  of  Inflammation.  2010,  New  York:  Cambridge  University  Press.  

46.   Tisoncik,  J.R.,  et  al.,  Into  the  eye  of  the  cytokine  storm.  Microbiol  Mol  Biol  Rev,  2012.  76(1):  p.  16-­‐32.  

47.   Viltart,  O.  and  C.C.  Vanbesien-­‐Mailliot,  Impact  of  prenatal  stress  on  neuroendocrine  programming.  ScientificWorldJournal,  2007.  7:  p.  1493-­‐537.  

48.   Hardy,  R.S.,  K.  Raza,  and  M.S.  Cooper,  Endogenous  glucocorticoids  in  inflammation:  contributions  of  systemic  and  local  responses.  Swiss  Med  Wkly,  2012.  142:  p.  w13650.  

49.   Bilbo,  S.D.  and  J.M.  Schwarz,  The  immune  system  and  developmental  programming  of  brain  and  behavior.  Front  Neuroendocrinol,  2012.  33(3):  p.  267-­‐86.  

50.   Hass,  U.,  et  al.,  Evaluation  of  22  SIN  List  2.0  substances  according  to  the  Danish  proposal  on  criteria  for  endocrine  disrupters.  .  DTU  Food  2012.  

51.   EFSA,  Scientific  Opinion  on  the  re-­‐evaluation  of  butylated  hydroxyanisole-­‐BHA  (E  20)  as  a  food  additive.  .  EFSA  Journal  2011.  9(10):  p.  49.  

52.   Jobling,  S.,  et  al.,  A  variety  of  environmentally  persistent  chemicals,  including  some  phthalate  plasticizers,  are  weakly  estrogenic.  Environ  Health  Perspect,  1995.  103(6):  p.  582-­‐7.  

53.   Soto,  A.M.,  et  al.,  The  E-­‐SCREEN  assay  as  a  tool  to  identify  estrogens:  an  update  on  estrogenic  environmental  pollutants.  Environ  Health  Perspect,  1995.  103  Suppl  7:  p.  113-­‐22.  

54.   Kang,  H.G.,  et  al.,  Evaluation  of  estrogenic  and  androgenic  activity  of  butylated  hydroxyanisole  in  immature  female  and  castrated  rats.  Toxicology,  2005.  213(1-­‐2):  p.  147-­‐56.  

55.   Wurtzen,  G.  and  P.  Olsen,  BHA  study  in  pigs.  Food  Chem  Toxicol,  1986.  24(10-­‐11):  p.  1229-­‐33.  

56.   Jeong,  S.H.,  et  al.,  Effects  of  butylated  hydroxyanisole  on  the  development  and  functions  of  reproductive  system  in  rats.  Toxicology,  2005.  208(1):  p.  49-­‐62.  

57.   Dornand,  J.  and  M.  Gerber,  Inhibition  of  murine  T-­‐cell  responses  by  anti-­‐oxidants:  the  targets  of  lipo-­‐oxygenase  pathway  inhibitors.  Immunology,  1989.  68(3):  p.  384-­‐91.  

58.   Lyubchenko,  T.,  Ca(2)+  signaling  in  B  cells.  ScientificWorldJournal,  2010.  10:  p.  2254-­‐64.  

Page 44: Possible Endocrine Disruptive Effects on the Nervous and ...

43    

59.   David,  M.,  et  al.,  Effects  of  the  antioxidant  butylated  hydroxyanisole  on  cytosolic  free  calcium  concentration.  Toxicology,  1993.  77(1-­‐2):  p.  115-­‐21.  

60.   Arrol,  H.P.,  et  al.,  Intracellular  calcium  signalling  patterns  reflect  the  differentiation  status  of  human  T  cells.  Clin  Exp  Immunol,  2008.  153(1):  p.  86-­‐95.  

61.   Hung,  F.M.,  et  al.,  Butylated  hydroxyanisole  affects  immunomodulation  and  promotes  macrophage  phagocytosis  in  normal  BALB/c  mice.  Mol  Med  Rep,  2012.  5(3):  p.  683-­‐7.  

