+ All Categories
Home > Documents > SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved...

SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved...

Date post: 20-Apr-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
152
SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific Targeted Research Project under the Thematic Priority ' Food Quality and Safety ' WP 3x Single Crop Modelling D3_2 Final version and documented models available Due date: 30-04-09 Actual submission date: 30-04-09 Start date of project: 01-10-05 Duration: 48 months Deliverable Lead contractor: Natural Environment Research Council Participant(s) (Partner short names) DIAS, CER, LIFE-KU, NERC, UB, CAU, CAAS Author(s) in alphabetic order: Ragab Ragab Contact for queries: Natural Environment Research Council Centre for Ecology and Hydrology Maclean Building Crowmarsh Gifford Wallingford, OXON OX10 8BB, UK United Kingdom [email protected] Dissemination Level: (PUblic, Restricted to other Programmes Participants, REstricted to a group specified by the consortium, COnfidential only for members of the consortium) PU Deliverable Status: Revision 1.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Transcript
Page 1: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

SAFIR

Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation

Systems and Management (SAFIR)

Contract-No. FOOD-CT-2005-023168

A Specific Targeted Research Project

under the Thematic Priority ' Food Quality and Safety '

WP 3 Single Crop Modelling

D3_2 Final version and documented models available

Due date: 30-04-09

Actual submission date: 30-04-09

Start date of project: 01-10-05 Duration: 48 months

Deliverable Lead contractor: Natural Environment Research Council

Participant(s) (Partner short names) DIAS, CER, LIFE-KU, NERC, UB, CAU,

CAAS

Author(s) in alphabetic order: Ragab Ragab

Contact for queries: Natural Environment Research Council

Centre for Ecology and Hydrology

Maclean Building

Crowmarsh Gifford

Wallingford, OXON

OX10 8BB, UK

United Kingdom

[email protected]

Dissemination Level:

(PUblic, Restricted to other Programmes Participants,

REstricted to a group specified by the consortium,

COnfidential only for members of the consortium)

PU

Deliverable Status: Revision 1.0

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Page 2: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Contents

The Daisy model description (Summary) ...................................................................................................................... 3

2D Soil Physics .............................................................................................................................................................. 3

Changes to the crop model .......................................................................................................................................... 3

New SVAT model .......................................................................................................................................................... 3

The SALTMED model description (Summary)............................................................................................................ 5

Default Data in the Databases ...................................................................................................................................... 6

Data Requirements ....................................................................................................................................................... 6

Annex 3.1 Water movement in Daisy model ................................................................................................................. 9

Annex 3.2 Daisy 2D code development ........................................................................................................................ 52

Annex 3.3 The stomata-photosynthesis model and the sunlit-shadow radiation model in DAISY ........................ 53

Annex 3.4 Estimating root density in Daisy ................................................................................................................ 75

Annex 3.5 ABA in Daisy................................................................................................................................................ 85

Annex 3.6 Soil Vegetation Atmosphere Transfer (SVAT) model.............................................................................. 89

Annex 3.7 Detailed description of the processes in the SALTMED........................................................................ 100

Annex 3.8 SALTMED model frames (user Interface) and Examples of outputs................................................... 111

Annex 3.9 Test of the new Daisy model ..................................................................................................................... 130

Annex 3.10 Some selected simulation results using the SALTMED model ............................................................ 141

2

Page 3: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The Daisy model description (Summary) Daisy is a field scale model for simulating nitrogen, carbon and water dynamics. It has been used

for assessing both production and environmental impact of farm management. In the SAFIR

project the model has been extended in order to be able to simulate the effect of PRD irrigation in

row crops. The complete model (including documentation) can be downloaded from the Daisy

homepage:

http://code.google.com/p/daisy-model/

The changes can roughly be divided into three areas: soil physics, the crop model, and the soil

vegetation atmosphere transfer system.

2D Soil Physics

The original Daisy model is based on a vertical 1D description of the field, with finite difference

solutions to Richard’s equation for water flow, convection-dispersion for solute (nutrients and

pesticides) transport, and the heat transfer equation. To support row crops and PRD irrigation, a

2D description of the field has been introduced based on finite volume solutions to the same

equations. These numerical schemes have been documented in Annex 3.1. The principles for

integrating them with the existing Daisy code can be found in Annex 3.2

Changes to the crop model

The original Daisy photosynthesis model is based on radiation intensity (Goudriaan and Laar,

1978), with separately calculated water and nitrogen stress factors. The canopy is divided into 30

layers, with a single light extinction coefficient. To better support the effect of ABA on

production, a new photosynthesis model based on Farquhar et al (1980) and Ball et al (1987), with

Stomata conductance model coupled as described by Collatz et al., 1991, has been added. This is

supplemented by a new light distribution model that includes sunlit and shaded leaves, as well as

the effect of the sun angle on diffuse radiation, as per de Pury and Farquhar (1997). This work is

described in Annex 3.3.

A new 2D root distribution model has been included for row crops. It is based on a simple 2D

extension of the empirical relationship found in Gerwitz and Page, 1974, as detailed in Annex 3.4.

Binding the two together is the plant hormone ABA. The ABA generation is based on work by Liu

et al. (2008). Its implementation in Daisy, as well as the effect on stomata conductivity, is

described in Annex 3.5.

New SVAT model

To support the more complex photosynthesis model, a new SVAT (Soil Vegetation Atmosphere

Transfer) model has been introduced. The model divides the canopy into sunlit and shaded leaves,

and a set of equations describing the energy flow between laves, canopy air, soil surface, and the

above canopy atmosphere is introduced. By solving this equation system, we can find the

temperature of sunlit and shaded laves, canopy air humidity, as well as transpiration. Since the

temperature and humidity affects photosynthesis and stomata conductance, and stomata

conductance is an important element of the equation system, an iterative process is used.

The equation system is described in Annex 3.6. The components of the equation system are too

numerous to mention here, but most can be found in Houborg (2006), on which this work is based.

3

Page 4: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

References:

Ball, J.T., Woodrow, I.E. and Berry, J.A. (1987) A model predicting stomatal conductance and its

contribution to the control of photosynthesis under different environmental conditions. In:

I.Biggins (Editor), Progress in Photosynthesis Research. Martinus Nijhoff Publishers,

Netherlands, pp. 221-224.

Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A. (1991) Physiological and Environmental-

Regulation of Stomatal Conductance, Photosynthesis and Transpiration - A Model That

Includes A Laminar Boundary-Layer. Agricultural and Forest Meteorology, 54(2-4): 107-136.

de Pury, D.G.G. and Farquhar, G.D. (1997) Simple scaling of photosynthesis from leaves to

canopies without the errors of big-leaf models. Plant Cell and Environment, 20(5): 537-557.

Farquhar, G.D., Caemmerer, S.V. and Berry, J.A. (1980) A Biochemical-Model of Photosynthetic

Co2 Assimilation in Leaves of C-3 Species. Planta, 149(1): 78-90

Gerwitz, A., and Page, E. R (1974) An empirical mathematical model to describe plant root

systems.The Journal of Applied Ecology 11, 773-781

Goudriaan, J., Laar, H.H. van (1978) Calculation of daily totals of the gross CO2 assimilation of

leaf canopies. Journal of Agricultural Science (Netherlands) 26(4) p. 373-382

Houborg, R (2006) Inferences of key environmental an vegetation biophysical controls for use in

regional-scale SVAT modeling using Terra and Agua MODIS and weather prediction data.

PhD dissertation, Institute of Geography, University of Copenhagen,

Liu, F., Song, R., Zhang., X., Shahnazari, A., Andersen, M. N., Plauborg, F., Jacobsen, S-E. and

Jensen, C. R. (2008) Measurement and modelling of ABA signalling in potato (Solanum

tuberosum L.) during partial root-zone drying. Environmental and Experimental Botany 63,

385-391

4

Page 5: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The SALTMED model description (Summary)In this part a summary of SALTMED model processes will be given, however more detailed

description of the processes and the main equations are given in Annex 3.7. SALTMED model user

interface and examples of input and output are given in Annex 3.8.

The SALTMED model was designed to include a number of physical processes acting

simultaneously under field conditions. It was also designed to be, generic, physically based, and

friendly to use. The model contained the following key processes:

1. Evapotranspiration: several options to calculate the evapotranspiraion that include:

Penman-Monteith equation according to the modified version of FAO - 56 (1998) with average

seasonal value of surface conductance.

Penman Monteith equation with options to specify the surface conductance. The latter is

calculated by different methods:

A. Applying Penman – Monteith equation using stomata Conductance calculated

from environmental parameters: According to Jarvis 1976 and modified by Korner

et al. (1995). It is based on multiplication of maximum stomata conductance by the

relative effects of environmental stress factors such as Vapour Pressure Deficit,

VPD, temperature, soil water availability and radiation.

B. Applying Penman – Monteith equation using stomata Conductance calculated

from the Absecic Acid, ABA and leaf water potential

The equation suggested by Tardieu et al. 1993 was implemented. The equation is

based on minimum stomata conductance, leaf water potential, Absecic Acid

concentration, and other fitting coefficients.

C. Applying Penman – Monteith equation using average value of stomata

Conductance

D. Applying Penman – Monteith equation using measured daily value of stomata

Conductance

2. Modelling Crop Growth, Biomass / Dry Matter production and Yield

The crop growth, biomass / dry matter production and yield have been calculated based on:

radiation, photosynthetic efficiency, water uptake, air temperature, leaf nitrogen content,

leaf area index, respiration losses and the harvest index.

3. Modelling Soil Nitrogen Dynamics

Soil nitrogen dynamics based largely on the approach of Johnsson et al. 1987 in SOIL – N

model have been adapted and coded. The model takes into account the different external N-

sources as:

1-Dry deposition from the atmosphere

2-Wet deposition with rainfall

3- Commercial Fertilizers add as dry chemicals (Urea, Ammonium based fertilizer,

Nitrate based Fertilizer and mixed Ammonium Nitrate Fertilizer etc.)

4- Commercial fertilizers added with the irrigation water

(Fertigation) these are as above (Urea, Ammonium based fertilizer, Nitrate based

Fertilizer and mixed Ammonium Nitrate Fertilizer etc.)

5- Manure

6- Incorporated crop residues of previous crop on ploughing day before sowing

5

Page 6: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The model implemented the following processes:

• Mineralization, Immobilization, Nitrification, Denitrification

• N-Leaching

• Plant N Uptake

.

4. Modelling Soil Temperature

Soil temperature has been calculated from air temperature according to the approach of

Kang et al. 2000 and Zheng et al. 1993. It is based on average air temperature, damping

ratio, thermal diffusivity as a function of soil water, air and mineral content, Leaf Area

Index, LAI and litter fraction.

5. Modelling water uptake: Plant water uptake was calculated according to Cardon and Letey

(1992) taking into account the water stress and the salinity stress in case of using saline

water.

6. Modelling soil water and solute movement: The water flow in soil was described

mathematically using Richard's equation. The movement of solute in the soil system was

described by the convection–dispersion equation. Under irrigation from a trickle line

source, the water and solute transport can be viewed as two-dimensional flow. In the model,

sprinkler, flood and basin irrigation are described by one-dimensional flow equations.

Furrow and trickle line source are described by 2-dimensional equations. Trickle point

source is described by cylindrical flow equations.

Default Data in the Databases

The model has 3 built-in databases:

Crop database (based largely on the FAO 1992 & 1998), contains different crops, trees and shrubs

(>200) from different regions, duration of each growth stage, sowing and harvest dates, Kc & Kcb

values for each growth stage, maximum height and maximum rooting depth. The model uses Kcb as

it runs on a daily time step.

Soils database: Contains the hydraulic characteristics and solute transport parameters of more

than 40 different soil types.

Irrigation system database: Contains information on the wetting fraction and the frequency of

application of the irrigation systems

Data Requirements

Plant characteristics: these include for each growth stage; the crop coefficient, Kc , Kcb, root depth

and lateral expansion, crop height and maximum / potential final yield observed in the region

under optimum conditions.

Soil characteristics: include depth of each soil horizon, saturated hydraulic conductivity, saturated

soil water content, salt diffusion coefficient, longitudinal and transversal dispersion coefficient,

initial condition of : soil moisture, NO3-N, NH

4-N and salinity in each soil layer, tabulated data of

soil moisture versus soil water potential and soil moisture versus hydraulic conductivity.

