+ All Categories
Home > Documents > Quantum spin Hall effect: a brief introduction

Quantum spin Hall effect: a brief introduction

Date post: 18-Dec-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
34
Quantum spin Hall effect: a brief introduction
Transcript
Page 1: Quantum spin Hall effect: a brief introduction

Quantum spin Hall effect: a brief introduction

Page 2: Quantum spin Hall effect: a brief introduction

Topological phases of matter

Are 2D topological phases possible without an applied magnetic field?

Page 3: Quantum spin Hall effect: a brief introduction

Topological phases of matter

Duncan Haldane

Well..., at least one doesn’t need a net magnetic field!

F. D. M. Haldane Model for a Quantum Hall Effect without Landau Levels:Condensed-Matter Realization of the Parity AnomalyPhysical Review Letters, 61, 2015, 1988.

Are 2D topological phases possible without an applied magnetic field?

1988…

Page 4: Quantum spin Hall effect: a brief introduction

2005… next breakthrough: ”There are many more topological phases of matter”

Charlie Kane Gene Mele

New topological invariant for a 2D time-reversal invariant system (no magnetic field!)

C. L. Kane and E. J. Mele,Phys. Rev. Lett. 95, 146802 (2005)

Page 5: Quantum spin Hall effect: a brief introduction

2005… next breakthrough: ”There are many more topological phases of matter”

Charlie Kane Gene Mele

New topological invariant for a 2D time-reversal invariant system (no magnetic field!)

Breakthrough Prize In Fundamental PhysicsCharles Kane and Eugene Mele – University of Pennsylvania Citation: For new ideas about topology and symmetry in physics, leading to the prediction of a new class of materials that conduct electricity only on their surface.Description: Since the days of Ben Franklin, we've come to distinguish between electrical forms of matter that are either conducting or insulating. But that concept has been turned inside-out by Charles Kane and Gene Mele who have predicted a new class of materials – “topological insulators” – that are inviolable conductors of electricity on the boundary but insulators in the interior. Their discovery has important implications for the “space-race” in quantum computing and could lead to new generations of electronic devices that promise enormous energy efficiencies in computation. Topological insulators also offer a window into deep questions about the fundamental nature of matter and energy, since they exhibit particle-like excitations similar to the fundamental particles of physics (electrons and photons) but can be controlled in the laboratory in ways that electrons and photons cannot. These connections offer a new conceptual framework for controlling the flow of charge, light and even of mechanical waves in various states of matter. Unanticipated applications, too, seem inevitable: when the transistor was invented in 1947, no one could realistically predict that it would lead to information technologies that would allow terabytes of data to be crammed onto a tiny silicon chip.

“Kane and Mele introduced new ideas of topology in quantum physics in a quite remarkable way,” said Edward Witten, chair of the selection committee. “It is beautiful how this story has unfolded.”

Page 6: Quantum spin Hall effect: a brief introduction

2005… next breakthrough: ”There are many more topological phases of matter”

Charlie Kane Gene Mele

New topological invariant for a 2D time-reversal invariant system (no magnetic field!)

C. Kane and E.J. Mele,Phys. Rev. Lett. 95, 146802 (2005)

Prediction: new topological phase of matter in HgTe quantum wells!

B. A. Bernevig, T. L. Hughes, andS.-C. Zhang, Science 314, 1757 (2006)

Soucheng Zhang

Page 7: Quantum spin Hall effect: a brief introduction

2005… next breakthrough: ”There are many more topological phases of matter”

Charlie Kane Gene Mele

New topological invariant for a 2D time-reversal invariant system (no magnetic field!)

C. Kane and E.J. Mele,Phys. Rev. Lett. 95, 146802 (2005)

Prediction: new topological phase of matter in HgTe quantum wells!

B. A. Bernevig, T. L. Hughes, andS.-C. Zhang, Science 314, 1757 (2006)

Soucheng Zhang

Laurens Molenkamp

Confirmed experimentally!

M. König et al., Science 318, 766 (2007)

Page 8: Quantum spin Hall effect: a brief introduction

Laurens Molenkamp

Observed in HgTe quantum wells!

M. König et al., Science 318, 766 (2007)

2005… next breakthrough: ”There are many more topological phases of matter”

2D ”quantum spin Hall insulator” from strong spin-orbit interactions

Page 9: Quantum spin Hall effect: a brief introduction

Laurens Molenkamp

Observed in HgTe quantum wells!