62.   Vorhees,  C.V.,  et  al.,  Developmental  neurobehavioral  toxicity  of  butylated  hydroxyanisole  (BHA)  in  rats.  Neurobehav  Toxicol  Teratol,  1981.  3(3):  p.  321-­‐9.  

63.   Mense,  S.M.,  et  al.,  Phytoestrogens  and  breast  cancer  prevention:  possible  mechanisms  of  action.  Environ  Health  Perspect,  2008.  116(4):  p.  426-­‐33.  

64.   Moutsatsou,  P.,  The  spectrum  of  phytoestrogens  in  nature:  our  knowledge  is  expanding.  Hormones  (Athens),  2007.  6(3):  p.  173-­‐93.  

65.   Masilamani,  M.,  J.  Wei,  and  H.A.  Sampson,  Regulation  of  the  immune  response  by  soybean  isoflavones.  Immunol  Res,  2012.  54(1-­‐3):  p.  95-­‐110.  

66.   Rozman,  K.K.,  et  al.,  NTP-­‐CERHR  expert  panel  report  on  the  reproductive  and  developmental  toxicity  of  genistein.  Birth  Defects  Res  B  Dev  Reprod  Toxicol,  2006.  77(6):  p.  485-­‐638.  

67.   Whitten,  P.L.  and  H.B.  Patisaul,  Cross-­‐species  and  interassay  comparisons  of  phytoestrogen  action.  Environ  Health  Perspect,  2001.  109  Suppl  1:  p.  5-­‐20.  

68.   Adlercreutz,  H.,  et  al.,  Maternal  and  neonatal  phytoestrogens  in  Japanese  women  during  birth.  Am  J  Obstet  Gynecol,  1999.  180(3  Pt  1):  p.  737-­‐43.  

69.   Patisaul,  H.B.  and  H.B.  Adewale,  Long-­‐term  effects  of  environmental  endocrine  disruptors  on  reproductive  physiology  and  behavior.  Front  Behav  Neurosci,  2009.  3:  p.  10.  

70.   Kuhnle,  G.G.,  et  al.,  Phytoestrogen  content  of  cereals  and  cereal-­‐based  foods  consumed  in  the  UK.  Nutr  Cancer,  2009.  61(3):  p.  302-­‐9.  

71.   Morito,  K.,  et  al.,  Interaction  of  phytoestrogens  with  estrogen  receptors  alpha  and  beta.  Biol  Pharm  Bull,  2001.  24(4):  p.  351-­‐6.  

72.   Ohta,  R.,  et  al.,  Ovariectomized  mouse  uterotrophic  assay  of  36  chemicals.  J  Toxicol  Sci,  2012.  37(5):  p.  879-­‐89.  

73.   Jefferson,  W.N.,  E.  Padilla-­‐Banks,  and  R.R.  Newbold,  Adverse  effects  on  female  development  and  reproduction  in  CD-­‐1  mice  following  neonatal  exposure  to  the  phytoestrogen  genistein  at  environmentally  relevant  doses.  Biol  Reprod,  2005.  73(4):  p.  798-­‐806.  

74.   Jefferson,  W.N.,  et  al.,  Neonatal  exposure  to  genistein  induces  estrogen  receptor  (ER)alpha  expression  and  multioocyte  follicles  in  the  maturing  mouse  ovary:  evidence  for  ERbeta-­‐mediated  and  nonestrogenic  actions.  Biol  Reprod,  2002.  67(4):  p.  1285-­‐96.  

75.   Tedeschi,  A.,  et  al.,  Inhibition  of  basophil  histamine  release  by  tyrosine  kinase  and  phosphatidylinositol  3-­‐kinase  inhibitors.  Int  J  Immunopharmacol,  2000.  22(10):  p.  797-­‐808.  

76.   De  Paula,  M.L.,  et  al.,  Genistein  down-­‐modulates  pro-­‐inflammatory  cytokines  and  reverses  clinical  signs  of  experimental  autoimmune  encephalomyelitis.  Int  Immunopharmacol,  2008.  8(9):  p.  1291-­‐7.  

77.   Yellayi,  S.,  et  al.,  The  phytoestrogen  genistein  induces  thymic  and  immune  changes:  a  human  health  concern?  Proc  Natl  Acad  Sci  U  S  A,  2002.  99(11):  p.  7616-­‐21.  

