+ All Categories
Home > Documents > ROMS 4D-Var: Secrets Revealed

ROMS 4D-Var: Secrets Revealed

Date post: 05-Jan-2016
Category:
Upload: kamea
View: 56 times
Download: 2 times
Share this document with a friend
Description:
ROMS 4D-Var: Secrets Revealed. Andy Moore UC Santa Cruz. Ensemble 4D-Var. f b , B f. ROMS. Obs y, R. h , Q. b b , B b. x b , B. 4D-Var. dof. Adjoint 4D-Var. impact. Priors & Hypotheses. Hypothesis Tests. Posterior. Uncertainty. Analysis error. Forecast. Term balance, - PowerPoint PPT Presentation
70
ROMS 4D-Var: Secrets Revealed Andy Moore UC Santa Cruz
Transcript
Page 1: ROMS 4D-Var:  Secrets Revealed

ROMS 4D-Var: Secrets Revealed

Andy Moore

UC Santa Cruz

Page 2: ROMS 4D-Var:  Secrets Revealed

ROMS Obsy, R

fb, Bf

bb, Bb

xb, B

, Q

Posterior

4D-Var

Priors &Hypotheses

ClippedAnalyses

Ensemble(SV, SO)

HypothesisTests

Forecast

dof Adjoint4D-Var

impact

Term balance,eigenmodes

UncertaintyAnalysis

error

ROMS 4D-VarEnsemble

4D-Var

Page 3: ROMS 4D-Var:  Secrets Revealed

ROMS 4D-Var• Incremental (linearize about a prior) (Courtier et al, 1994)

• Primal & dual formulations (Courtier 1997) • Primal – Incremental 4-Var (I4D-Var) • Dual – PSAS (4D-PSAS) & indirect representer (R4D-

Var) (Da Silva et al, 1995; Egbert et al, 1994)

• Strong and weak (dual only) constraint• Preconditioned, Lanczos formulation of conjugate

gradient (Lorenc, 2003; Tshimanga et al, 2008; Fisher, 1997)

• Diffusion operator model for prior covariances (Derber & Bouttier, 1999; Weaver & Courtier, 2001)

• Multivariate balance for prior covariance (Weaver et al, 2005)

• Physical and ecosystem components• Parallel (MPI)

Page 4: ROMS 4D-Var:  Secrets Revealed

The Secrets…

• The adjoint operator

• Matrix-less iterations

• Lanczos algorithm

Page 5: ROMS 4D-Var:  Secrets Revealed

What is an adjoint?

Page 6: ROMS 4D-Var:  Secrets Revealed

3 7x

Can you solve this equation?

7 / 3x

Page 7: ROMS 4D-Var:  Secrets Revealed

1 23 7x x 1 22 3x x

1 211/ 5 2 / 5x x

Can you solve these equations?

Page 8: ROMS 4D-Var:  Secrets Revealed

1 2 33 2 27x x x 1 2 32 4x x x

Can you solve these equations?

There are infinite possibilities!

Page 9: ROMS 4D-Var:  Secrets Revealed

But…

Page 10: ROMS 4D-Var:  Secrets Revealed

…there is a Natural Solution

1

2

3

x

x

x

x3 1 2

1 2 1

A27

4

y

y Ax

1 22 1s s

1 2 37 0 3x x x

Tx A s 1

2

s

s

sLook for solutions of the form:

Generatingvector

Page 11: ROMS 4D-Var:  Secrets Revealed

Two Spaces

A is a 2×3 matrix

y and s reside in “2-space”

x resides in “3-space”

A maps from 3-space to 2-space

AT maps from 2-space to 3-space

y Ax Tx A s Ty AA s

Identifies the part of 3-space that is activated by y

AT is a 3×2 matrix

Page 12: ROMS 4D-Var:  Secrets Revealed

This looks lot like the ocean state estimation problem…

y Ax

Oceanstate

OceanObservations

Insufficient observations to uniquely determine elements of x

Use AT to identify the natural solution

Think of x as correctionsto the prior/background

Page 13: ROMS 4D-Var:  Secrets Revealed

1

2

3

x

x

x

x3 1 2

1 2 1

A27

4

y

y Ax

1 2 37 0 3x x x

y activates only x1 and x2

Page 14: ROMS 4D-Var:  Secrets Revealed

TAThe Adjoint

Page 15: ROMS 4D-Var:  Secrets Revealed

T

Sx

u

ζ

Notation

Ocean state vector:

Page 16: ROMS 4D-Var:  Secrets Revealed

Data Assimilation: Recap

Prior (background) circulation estimate:bx

Observations: yPosterior (analysis) circulation estimate:

( ) b bax K y Hxx

×

HObservation

matrix

GainMatrix

Page 17: ROMS 4D-Var:  Secrets Revealed

Data Assimilation: Recap

Posterior (analysis) circulation estimate:

bax x Kd

bd y HxInnovation vector:

model 1N bx obs 1N y obs modelN N

Adjoint plays a key role in identifying K

Page 18: ROMS 4D-Var:  Secrets Revealed

,y R

Data Assimilation: Recap

bb(t), Bb

fb(t), Bf

xb(0), B

Model solutions depends on xb(0), fb(t), bb(t), (t)

time

x(t)

Obs, y

Prior, xb

Posterior,xa

Prior

Page 19: ROMS 4D-Var:  Secrets Revealed

More Notation & Nomenclature

T

S

x u

v

ζ

(0)

( )

( )

( )

t

t

t

x

fz

b

η

1

N

y

y

y

bd y Hx

Statevector

Controlvector

Observationvector

Innovationvector

×

HObservation

matrix

Prior

(t)=0 : Strong constraint

(t)≠0 : Weak constraint

(t) = Correction for model error

Page 20: ROMS 4D-Var:  Secrets Revealed

Variational Data Assimilation: Recap

T T1 1( ) ( ) ( ) ( ) ( )

2 2J 1 1

b bx z z D z z y Hx R y Hx

diag( , , , ) b fD B B B Q

Background error covariance

( | ) expP J z yConditional Probability:

Problem: Find z=za that minimizes J (i.e. maximizes P)

za is the “maximum likelihood” or “minimum variance”estimate.

J is called the “cost” or“penalty” function.

Observation error covariance

Page 21: ROMS 4D-Var:  Secrets Revealed

( (0), ( ), ( ), ( ))T T T Tt t t b fz x ε ε η

initialconditionincrement

boundaryconditionincrement

forcingincrement

corrections for model

error

bb(t), Bb

fb(t), Bf

xb(0), B

1 11 1

2 2TTJ z D z G z d R G z d

diag( , , , ) b fD B B B Q

Background error covariance

TangentLinear Modelsampled atobs points

ObsErrorCov.

Innovation

bd y Hx

Prior

Incremental Formulation

Page 22: ROMS 4D-Var:  Secrets Revealed

Two Spaces

G maps from model (primal) space to observation (dual) space

GT maps from observation (dual) space to model (primal) space

G samples the tangent linear model at observation points.

1 11 1

2 2TTJ z D z G z d R G z d

Page 23: ROMS 4D-Var:  Secrets Revealed

Variational Data Assimilation

( (0), ( ), ( ), ( ))T T T Tt t t b fz x ε ε η

initialconditionincrement

boundaryconditionincrement

forcingincrement

corrections for model

error

bb(t), Bb

fb(t), Bf

xb(0), B

0J

z

Find z that minimizes J:

using principles of variational calculus (“Var”)

Prior

Page 24: ROMS 4D-Var:  Secrets Revealed

The Solution!

a bz z Kd

T T -1( ) K DG GDG R

Analysis:

Gain (dual):

Gain (primal):

( )T T 1 1 1 1K D G R G G R

Page 25: ROMS 4D-Var:  Secrets Revealed

Two Spaces

T T -1( ) K DG GDG R

Gain (dual):

Gain (primal):

( )T T 1 1 1 1K D G R G G R

obs obsN N

model modelN Nobs modelN N

Page 26: ROMS 4D-Var:  Secrets Revealed

Two Spaces

G maps from model (primal) space to observation (dual) space

GT maps from observation (dual) space to model (primal) space

Page 27: ROMS 4D-Var:  Secrets Revealed

Recall the Solutions

a bz z Kd

T T -1( ) K DG GDG R

Analysis:

Gain (dual):

Gain (primal):

( )T T 1 1 1 1K D G R G G R

Page 28: ROMS 4D-Var:  Secrets Revealed

Equivalent Linear Systems

T

T

( )

GDG R u d

v DG u

Dual:

Primal:

( )T T 1 1 1D G R G w G R d

Page 29: ROMS 4D-Var:  Secrets Revealed

Iterative Solution of Linear Equations

As r 0

General form:

Find s that minimizes:

T T1

2J s As s r

At the minimum:

J s 0 As r 0

Page 30: ROMS 4D-Var:  Secrets Revealed

Contours of J

Conjugate Gradient (CG) Methods

Page 31: ROMS 4D-Var:  Secrets Revealed

Looks, feels & smells like matrix…

T

T

( )

GDG R u d

v DG u

Dual:

Primal:

( )T T 1 1 1D G R G w G R d

Page 32: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

TGDG δThere are no matrix multiplications!