M. König et al., Science 318, 766 (2007)

2D ”quantum spin Hall insulator” from strong spin-orbit interactions

2005… next breakthrough: ”There are many more topological phases of matter”

d<6.3 nm normal band order conventional insulator

d>6.3 nm inverted band order topological insulator

Page 10: Quantum spin Hall effect: a brief introduction
Page 11: Quantum spin Hall effect: a brief introduction

A quantum spin Hall insulator looks like two copies of an integer quantum Hall system stacked on top of each other. How does a a spin-orbit interaction achieve this?

Page 12: Quantum spin Hall effect: a brief introduction

Consider a Gedanken experiment...

uniformly charged cylinder with electric field

spin-orbit interaction

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

B. A. Bernevig and S.-C. Zhang, PRL 96, 106802 (2006)

time-reversal

invariant

Page 13: Quantum spin Hall effect: a brief introduction

Consider a Gedanken experiment...

uniformly charged cylinder with electric field

spin-orbit interaction

cf. with the IQHE in a symmetric gauge

Lorentz force

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

B = �⇤A

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

Page 14: Quantum spin Hall effect: a brief introduction

Consider a Gedanken experiment...

uniformly charged cylinder with electric field

spin-orbit interaction

cf. with the IQHE in a symmetric gauge

Lorentz force

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

B = �⇤A

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

| >

Page 15: Quantum spin Hall effect: a brief introduction

Consider a Gedanken experiment...

uniformly charged cylinder with electric field

spin-orbit interaction

cf. with the IQHE in a symmetric gauge

Lorentz force

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

with vi and K functions of g1⇤ , g2⇤ , g3⇤ (11)

1

B = �⇤A

E = E(x, y, 0)

(E ⇤ k) · � = E⌃z(kyx� kxy)

A =B

2(y,�x, 0)

A · k ⌃ eB(kyx� kxy)

G = ⌅e2

h

Mc ⌥ 100 meV

D. Grundler, Phys. Rev. Lett. 84, 6074 (2000)

W. Hausler, L. Kecke, and A. H. MacDonald, Phys.Rev. B 65, 085104 (2002)

��0 2⇤ 10�11 eV m⇥ 0.5 eV

vF 1⇤ 106 m/sKc + Ks 1.8

HR

H =⌃

dx [Hc +Hs]

Hi =vi

2[(�x i)2+(�x�i)2]�

mi

⇧acos(

⌥2⇧Ki i), (1)

�R = ⇥1 sin(q0a)

with vi and Ki functions of g1⇤ , g2⇤ and g4⇤

⇥ ⌃ bandwidth (2)

c ⇧ ( + + �)/↵

2 (3)

s ⇧ ( + � �)/↵

2 (4)

R†⇤ and L†

⇤ create excitations at the Fermi points of theright- and left-moving branches with spin projection ⌥

(5)

L+

vF = 2a�

t2 + ⇥20 and �R = ⇥1 sin(q0a)

H⇤ =�ivF

�:R†

⇤ (x)�xR⇤ (x) ::L†⇤ (x)�xL⇤ (x) :

�2�R cos(Qx)�e�2ik0

F (x+a/2)R†⇤ (x)L⇤ (x)+H.c.

⇥,(6)

⌥ = ±

q0

HR =�i⇧

n,µ,⇥

(⇥0 + ⇥1 cos (Qna))⇤c†n,µ⌃

yµ⇥cn+1,⇥�H.c.

⇥j = �ja�1 (j = 0, 1)

c ⇧ ( + + �)/↵

2 (7)

s ⇧ ( + � �)/↵

2 (8)

Hint = g1� :R†⇤L⇤L†

�⇤R�⇤ : + g2⇤ :R†+R+L†

⇤L⇤ :

+g4⇤

2(:R†

+R+R†⇤R⇤ : +R � L) (9)

g2⇤ ⇧g2⇤ � ⇤⇤+g1⇤ (10)

| >

| >

| >

Page 16: Quantum spin Hall effect: a brief introduction

| >

| >

Two copies of an IQH system, bulk insulator with helical edge states

Quantum spin Hall (QSH) insulator single Kramers pair

Page 17: Quantum spin Hall effect: a brief introduction

| >

| >

Two copies of an IQH system, bulk insulator with helical edge states

Quantum spin Hall (QSH) insulator single Kramers pair

perturb with a time-reversal invariant spin-nonconserving interaction

?