Page 45: Possible Endocrine Disruptive Effects on the Nervous and ...

44    

78.   Smith,  L.J.,  et  al.,  Dietary  intake  of  soy  genistein  is  associated  with  lung  function  in  patients  with  asthma.  J  Asthma,  2004.  41(8):  p.  833-­‐43.  

79.   Kalhan,  R.,  et  al.,  A  mechanism  of  benefit  of  soy  genistein  in  asthma:  inhibition  of  eosinophil  p38-­‐dependent  leukotriene  synthesis.  Clin  Exp  Allergy,  2008.  38(1):  p.  103-­‐12.  

80.   Masilamani,  M.,  et  al.,  Soybean  isoflavones  regulate  dendritic  cell  function  and  suppress  allergic  sensitization  to  peanut.  J  Allergy  Clin  Immunol,  2011.  128(6):  p.  1242-­‐1250  e1.  

81.   Seibel,  J.,  et  al.,  In  utero  and  postnatal  exposure  to  a  phytoestrogen-­‐enriched  diet  increases  parameters  of  acute  inflammation  in  a  rat  model  of  TNBS-­‐induced  colitis.  Arch  Toxicol,  2008.  82(12):  p.  941-­‐50.  

82.   Seibel,  J.,  et  al.,  Oral  treatment  with  genistein  reduces  the  expression  of  molecular  and  biochemical  markers  of  inflammation  in  a  rat  model  of  chronic  TNBS-­‐induced  colitis.  Eur  J  Nutr,  2009.  48(4):  p.  213-­‐20.  

83.   Losa,  S.M.,  et  al.,  Neonatal  exposure  to  genistein  adversely  impacts  the  ontogeny  of  hypothalamic  kisspeptin  signaling  pathways  and  ovarian  development  in  the  peripubertal  female  rat.  Reprod  Toxicol,  2011.  31(3):  p.  280-­‐9.  

84.   Lephart,  E.D.,  et  al.,  Behavioral  effects  of  endocrine-­‐disrupting  substances:  phytoestrogens.  ILAR  J,  2004.  45(4):  p.  443-­‐54.  

85.   Kjaerstad,  M.B.,  et  al.,  Endocrine  disrupting  effects  in  vitro  of  conazole  antifungals  used  as  pesticides  and  pharmaceuticals.  Reprod  Toxicol,  2010.  30(4):  p.  573-­‐82.  

86.   Mankame,  T.,  et  al.,  Altered  gene  expression  in  human  cells  induced  by  the  agricultural  chemical  Enable.  Toxicol  Ind  Health,  2004.  20(6-­‐10):  p.  89-­‐102.  

87.   EFSA,  Scientific  opinion  on  risk  assessment  for  a  selected  group  of  pesticides  from  the  triazole  group  to  test  possible  methodologies  to  assess  cumulative  effects  from  exposure  through  food  from  these  pesticides  on  human  health.  EFSA  Journal,  2009.  7(9).  

88.   EFSA,  Reasoned  opinion  of  EFSA:  Review  of  the  existing  maximum  residue  levels  (MRLs)  for  tebuconazole  according  to  Article  12  or  Regulation  (EC)  No  396/2005.  EFSA  Journal,  2011.  9(8):  p.  96.  

89.   Moser,  V.C.,  et  al.,  The  effects  of  perinatal  tebuconazole  exposure  on  adult  neurological,  immunological,  and  reproductive  function  in  rats.  Toxicol  Sci,  2001.  62(2):  p.  339-­‐52.  

90.   Taxvig,  C.,  et  al.,  Endocrine-­‐disrupting  activities  in  vivo  of  the  fungicides  tebuconazole  and  epoxiconazole.  Toxicol  Sci,  2007.  100(2):  p.  464-­‐73.  

91.   Heusinkveld,  H.J.,  et  al.,  Azole  fungicides  disturb  intracellular  Ca2+  in  an  additive  manner  in  dopaminergic  PC12  cells.  Toxicol  Sci,  2013.  134(2):  p.  374-­‐81.  

92.   Crofton,  K.M.,  A  structure-­‐activity  relationship  for  the  neurotoxicity  of  triazole  fungicides.  Toxicol  Lett,  1996.  84(3):  p.  155-­‐9.  