Meteorological data: include daily values of temperature (maximum), temperature (minimum),

relative humidity, total or net radiation, wind speed, and daily rainfall.

Water management data: include the date and amount of irrigation water and fertilizers applied

(fertigation) and the salinity of applied irrigation.

Nitrogent fertilization data: This includes amount and date of dry fertilizers added, dry and wet N

deposition, initial soil humus and litter contents.

6

Page 7: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Model parameters: include the number of compartments in both vertical and horizontal direction,

tortuosity parameters, diffusion parameters, uptake parameters, position of plant relative to

irrigation source and the maximum time step for calculation.

Model run: The model runs at maximum time step of 200 seconds and output values on daily basis.

The model calculates the water and solute movement on grid square basis. The default grid size is 4

by 4 cm. The model considers different plant positions from the irrigation source and

accommodates rainfed as well as subsurface irrigation including deficit irrigation and Partial Root

Drying, PRD.

Model structure and equations used to describe each processes are given in Ragab, 2002.

The model is friendly and easy to use benefiting from the WindowsTM

environment. The model is

freely available at: http://www.safir4eu.org

Published SALTMED References:

Ragab, R. 2002. A holistic generic integrated approach for irrigation, crop and field

management: the SALTMED model. Environmental Modelling and Software 17: 345-361.

R. Ragab, (Editor), 2005. Advances in integrated management of fresh and saline water for

sustainable crop production: Modelling and practical solutions. International Journal of

Agricultural Water Management (Special Issue), volume 78- Issues 1-2, pages 1-164. Elsevier,

Amsterdam. The Netherlands.

Supporting development References

Cardon, E.G., Letey, J., 1992. Plant water uptake terms evaluated for soil water and

solute movement models. Soil Sci. Soc. Am. J. 56, 1876-1880.

FAO, 1998. Crop evapotranspiration, Irrigation and Drainage Paper No 56. Rome, Italy.

Jarvis, P. G. 1976. The iterepretation of the variations in leaf water potential and stomatal

conductance found in canopies in the field. Philosophical. Transactions of the Royal

Society. B273:593-610.

Pleijel, H., Danielsson, H., Vandermeiren, K., Blum, C., Colls, J, and Ojanpera, K. 2002. Stomatal

conductance and ozone exposure in relation to potato tuber yield-results from the European

CHIP programme. European J.of Agronomy, 17:303-317.

Tardieu, F, Zhang, J. and Gowing, D. J. G. 1993. Stomatal control by both [ABA] in the xylem sap

and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant,

Cell and environment .16:413-420.

Eckersten, H and Jansson, P,.- E. 1991. Modelling water flow, nitrogen uptake

and production for wheat. Fertilizer Research 27: 313-329.

Johnsson, H., Bergstrom, L and Jansson, P.-E.. 1987. Simulated nitrogen dynamics and losses in a

layered agricultural soil. Agriculture, Ecosystems and Environment, 18:333-356.

Wu, L., McGechan, M., B., Lewis, D. R., Hooda, P. S., and Vinten, A., J., A. 1998. Parameter

selection and testing the soil nitrogen dynamics model SOILN. Soil Use and Management,

14: 170-181

7

Page 8: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Kang, S., Kim, S., Oh, S. and Lee, D. 2000. Predicting spatial and temporal patterns of soil

temperature based on topography, surface cover and air temperature. Forest Ecology and

Management 136:173-184.

Marshall, T.J., Holmes, J. W., and Rose, C.W. (editors). 1996. Soil Physics ( 3rd

edition) , 358-376.

Cambridge University Press. Cambridge, UK.

Zheng, D., Hunt, Jr., Running, S.W. 1993. A daily soil temperature model based on air temperature

and precipitation for continental applications. Climate Research 2: 183-191.

8

Page 9: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.1 Water movement in Daisy model

9

Page 10: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$%& '

!"#$ %&'#%#("

!" #$%& '()"*+ θ %# %, )!" -$."& .%/%.". %,)$ 0 1(*)#2

θ = θ1 + θ2 + θ3 34546

!" )!%*. .$-(%, %# -(." 7$* ."#8*%9%,: )!" -(8*$1$*$;# <$' '!"*"(# )!"

1*%-(*= (,. #"8$,.(*= .$-(%, (*" *"1*"#",)%,: )!" '()"* %, )!" #$%& -()*%>

θ

= θ1 + θ2 345?6

'!"*" θ

%# /$&;-")*%8 '()"* 8$,)",) %, )!" -()*%> .$-(%,5 !" .%/%#%$, $7

)!" -()*%> .$-(%, %,)$ ? #;9.$-(%,# %# #$&"&= -(." 7$* ( 9"))"* ."#8*%1)%$, $7

#$&;)" -$/"-",) @ #"" -$*" %, 8!(1)"* ?5

! "#$%&'()* +,-&.#/0

!" '()"* <$' %, 1$*$;# -".%( 8(, 9" ."#8*%9". '%)! )!" 7$*-;&( $7 A%8!(*.5

!" "B;()%$, %# ."*%/". !"*"5 !" '()"* <;> .",#%)= /"8)$*+ q

8(, 9" 8(&8;@

&()". 9= )!" C(*8=D# &('5 E$* ( )'$@.%-",#%$,(& /"*)%8(& )*(,#"8) %) =%"&.#2

q

= −K(ψ)∇(ψ + z) 34506

'!"*" K(ψ) %# )!" !=.*(;&%8 8$,.;8)%/%)= )",#$*+ ψ %# )!" 1$)",)%(& !"(.5 !"

>@(>%# %# 8!$#", %, !$*%F$,)(& .%*"8)%$, (,. )!" F@(>%# %# 1$#%)%/" ;1'(*.#5 !"

8$,.;8)%/%)= )",#$* 8(, 9" ">1*"##". (#2

K =

[

Kxx Kxz

Kzx Kzz

]

345G6

E$* ( -$."& '%)! *"8)(,:;&(* 8"&&# '" !(/" 8!$#", )!() )!" 1*%,8%1(& .%*"8)%$,#

$7 )!" (,%#$)*$1%8 -".%;- (*" 1(*(&&"& )$ )!" x@ (,. z@(>%#+ %5"5

K =

[

Kxx 00 Kzz

]

345H6

4

10

Page 11: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$%% &$'$()" *+, -!" %.%-"# /01"%

∂θ

∂t= −∇ · q

− Γ!

