+ All Categories
Home > Documents > Processing of optical brain images - Stacksbk674bd5187/Kitch_Young_Opti… · Lacey Kitch...

Processing of optical brain images - Stacksbk674bd5187/Kitch_Young_Opti… · Lacey Kitch...

Date post: 04-Oct-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
2
Processing of optical brain images Lacey Kitch [email protected] Noah Young [email protected] Implementation using MATLAB (no DROID phone required) Motivation Current technology allows optical recording of brain activity in awake behaving mice through the use of miniature headmounted microscopes [1]. These images require processing, as they are unevenly illuminated, contain framewide shifts, and do not readily reveal individual neurons (Fig. 1). To process these images one first estimates and divides out the uneven illumination by performing a spatial lowpass. A motion correction procedure follows [3]. Finally, Principal Component Analysis (PCA) can be used to reduce dimensionality and Independent Component Analysis (ICA) is used to identify neuron locations [2]. Even after these steps, manual intervention is necessary to identify components (ICs) which correspond to neurons. Fig. 1 Example frame from an optical brain imaging movie Goals Aberration removal Images are obtained through a Gradient Refractive Index (GRIN) lens, which can cause noticeable aberrations. There is an aesthetic motivation to produce clear brain activity images for academic publication and public outreach. Given the optics used, there is a limited set of wellcharacterized aberrations possible, each with a stereotypic effect on the morphology of the neurons in the images. We want to identify these aberrations and correct them.
Transcript
Page 1: Processing of optical brain images - Stacksbk674bd5187/Kitch_Young_Opti… · Lacey Kitch ljkitch@stanford.edu Noah Young npyoung@stanford.edu Implementation using MATLAB (no DROID

Processing of optical brain imagesLacey Kitch [email protected] Young [email protected] using MATLAB (no DROID phone required)

MotivationCurrent technology allows optical recording of brain activity in awake behaving mice through theuse of miniature head­mounted microscopes [1]. These images require processing, as they areunevenly illuminated, contain framewide shifts, and do not readily reveal individual neurons (Fig.1). To process these images one first estimates and divides out the uneven illumination byperforming a spatial lowpass. A motion correction procedure follows [3]. Finally, PrincipalComponent Analysis (PCA) can be used to reduce dimensionality and Independent ComponentAnalysis (ICA) is used to identify neuron locations [2]. Even after these steps, manualintervention is necessary to identify components (ICs) which correspond to neurons.

Fig. 1  Example frame from an optical brain imaging movie

Goals

Aberration removalImages are obtained through a Gradient Refractive Index (GRIN) lens, which can causenoticeable aberrations. There is an aesthetic motivation to produce clear brain activity images foracademic publication and public outreach. Given the optics used, there is a limited set ofwell­characterized aberrations possible, each with a stereotypic effect on the morphology of theneurons in the images. We want to identify these aberrations and correct them.

Page 2: Processing of optical brain images - Stacksbk674bd5187/Kitch_Young_Opti… · Lacey Kitch ljkitch@stanford.edu Noah Young npyoung@stanford.edu Implementation using MATLAB (no DROID

Neuron region selectionHuman interaction is required to remove independent components (ICs) that correspond tofeatures other than neurons (e.g. blood vessels and dust). Automating this final step wouldgreatly increase the throughput of the movie analysis pipeline.

Real time neural activityAll movie analysis is currently performed offline. Real­time readout of neural activity would be aprerequisite for biofeedback experiments in which an organism receives a stimulus based oncurrent brain activity. We will present algorithms that enable reporting of neuronal activity in realtime.

ImplementationAberration removal will be performed on movies that have been illumination­normalized andmotion corrected. Our algorithm will use various region characterization algorithms to identify thetypes of optical aberrations present in the movie. Given the aberrations present, thecorresponding global filter will be applied to correct for the aberration.

The ICs which represent neurons are characterized by concentrated circular regions of brightpixels surrounded by darker pixels. We can identify ICs corresponding to blood vessels by thecomparatively higher eccentricity of their bright regions. Similarly, we can identify ICscorresponding to dust specs by their lack of a single concentrated region of bright pixels.

The only obstacles to real­time extraction of neural signals are fast implementations ofillumination normalization and motion correction. We can exploit simplified lowpass filtering andmotion correction techniques and hardware acceleration to do this in real time.

References1) Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y, Gamal AE, Schnitzer MJ. (2011) Miniaturizedintegration of a fluorescence microscope. Nat Methods. 8(10):871­8.

2) Mukamel EA, Nimmerjahn A, Schnitzer MJ. (2009) Automated analysis of cellular signals fromlarge­scale calcium imaging data. Neuron. 63(6):747­60.

3) Thevenaz P., Ruttiman Urs. E., Unser M. (1998) A pyramid approach to subpixel registration based onintensity. IEEE Transactions on Image Processing.


Recommended