93.   Liu,  S.,  et  al.,  Changes  of  thyroid  hormone  levels  and  related  gene  expression  in  zebrafish  on  early  life  stage  exposure  to  triadimefon.  Environ  Toxicol  Pharmacol,  2011.  32(3):  p.  472-­‐7.  

94.   OECD,  Test  No.  426:  Developmental  Neurotoxicity  Study:  OECD  Publishing.  95.   Izquierdo,  J.H.,  et  al.,  Calcium,  channels,  intracellular  signaling  and  autoimmunity.  

Reumatol  Clin,  2013.  96.   Nussey,  S.  and  S.  Whitehead,  Endocrinology:  An  Integrated  Approach,  Oxford,  Editor.  

2001,  BIOS  Scientific  Publishers.  

Page 46: Possible Endocrine Disruptive Effects on the Nervous and ...

45    

97.   EFSA,  Scientific  Opnion  on  the  substantiation  of  health  claims  related  to  soy  isoflavones  and  protection  of  DNA,  proteins  and  lipids  from  oxidative  damage.  EFSA  Journal,  2011.  9(7):  p.  44.  

98.   EFSA,  Scientific  Opinion  on  the  substantiation  of  health  claims  related  to  soy  isoflavones  and  maintenance  of  bone  mineral  density  (ID  1655)  and  reduction  of  vasomotor  symptoms  associated  with  menopause  (ID  1654,  1704,  2140,  3093,  3154,  3590)  (further  assessment)  pursuant  to  Article  13(1)  of  Regulation  (EC)  No  1924/2006.  EFSA  Journal,  2012.  10(8):  p.  36.  

   

Page 47: Possible Endocrine Disruptive Effects on the Nervous and ...

46    

Appendix  I  

OECD  Conceptual  Framework  for  Testing  and  Assessment  of  Endocrine  Disrupters  (as  revised  in  2012)    

The  OECD  Conceptual  Framework  for  Testing  and  Assessment  of  Endocrine  Disrupters  (as  revised  in  2012)  lists  the  OECD  Test  Guidelines  and  standardized  test  methods  available,  under  development  or  proposed  that  can  be  used  to  evaluate  chemicals  for  endocrine  disruption.  The  Conceptual  Framework  is  intended  to  provide  a  guide  to  the  tests  available  which  can  provide  information  for  endocrine  disrupters’  assessment  but  is  not  intended  to  be  a  testing  strategy.  Furthermore,  this  Conceptual  Framework  does  not  include  evaluation  of  exposure;  however  this  should  be  included  when  deciding  whether  further  testing  is  needed.  Further  information  regarding  the  use  and  interpretation  of  these  tests  is  available  in  Guidance  Document  No.  150  

 

Page 48: Possible Endocrine Disruptive Effects on the Nervous and ...

47    

   Notes  to  the  OECD  Revised  Conceptual  Framework    Note  1:  Entering  at  all  levels  and  exiting  at  all  levels  is  possible  and  depends  upon  the  nature  of  existing  information  and  needs  for  testing  and  assessment.  Note  2:  The  assessment  of  each  chemical  should  be  made  on  a  case  by  case  basis,  taking  into  account  all  available  information.  Note  3:  The  framework  should  not  be  considered  as  all  inclusive  at  the  present  time.  At  levels  2,  3,  4  and  5  it  includes  assays  that  are  either  available  or  for  which  validation  is  under  way.  With  respect  to  the  latter,  these  are  provisionally  included.    

 

Page 49: Possible Endocrine Disruptive Effects on the Nervous and ...

48    

Appendix  II    

Page 50: Possible Endocrine Disruptive Effects on the Nervous and ...

49    

 

Page 51: Possible Endocrine Disruptive Effects on the Nervous and ...

50    

 

Page 52: Possible Endocrine Disruptive Effects on the Nervous and ...

51    

   

Page 53: Possible Endocrine Disruptive Effects on the Nervous and ...

52    

 

Page 54: Possible Endocrine Disruptive Effects on the Nervous and ...

53    

 

Page 55: Possible Endocrine Disruptive Effects on the Nervous and ...

54    

   


Recommended