23456

7!"," θ

0% -!" 1+'8#"-,0) 7$-", )+(-"(- $(9 Γ!

0% -!" %0(: -",# *+, 7$-",4

!" ;$,-0$' 90<","(-0$' "=8$-0+( )$( &" 9"1"'+;"9 &. )+#&0(0(/ >$,).?% '$7@

"=8$-0+( 234A6 $(9 -!" #$%% &$'$()"@ "=8$-0+( 23456@ -!8%

∂θ

∂t= ∇ · (K(ψ)∇(ψ + z)) − Γ

!

234B6

!0% 0% :(+7( $% C0)!$,9D% "=8$-0+(4 E+, -!" #+9"'0(/ 0% $%%8#"9 -!$- -!"

%+0'F7$-", ,"-"(-0+( 0% 70-!+8- !.%-","%0%@ 04"4 -!"," 0% $ 8(0=8" ,"'$-0+( &"-7""(

-!" #$-,0G ;,"%%8," ;+-"(-0$' $(9 -!" 7$-", )+(-"(-4

+ %+'1" C0)!$,9D% "=8$-0+( 0- 0% (")"%%$,. -+ %;")0*. 0(0-0$' $(9 &+8(9$,.

)+(90-0+(%4 !" &+8(9$,. )+(90-0+(% %;")0*. $ )+#&0($-0+( +* ψ $(9 0-% 9",01$F

-01" +( -!" &+8(9$,.4 E8,-!",#+," 0- 0% ;+%%0&'" -+ 8%" 90<","(- *+,#% +* H8G

2I"8#$((6 $(9 ;,"9"%),0&"9 ;,"%%8," 2>0,0)!'"-6 &+8(9$,. )+(90-0+(%4 !"

;,+&'"# -+ &" %+'1"9 *+, 9"-",#0(0(/ -!" 7$-", #+1"#"(- )$( &" %8##$,0J"9

-+

∂θ

∂t = ∇ · (K(ψ)∇(ψ + z)) − Γ!

0( Ω

n · (K(ψ)∇(ψ + z)) = −q

+( ∂ΩN

ψ = ψ0 +( ∂ΩD

234K6

7!"," n 0% -!" +8-7$,9 8(0- (+,#$'@ $(9 q

0% -!" #$/(0-89" +* -!" +8-7$,9

H+7 *,+# -!" 9+#$0(4 ψ0 0% -!" ;,"9"%),0&"9 ;,"%%8," $- -!" &+8(9$,.4 Ω 0%

-!" %+0' 9+#$0(4 ∂ΩN$(9 ∂ΩD

$," ;$,- +* -!" &+8(9$,. +* Ω 70-! I"8#$((

$(9 >0,0)!'"- &+8(9$,0"%@ ,"%;")-01"'. %8)! -!$- ∂Ω = ∂ΩN ∪ ∂ΩD4 L$)! +*

∂ΩN$(9 ∂ΩD

$," (+- (")"%%$,0'. +(" )+(-0(8+8% )8,1" ;0")"4 M %;")0$' )$%"

+* -!" I"8#$(( &+8(9$,. )+(90-0+(% 0% +*-"( $;;'0"9 *+, -!" '+7", &+8(9$,.

)+(90-0+(@ 10J4 0- 0% $%%8#"9 -!$- -!" H+7 0- 0% +('. 9,01"( &. /,$10-. 2/,$10-.

&+8(9$,. )+(90-0+(6@ 04"4 ∂ψ/∂x = ∂ψ/∂z = 0 7!0)! /01"%

q

= n ·

[

0Kzz

]

234N6

M(+-!", +*-"( 8%"9 &+8(9$,. )+(90-0+( 0% -!" %"";$/" &+8(9$,. )+(90-0+( *+,

$-#+%;!",0) &+8(9$,0"%4 O* $ %"";$/" *$)" 9+"% (+- 9"1"'+;@ -!" &+8(9$,. $)-%

$% (+ H+74 O* $ %"";$/" *$)" +))8,% 7" !$1" $ >0,0)!'"- &+8(9$,. )+(90-0+(

70-! ψ = 0 $(9 $''+7 7$-", -+ H+7 +8- +* -!" 9+#$0(4 !" )+(90-0+( )$( *+,

0(%-$()" &" $;;'0"9 0( )+((")-0+( 70-! "%-8$,0"% +, %-,"$#%4

!" #$%&'('&) *'+

O( -!" )+()";- $'' #$),+;+,"% $," 1",-0)$' +,0"(-"94 !" #$),+;+," 2-",-0$,.6

9+#$0( 0( -!" #+9"' )+(-$0(% $ (8#&", +* 8%", %;")0P"9 #$),+;+," )'$%"%4 O(

Q

11

Page 12: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "#$%$#&' "( '' (( )*& ! "#$%$#&' * +& )*& ' !& %*,'-" ( %#$%&#)-&' '."*

' (&/0)*1 2 "* $3 )*& "( ''&' #& "* # ")&#-4&5 6, 5-')#-6.)-$/ -/ )*& *$#-4$/7

) ( %( /&8 # 5-.' $3 )*& %$#&' /5 5&%)* 9*&#& )*& ! "#$%$#&' ') #) /5 &/5'1

:('$ )*& %#&''.#&' 9*&#& )*& 9 )&# ') #)' /5 ')$%' !$+-/0 3#$! )*& ! )#-; )$

)*& ! "#$%$#& 5$! -/ !.') 6& </$9/1 =*& ! "#$%$#&' #& ('$ "* # ")&#-4&5

6, #&'-') /"& 3$# )# /'3&##-/0 9 )&# 3#$! >((&5 ! "#$%$#& )$ )*& ! )#-; 5$7

! -/1 =*& ! "#$%$#&' " / &-)*&# &/5 -/ )*& '$-( ! )#-; $# -/ 5# -/1 ?*&/

)*& ! "#$%$#&' &/5' -/ 5# -/8 ! )#-; 9 )&# 9*-"* @$9' -/)#$ )*& ! "#$%7

$#& -' -/') /) /&$.'(, !$+&5 )$ )*& 5# -/8 /5 ' "$/'&A.&/"& " / ! "#$%$#&'