Zonal shear flow

Page 33: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Adjoint Model

TGDG δ

Zonal shear flow

Page 34: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Adjoint Model

TGDG δ

Zonal shear flow

Page 35: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Adjoint Model

TGDG δ

Zonal shear flow

Page 36: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Covariance

TGDG δ

Zonal shear flow

Page 37: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Covariance

TGDG δ

Zonal shear flow

Page 38: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Tangent Linear Model

TGDG δ

Zonal shear flow

Page 39: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Tangent Linear Model

TGDG δ

Zonal shear flow

Page 40: ROMS 4D-Var:  Secrets Revealed

TGDG δ

A covariance

= A representer

Green’s Function

Zonal shear flow

Matrix-less Operations

Page 41: ROMS 4D-Var:  Secrets Revealed

Matrix-less Operations

There are no matrix multiplications!

Tangent Linear Model

TGDG δ

Zonal shear flow

Page 42: ROMS 4D-Var:  Secrets Revealed

The Priors for ROMS CCS

30km, 10 km & 3 km grids, 30- 42 levels

Veneziani et al (2009)Broquet et al (2009)

COAMPSforcing

ECCO openboundaryconditions

fb(t), Bf

bb(t), Bb

xb(0), B

Previous assimilationcycle

Page 43: ROMS 4D-Var:  Secrets Revealed

Observations (y)

CalCOFI &GLOBEC

SST &SSH

Argo

TOPP Elephant Seals

Ingleby andHuddleston (2007)

Data from Dan Costa

Page 44: ROMS 4D-Var:  Secrets Revealed

Primal, strong

Dual, strong

Dual, weak

Jmin

4D-Var Performance

3-10 March, 2003(10km, 42 levels)

Page 45: ROMS 4D-Var:  Secrets Revealed

The Beauty of Lanczos

CorneliusLanczos

(1893-1974)

Page 46: ROMS 4D-Var:  Secrets Revealed

Contours of J

Conjugate Gradient (CG) Methods

1 1 Tm m mCG A Q T Q

Page 47: ROMS 4D-Var:  Secrets Revealed

Recall the Solutions

a bz z Kd

T 1 T d d dK DG Q T Q

Analysis:

Gain (dual):

Gain (primal):

1 T T 1p p pK Q T Q G R

Dual Lanczosvectors

Primal Lanczosvectors

Page 48: ROMS 4D-Var:  Secrets Revealed
Page 49: ROMS 4D-Var:  Secrets Revealed

Endless Possibilties?

• Posterior error• Posterior EOFs• Preconditioning• Degrees of freedom• Array modes• Observation impact• Observation sensitivity• Think outside the box…

Page 50: ROMS 4D-Var:  Secrets Revealed

ROMS Obsy, R

fb, Bf

bb, Bb

xb, B

, Q

Posterior

4D-Var

Priors &Hypotheses

ClippedAnalyses

Ensemble(SV, SO)

HypothesisTests

Forecast

dof Adjoint4D-Var

impact

Term balance,eigenmodes

UncertaintyAnalysis

error

ROMS 4D-VarEnsemble

4D-Var

Page 51: ROMS 4D-Var:  Secrets Revealed

ROMS Obsy, R

fb, Bf

bb, Bb

xb, B

, Q

Posterior

4D-Var

UncertaintyAnalysis

error

ROMS 4D-Var

Page 52: ROMS 4D-Var:  Secrets Revealed

Expected Posterior Error

( ) aE I KG DT 1 T

m m mK DG Q T Q

Matrix of Lanczosvectors

( ) / b a b

m=number of inner-loops

b = prior error std

a = posterior error std

3 March, 2003

(10km, 42 levels)