Page 18: Quantum spin Hall effect: a brief introduction

| >

| >

| >

Two copies of an IQH system, bulk insulator with helical edge states

Quantum spin Hall (QSH) insulator single Kramers pair

perturb with a time-reversal invariant spin-nonconserving interaction

+| > | >– new Kramers pair

| >+

Page 19: Quantum spin Hall effect: a brief introduction

Why ”topological”?

Page 20: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

Why ”topological”?

Page 21: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

band index

Why ”topological”?

Page 22: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

band index

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

Brillouin zone (BZ)

Why ”topological”?

Page 23: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

Bloch wave function

Why ”topological”?

Page 24: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

”Berry connection”

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

”Berry curvature”

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

Chern number

The Chern number C measures the quantized Hallconductance in an integer quantum Hall system.

C vanishes for a time-reversal invariant system.However, there is still a topological structure present!

C. L. Kane and E. J. Mele, PRL 95, 226801 (2005)

Why ”topological”?

Bloch wave function

Page 25: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

BZ

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

”effective” BZ

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

identify T-conjugatepoints in the BZ

Why ”topological”?

Page 26: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

BZ

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

”effective” BZ

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

identify T-conjugatepoints in the BZ

open manifold:NO quantization from the Berry curvature

=

Why ”topological”?

Page 27: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

Z

EBZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

=

”close” the cylinder!

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

ZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

Why ”topological”?

Page 28: Quantum spin Hall effect: a brief introduction

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

ZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

The parity of C is a Z2 invariant, independent of the ”closure”!

1

⇥n,k(r) = un,k(r)eik·r

� A B C

An(k) = �i⌅un,k | ⌃k | un,k⇧

Fn(k) = ⌃k ⇥An(k)

1

2�

X

n

Z

BZFn(k) · dk = C, C ⇤ Z

1

2�

X

n

ZFn(k) · dk = C

C =

⇢0 mod 2 ordinary insulator1 mod 2 topological insulator

J. E. Moore and L. Balents, PRB 75, 121306(R) (2007)

signals the presence of robust Kramers pairs on the edge

bulk-edge correspondence L. Fu and C. L. Kane, PRB 74, 195312 (2006)

Why ”topological”?

Page 29: Quantum spin Hall effect: a brief introduction

3D (”strong”) topological insulators have also robustspin-momentum locked edge (= surface) states.Theory: L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007) Experiment on Bi1-xSbx: Hsieh et al., Science 323, 919 (2008) 106803.

Page 30: Quantum spin Hall effect: a brief introduction

3D (”strong”) topological insulators have also robustspin-momentum locked edge (= surface) states.Theory: L. Fu, C. L. Kane and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007) Experiment on Bi1-xSbx: Hsieh et al., Science 323, 919 (2008) 106803.

Electron spin polarization in photoemission experiments determined by photon polarization. C. Jozwiak et al., Phys. Rev B 84, 165113 (2011)

Page 31: Quantum spin Hall effect: a brief introduction

Some cool stuff exploiting the helical edge states in quantum spin Hall insulators:

”On-demand” spin entangler

Phys. Rev. B 91, 245406 (2015)

Page 32: Quantum spin Hall effect: a brief introduction

Bad news: Experimental realizations of 2D topological insulators are tricky to handle! Since its discovery in 2006, the topological phase of the HgTe/CdTe quantum well has still only been probed experimentally in Laurens Molenkamp’s lab in Würzburg.

Page 33: Quantum spin Hall effect: a brief introduction

Bad news: Experimental realizations of 2D topological insulators are tricky to handle! Since its discovery in 2006, the topological phase of the HgTe/CdTe quantum well has still only been probed experimentally in Laurens Molenkamp’s lab in Würzburg.

Candidate 2D topological insulators (a.k.a. quantum spin Hall insulators):

”Stanene” (single atomic layer of tin)Xu et al., PRL (2013)

InAs/GaSb quantum wellsSuzuki et al., PRB (2013)

SiliceneC.-C. Liu et al., PRL (2011)

Page 34: Quantum spin Hall effect: a brief introduction

Alternative realizations of helical electron liquids* in high demand!

* … this is the most interesting feature of 2D topological insulators!

More on this on Thursday when discussing topological superconductivity…


Recommended