"$//&")&5 9-)* 5# -/' /&9&# 6& >((&58 /5 9 )&# " / /$) 6& !$+&5 3#$! )*&

! "#$%$#& )$ )*& ! )#-;1 =*& %#&''.#&' 9*&#& )*& 9 )&# ') #)' /5 ')$%' !$+7

-/0 3#$! )*& ! )#-; )$ )*& ! "#$%$#& 5$! -/ !.') 6& </$9/ /5 )*& + (.&'

#& "$!!$/ 3$# (( )*& "( ''&'1

!"! #$%&'('&) *+,)&$%,*'+ -*,. /$,&*0 -$,)&

=*& "$/5-)-$/ 3$# ! "#$%$#$.' @$9 )$ -/-)- )& /5 9 )&# !$+& 3#$! )*& ! )#-;

)$ ! "#$%$#&' -/ ! "#$%$#&' "( '' -' )* ) )*& ! )#-; %#&''.#& &;"&&5' "&#) -/

+ (.& ψ ! " #"$

1

ψ ≥ ψ ! " #"$

BC1CDE

?*&/ 9 )&# -' )# /'3&##&5 3#$! )*& ! )#-; )$ )*& ! "#$%$#$.' 5$! -/8 )*&

9 )&# -' -/') /) /&$.'(, !$+&5 )$ )*& )$% $3 )*& ".##&/) 9 )&# (&+&( -/ )*&

! "#$%$#&'1 F3 )*& 9*$(& ! "#$%$#& -' &!%),8 )*& -/"$!-/0 9 )&# -' !$+&5

-/') /) /&$.' )$ )*& 6$))$! $3 )*& ! "#$%$#& $# ()&#/ )-+&(, )$ )*& 5# -/ B-3

)*& ! "#$%$#& &/5' -/ 5# -/E1

=*& 9 )&# )# /'3&# 3#$! )*& ! )#-; 5$! -/ )$ )*& ! "#$%$#$.' 5$! -/

)&#!-/ )&' -3 )*& ! )#-; %#&''.#& -' 6&($9 "&#) -/ (&+&(8 -1&1

ψ < ψ"$%& !#"$

BC1CCE

F/ ($" )-$/ 9*&#& )*& ! "#$%$#& "( '' -' >((&5 9-)* 9 )&#8 9 )&# -' )# /'3&##&5

3#$! )*& ! "#$%$#& )$ )*& ! )#-; 5$! -/ -3

ψ'( )

> ψ BC1CGE

9*&#& ψ'( )

-' )*& %#&''.#& %$)&/)- ( -/ )*& ! "#$%$#&1

=*& A. /)->" )-$/ $3 )*& 9 )&# !$+&!&/) )$9 #5 ! "#$%$#& -' 6 '&5 $/

#&( )-+&(, '-!%(& %%#$ "*8 +&#, '-!-( # )$ )*&$#, $3 9 )&# )*& !$+&!&/) -/

"$/>/&5 A.-3&# )$9 #5' 9&((1 H$# "$/>/&5 A.-3&# $3 )*-"</&'' D )*&

') )-$/ #, '$(.)-$/ 3$# 9 )&# !$+&!&/) )$9 #5' 9&(( -'

Q =2πKD(s

*$++

− s)

ln( rr !""

)BC1CIE

I

12

Page 13: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" K $% &!" '%(&)#(&"*+ !,*#()-$. ./0*).&$1$&,2 r !""

$% &!" #(*$)% /3 &!" "--2

s !""

$% &!" *#( */ 0 (& &!" (-- /3 "-- (0* s $% &!" *#( */ 0 (& &!" *$%&(0."r 3#/4 &!" ."0&"# /3 &!" "--5

63 &!" 4(.#/7/#"% (#" "8)$*$%&(0& 7-(."*2 &!" *"0%$&, $0 &!" !/#$9/0&(- 7-(0"

M#

.(0 :" (77#/;$4(&"* (%<

M#

≈1

πr2#$ %!&'

'=5=>+

!"#" 2r#$ %!&'

$% &!" 4"(0 *$%&(0." :"& ""0 &!" 4(.#/7/#"%5

60 ( %4(-- &$4" %&"72 &!" ?/ &/ (#*% ( 4(.#/7/#" $% ./0%$*"#"* (% %&(&$/0(#,

(0* (& &!" *$%&(0." r#$ %!&'

2 &!" 7#"%%)#" $0 &!" .)##"0& &$4" %&"7 $% ./0%$*"#"*

(% )0(@".&"* /3 &!" 4(.#/7/#"2 $5"5 0/ 7#"%%)#" *#( */ 05 A!)% &!" ?/ &/ (

7$"." /3 ( %$0B-" 4(.#/7/#" $&! &!" !"$B!&2 ∆z .(0 :" (77#/;$4(&"* (%

Q#$ %&#()

=2πK(ψ)∆z(ψ − ψ

*$ #

)

ln(r ! "#$%

r ! "$ &'

)'=5=C+

!"#" ψ*$ #

$% &!" 7#"%%)#" 7/&"0&$(- $0 &!" 4(.#/7/#"% (0* r#$ %&#()

$% &!" #(*$)%

/3 &!" 4(.#/7/#" (0* K(ψ) $% &!" !,*#()-$. ./0*).&$1$&,5 D#"1"0&$0B &!(& &!"!,*#()-$. ./0*).&$1$&, $% 1"#, !$B! $0 3#(.&)#"* 4"*$( &!" K(ψ) $% ./47)&"* (%

K(ψ) = min(Kxx(ψ),Kxx(ψ+'+,+&,!

)) = Kxx(min(ψ,ψ+'+,+&,!