Page 53: ROMS 4D-Var:  Secrets Revealed

SSSZonal wind stress

Meridional wind stress Heat Flux

Page 54: ROMS 4D-Var:  Secrets Revealed

Ritz # 0 1 2 3 4 8

J 9173 3131 1877 1855 1833 1972

Preconditioning

J J J

1st levelpreconditioning

2nd levelpreconditioning

4X25

As=s

Page 55: ROMS 4D-Var:  Secrets Revealed

ROMS Obsy, R

fb, Bf

bb, Bb

xb, B

, Q

Posterior

4D-Var

Priors &Hypotheses

HypothesisTests

ROMS 4D-Var

degrees of freedomdegrees of reachabilityarray modes

Page 56: ROMS 4D-Var:  Secrets Revealed

Degrees of Freedom

1 11 1

2 2TTJ z D z G z d R G z d

Recall that the optimal increments minimize:

No. of dof in obs

No. of dof in prior

“dof” – degrees of freedom

min obs / 2J NTheoretical min:

min( ) Tr( ) / 2bJ KG

min obs( ) ( - Tr( )) / 2oJ N KG

(Bennett et al, 1993; Cardinali et al, 2004; Desroziers et al., 2009)

bJ oJ

Page 57: ROMS 4D-Var:  Secrets Revealed

Assimilation cycle (2003-2004)

Lo

g10

(J)

dofof

obs

(30km, 30 level, dual, strong, sequential, 7 day, 200 inner-loops)

• Less than 10% of all observations provide independent info• LOTS OF REDUNDANCY!

Degrees of Freedom

2obsN

Page 58: ROMS 4D-Var:  Secrets Revealed

1min

1( ) ( Tr( ))

2b obsJ N dT

Degrees of Freedom

min( ) Tr( ) / 2bJ KG

Degrees of freedom in the obs:

T 1 T d d dK DG Q T QBut:

So:

Page 59: ROMS 4D-Var:  Secrets Revealed

1min

1

1( )

2

obsN

b obs ii

J N

Degrees of Freedom

min( ) Tr( ) / 2bJ KG

Degrees of freedom in the obs:

T 1 T d d dK DG Q T QBut:

So:

Page 60: ROMS 4D-Var:  Secrets Revealed

Computed directly during 4D-Var

Computed from a curve fit

310log ( ) , 1.684, 2.7 10bi

i ae a b

Degrees of Freedom

Page 61: ROMS 4D-Var:  Secrets Revealed

Observation Impacts

Consider a scalar function of the ocean state vector:

( )I I x

( )I Ib bx ( )I Ia ax I I I a b

Prior Posterior Increment

T T T ( )I I d K M x

Innovations

Adjoint ofgain matrix

Adjoint model

Page 62: ROMS 4D-Var:  Secrets Revealed

Observation Impacts

But:T 1 T d d dK DG Q T Q

So:

T 1 T d d dK Q T Q GD

Page 63: ROMS 4D-Var:  Secrets Revealed

Observation Sensitivity

The gain matrix is actually a nonlinear function of d:

( ) a bx x dKConsider variations in the observation vector y:

ax yy

K

Relationship to obs impact:

Linearizationof 4D-Var

e.g.: 37N transport

T T

T

I I I

a b vd M h

y

KAdjoint of 4D-Var

Page 64: ROMS 4D-Var:  Secrets Revealed

Assimilation impacts on CC

No assim

PrimalStrong

Time meanAlongshore

Flow(10km, 42 lev)

CC

CC

CUC

CUC

CC = California CurrentCUC = California Under Current

Page 65: ROMS 4D-Var:  Secrets Revealed

37N Transport: Impact vs Sensitivity

Page 66: ROMS 4D-Var:  Secrets Revealed

Impact vs Sensitivity: 37N Transport

Impact

Sensitivity

Page 67: ROMS 4D-Var:  Secrets Revealed

Two Spaces: Obs Impact

maps from model (primal) space to observation (dual) space

maps from observation (dual) space to model (primal) space

Identifies the part of model space that controls 37N transportand that is activated by the observations

K

TK

Page 68: ROMS 4D-Var:  Secrets Revealed

Two Spaces: Obs Sensitivity

maps from model (primal) space to observation (dual) space

maps from observation (dual) space to model (primal) space

Identifies the part of model space that controls 37N transportand that is activated by the observations during 4D-Var

yK

T yK

Page 69: ROMS 4D-Var:  Secrets Revealed

Observing System Experiments (OSEs)

Change in 37N transportwhen Argo withheld

Change in 37N transportwhen SSH withheld

Page 70: ROMS 4D-Var:  Secrets Revealed

Summary

• The adjoint operator

• Matrix-less iterations

• Lanczos algorithm

Most of the power and utility of modern data assimilation systems is possible because of:


Recommended