)) '=5=E+

!"#" Kxx $% &!" ./0*).&$1$&, $0 &!" xF*$#".&$/0 '%"" "8)(&$/0 '=5C++5 6& $%

(%%)4"* &!(& &!" ?/ &/ (#*% &!" 4(.#/7/#"% $% !/#$9/0&(-5 G%$0B "8)(&$/0

'=5=>+ &!" %$0H &"#4 .(0 :" .(-.)-(&"*

Γ %$ #

=M#

Q#$ %&#()

∆z=

−4πM#

Kxx(ψ)(ψ − ψ*$ #

)

ln(πM#

r2#$ %&#()

)'=5=I+

J/# ?/ 3#/4 &!" 4(.#/7/#" */4($0 $0&/ &!" 4(&#$; */4($0 (#" &!" .(-F

.)-(&$/0% 4(*" $0 ( %$4$-(# 4(00"#2 :)& $0%&"(* /3 )%$0B &!" ./0*).&$1$&, $% (

#"%$%&(0."2 R#$ %&#()

3/# ?/ /)& 3#/4 &!" 4(.#/7/#"% $0&#/*)."*5

Γ %$ #

=−4πM

#

(ψ − ψ*$ #

)

R#$ %&#()

ln(πM#

r2#$ %&#()

)'=5=K+

A!" 7#"%%)#" (& ( B$1"0 7/%$&$/0 $0 &!" 4(.#/7/#" *"7"0*% /0 &!" (&"# -"1"-

$0 &!" 4(.#/7/#"

ψ*$ #

= z#$ %&#()

− z '=5=L+

!"#" z#$ %&#()

$% &!" (&"# -"1"- "0 &!" 4(.#/7/#"5 63 &!" 4(.#/7/#" $% "47&,

$% z#$ %&#()

= z#$ -),,)%

!"#" z#$ -),,)%

$% &!" zF.//#*$0(&" /3 &!" :/&&/4 /3 &!"

4(.#/7/#"5 M% ( ./0%"8)"0." /3 "8)(&$/0 '=5=L+2 " !(1" 3/# 4(.#/7/#"% !$.!

"0*% $0 *#($0%<

ψ*$ #

= z.(&+'

− z '=5NO+

>

13

Page 14: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" z !"#$

$% &!" z'())#*$+,&" )- &!" *#,$+.

/00 &!" ()+%$*"#,&$)+% ,1)2" ,#" -)# &!" &#,+%-"# )- ,&"# 1"& ""+ , 3,(#)4'

)#" (0,%% ,+* &!" 3,&#$5. 6) (,0(70,&" &!" &)&,0 &#,+%-"# 1"& ""+ &!" 3,(#)4)#"%

,+* &!" 3,&#$5 $& $% +"("%%,#8 &) %73 74 &!" ()+&#$17&$)+% -#)3 ",(! )- &!"

3,(#)4)#" (0,%%"%. 6!7% &!" %$+9 &!" 3,(#)4)#"% ()+&#$17&"% &) $+ &!" 3,5&#$5

:) $%

Γ%&' &"(!)

=

NC∑

c=1

Γ%&' (

;<.=<>

!"#" NC $% &!" +731"# )- 3,(#)4)#" (0,%%"%.

!"!" #$%&'('&) *+,)&$%,*'+ -*,. /0&1$%) -$,)&

?!"+ &!" %7#-,(" $% 4)+*"*@ ,&"# (,+ *$#"(&08 "+&"# &!" 3,(#)4)#"% $&!)7&

A#%& "+&"#$+B &!" %)$0 3,&#$5. 6!" #,&" $% (,0(70,&"* 2"#8 #)7B!08 ,+* 1,%"* )+

C)$%%"7$00"% 0, ;".B. D$00"0@ <EEF>. G+ &!" ,%%734&$)+ 3,*" !"#" )+08 B#,2$&8

*#$2"% &!" :) . 6!" 2"#&$(,0 :) $+ , 3,(#)4)#" (,+ 1" ()347&"* ,%H

Q#$*+,!",#)$

=πr4

(' &"(!)

ρwg(l + H-)$

)

8lµ≈

πρwgr4(' &"(!)

8µ;<.==>

!"#" µ $% &!" *8+,3$( 2$%()%$&8@ ρw &!" *"+%$&8 )- ,&"#@ g &!" B#,2$&,&$)+,0,(("0"#,&$)+@ l &!" *$%&,+(" -#)3 &!" %7#-,(" &) &!" ,&"# 0"2"0 $+ &!" 3,(#)4)#"

(0,%% ;)# &!" 1)&&)3 )- &!" 3,(#)4)#" $- $& $% "34&8> ,+* H-)$

$% &!" 4)+*$+B

*"4&!. 6!" $+A0&#,&$)+ #,&" $+&) &!" 3,(#)4)#" (0,%% $%H

i(' &"(!)

=πM

(

ρwgr4(' &"(!)

8µ;<.=I>

6!" &)&,0 $+A0&#,&$)+ $+&) 3,(#)4)#"% $% &!" %73 )- &!" $+A0&#,&$)+ $+&) &!"

*$J"#"+& 3,(#)4)#" (0,%%"%

i&"(!)

=NC∑

c=1

i(' &"(!)

;<.=K>

G+ &!" +73"#$(,0 3)*"0 $+ , &$3"%&"4 )- %$L" ∆t &!" $340"3"+&"* #)7&$+" ,00) %+) 3)#" ,&"# -)# $+A0&#,&$)+ &!,+ 4#"%"+& ,& &!" %7#-,(" )+ &!" %&,#& )- &!"

&$3"%&"4. M7#&!"#3)#" &!"#" (,+ +)& $+A0&#,&" 3)#" ,&"# $+&) , 3,(#)4)#"

(0,%% ,% &!"#" $% %4,(" -)# $+ &!" %&,#& )- &!" &$3"%&"4. G- ,00 ,&"# $% $+A0&#,&"*

$+ &!" &$3"%&"4@ &!" ,&"# $% *$%&#$17&"* 1"& ""+ &!" (0,%%"% 4#)4)#&$)+,0 &) &!"

,#", *"+%$&8@ M(

)- &!" (0,%%"%.

!" #$%$&' ()*+,' -'&.)/

!2! #)/.

G+ N,$%8=N@ &!" *)3,$+@ Ω $% *$2$*"* $+&) N +)+')2"#0,44$+B 4)08B)+%@ ,0%)

*"+)&"* ()+&#)0 2)073"% )# ("00%. G+ N,$%8=N $& %!)70* 1" 4)%%$10" &) (!))%" 1"'

O

14

Page 15: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!""# $%&'( )*#(&( &#$ *+ *#,- %") .#$/,.% )",,( *% 0"(1"( )*#(&( &#$ *+ %.2"3*&'(

!& 1 !* 4"% &)., +.)"(5 6&$/%" 757 (1*!( . $%&' *#,- )*#(&( &#$ *+ %") .#$/,.%

)",,(5 81" '*0.&# Ω &# 1" 9$/%" &( &# '&4&'"' &# * : (/;'*0.&#(< ".)1 )*#(&( =

&#$ *+ . #/0;"% *+ )",,(5 >.)1 (/;'*0.&# &( )1.%.) "%&3"' ;- '&?"%"# 1-'%./,&)

2%*2"% &"(5 81" $%&' (1*!# &# 9$/%" 75@ )*#(&( ( *+ %.2"3*&'( A!1"%" 0*( *+

1"0 .,(* .%" %") .#$,"(B5 C#,- &# 1" 2%*D&0& - *+ 1" '%.&#2&2" A("" 9$/%"

75:B< 1" )",,( .%" #* %") .#$/,.%5

6&$/%" 757E >D.02," *+ $%&' )*#(&( &#$ *+ %") .#$/,.% )",,(5

81" F/.'%&,. "%., A%") .#$/,.% *% %.2"3*&'B )",,( .%" '"#* "' Qi !1"%" i =1, 2, · · · , N 5 |Qi| '"#* "( 1" .%". *+ Qi< .#' ∂Qi &( 1" ;*/#'.%- *+ Qi &5"5

1" "'$"( A*% +.)"(B *+ Qi5 G,, &# "%#., "'$"( eij .%" ,.;","' ;- &#'&)"(< i .#'

j *+ 1" .'H.)"# )",,( 1. (1.%"( +.)"5 81" $%&' &( )*#( %/) "' (/)1 1. *#,-

!1*," +.)"( .%" (1.%"' Aeij = Qi ∩ QjB5 81" ,"#$ 1 *+ eij &( |eij | .#' 1" /#&

#*%0., 4") *% 2*&# &#$ +%*0 Qi&# * Qj .#' *% 1*$*#., * eij &( '"#* "' nij 5 σi

)*# .&#( )",, &#'&)"( *+ )",,( (1.%&#$ +.)"( !& 1 )",, i5 σ′i )*# .&# &#'&)"( *+ )",,

+.)"( *+ )",, i !1&)1 .%" 2,.)"' *# ∂Ω< &5"5 & &( #* (1.%"' !& 1 .#* 1"% )",,5 σ′i

&( '&4&'"' &# * !* (/;(" (< σ′Di .#' σ′N

i *+ ;*/#'.%- )",, +.)"( !& 1 . I&%&)1,"

.#' J"/0.## ;*/#'.%- )*#'& &*#< %"(2") &4",-5

K

15

Page 16: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$% &'() *+,-./% 01 "$!2 3045!56!4" 01 6$,.%70!25'

!"!# $%&& '())*+(&(,-%)

8!39,$25 %:#,6!04 !5 !46%"$,6%2 0;%$ 3046$0/ ;0/#-% <9%$% , 3%//=> Qi' ?@ ,../@A

!4" 69% 2!;%$"%43% 69%0$%- B@ C$%%4AC,#55> D% 0B6,!4

Qi

∂θ

∂tdΩ =

∂Qi

(K(ψ)∇(ψ + z)) · ndl −

Qi

Γ!

dΩ <&'(E=

D9%$% n !5 69% 0#6D,$2%2 #4!6 40$-,/ ,42 ∂Qi 69% B0#42,$@ 01 Qi' F9% 3%//

,;%$,"%5 01 θ

,42 ψ ,$% 2%406%2 θi ,42 ψi' θi ,42 ψi> i = 1, 2, · · ·N D9%$% N!5 69% 4#-B%$ 01 3%//5 69,6 ,$% 30//%36%2 !4 69% ;%360$5 θ ,42 ψ' G!53$%6!7,6!04

01 %:#,6!04 <&'(E= B,5%2 04 , "$!2 3045!56!4" 01 :#,2$!/,6%$,/5 @!%/2

|Qi|

(

dt

)

i

=∑

j∈σi

Dij(ψ) +∑

j∈σi

Gij(ψ) +∑

j′∈σ′

i

Bij′(ψ) − Si(ψ) <&'(H=

D9%$%)

• Dij(ψ) 2%53$!B% 69% 2!I#5!;% 6$,45.0$6 B%6D%%4 !46%$4,/ B0$2%$5

• Gij(ψ) 2%53$!B% 69% "$,;!6,6!04,/ 6$,45.0$6 B%6D%%4 !46%$4,/ B0#42,$!%5

J

16

Page 17: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$% &'() *+,-% .!/0#$% ,1 "$!2 3%4$ 05% 2$4!3 .!.%'

• Bij′(ψ) 2%-/$!6% 7#8 1,$ %80%$34+ 6,#324$!%- j′ ∈ σ′i

• Si(ψ) !- 05% !30%"$40%2 -!39 0%$: ;.,!30 432 4$%4 2!-0$!6#0%2 -!39-< !3 05%

/%++'

=5% 2!>#-!?% 0$43-.,$0 1$,: /%++ i 0, /%++ j /43 6% /4+/#+40%2 4-

Dij(ψ) = |eij |(K(ψ) · (∇ψ)ij) · nij ;&'@A<

,$ %?4+#40!3" %B#40!,3 ;&'@A< !0 !- 3%/%--4$C 0, %-0!:40% 05% "$42!%30 (∇ψ)ij '

(∇ψ)ij !- %?4+#40%2 6C 4 2!>%$%30 :%05,2 1,$ :%-5%- D!05 $%/043"#+4$ /%++- 0543

1,$ 05% :,$% "%3%$4+ 432 /,:.+!/40%2 /4-% D!05 :%-5%- /,3-!-0!3" ,1 0$4.%E,!2

/%++-' =5% "$4?!040!,34+ 0$43-.,$0 1$,: /%++ i 0, /%++ j /43 6% /4+/#+40%2 4-

Gij(ψ) = |eij |(K(ψ) · ([0 1]T )) · nij ;&'@F<

=5% 6,#324$C 7#8 0%$: !- -.+!0 !30, 05% /,30$!6#0!,3 1$,: 6,#324$!%- D!05

G%#:433 432 H!$!/5+%0 /,32!0!,3 $%-.%/0!?%+C)

j′∈σ′

i

Bij′(ψ) =∑

j′∈σ′Ni

BNij′(ψ) +

j′∈σ′Di

BDij′(ψ) ;&'@I<

F

17

Page 18: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$% &!'()*"+%, -+#$ .%'/*(( 0!()+#+!(, -% $*1%

BNij′(ψ) = −q

!ij′ |eij′ | 234567

-$%"% q !ij′

+, #$% ,+8% !9 #$% :*"0; <'=> ?%"?%()+0'@*" #! #$% 0%@@ 9*0% *() ?!,A

+#+1% 9!" <'= !'# 9"!/ 0%@@ i4 B$% %*,+%,# -*; #! +/?@%/%(# :+"+0$@%# &!'()*";0!()+#+!(, +, ,+/?@; #! 9!"0% ψi #! #$% 1*@'% #$*# ψ $*, !( #$% 9*0% -+#$ :+"+0$@%#

0!()+#+!(,4 C!(<+0#, 0*( *"+,% +9 0%@@ i $*, /!"% #$*( !(% 9*0% -+#$ * :+"+0$@%#0!()+#+!(4 D(,#%*)> #$% :+"+0$@%# &!'()*"; 0!()+#+!( +, +/?@%/%(#%) *, +9 #$%

/+)?!+(# !9 #$% :+"+0$@%# 9*0% -*, * (%+E$&!" 0%@@4 F+/+@*" #! *( +(#%"+!" 0%@@

9*0%> * )+G',+1% *() * E"*1+#*#+!(*@ 0!(#"+&'#+!( 0*( &% 0*@0'@*#%)H

BDij′(ψ) = DD

ij′(ψ) + GDij′(ψ) 234537

-$%"%

DDij′(ψ) = |eij′ |(K(ψi) · (∇ψ)ij′) · nij′

2345I7

GDij′(ψ) = |eij′ |(K(ψi) · ([0 1]T )) · nij′

234557

-$%"% #$% ?"%,,'"% *,,!0+*#%) -+#$ 0%@@ i $*, &%%( ',%) 9!" 0*@0'@*#+(E #$% $;A)"*'@+0 0!()'0#+1+#;4 B$% ,+(J #%"/ ',%) +( %K'*#+!( 234L7 0*( &% )+1+)%) +(#!

#-! ?*"#,

Γ"#

= Γ" $

+ Γ" %

δ(xp − x)δ(zp − z) 2345M7

-$%"% Γ" $

+, #$% 0!(#"+&'#+!( 9"!/ * *"%* )+,#"+&'#%) ,+(J *() Γ" $

+, #$%

0!(#"+&'#+!( 9"!/ * ?!+(# ,+(J4 (xp, zp) *"% #$% 0!!")+(*#%, !9 #$% ?!+(# ,+(J-$+0$ ,$*@@ &% ?@*0%) +( #$% +(#%"+!" !9 * 0%@@2(!# !( #$% 0%@@ 9*0%,74 δ +, #$%

:+"*0 )%@#* 9'(0#+!(4 B$',> #$% 0!(#"+&'#+!( 9"!/ #$% ,+(J #%"/, #! * 0%@@ ;+%@),

Si(ψ) = Γ" $

|Qi| + Γ" %

2345N7

O"%* )+,#"+&'#%) ,+(J, *"% #;?+0*@@; %=#"*0#+!( 9"!/ "!!#, !" 2+( :*+,;I:7 -*#%"

<!- &%#-%%( #$% ,!+@ /*#"+= *() /*0"! ?!"% )!/*+(4 B$% ?!+(# ,+(J, 0*( &%

#+@% )"*+(, !" )"+? +""+E*#+!( ,;,#%/, 2?!+(# ,!'"0%,74 P!#$ Γ" $

*() Γ" %

0*(

&% )%?%()%(# !( #$% ,!@'#+!( 2ψ74

!"!" #$%&'()*+', %$++-

!" #$% ,+#'*#+!( -+#$ * /%,$ 0!(,+,#+(E !9 "%0#*(E'@*" 0%@@,> !(@; /*#"+= ?"%,A

,'"% +( #$% 9!'" (%+E$&!" 0%@@, 2,%% QE'"% 34M7 *"% *??@+%) 9!" 0*@0'@*#+(E #$%

<'=%, #$"!'E$ #$% 9*0%, !9 #$% 0%@@ 2Q1% ?!+(# ,#%(0+@74 D( #$% ?"%,%(# ,%0#+!( -%

-+@@ !(@; %1*@'*#% #$% E"*)+%(# 9!" #$% R%*,#%"(R 0%@@ 9*0% !9 0%@@ i4 B$% #$%!";0*( %*,+@; &% *??@+%) 9!" #$% 5 "%/*+(+(E )+"%0#+!(,4 B$% )+,#*(0%, (%0%,,*";

9!" %1*@'*#+(E #$% <'= 9"!/ * 0%@@ #! #$% 0%@@ ?@*0%) %*,# !9 #$% 0%@@ *"% ,$!-(

+( QE'"% 34N4

B$% 1*@'% !9 ψ +( #$% /+)?!+(# !9 #$% %*,#%"( 0%@@ 2ψE7 0*( &% %=?"%,,%) &;

* B*;@!" %=?*(,+!( !9 #$% 1*@'% !9 ψ *# #$% /+)?!+(# !9 #$% 0%@@ 9*0%H

S

18

Page 19: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

i

S

E

N

W

!"#$% &'() *%++ i ,-. /0% -%!"012$ 3%++4 !/ 40,$% 5,3%4 6!/0'

ψE = ψ(x + δx+) =m

k=0

1

k!

(

dkψ

dxk

)

f

(δx+)k + R+7&'89:

60%$% m !4 /0% 2$.%$ 25 /0% ;,<+2$ %=>,-4!2- ,-. R+!4 /0% ?,"$,-"% $%@,!-.%$'

A!@!+,$ 3,- ψi 1% 32@>#/%.

ψi = ψ(x − δx−) =

m∑

k=0

1

k!

(

dkψ

dxk

)

f

(−δx−)k + R−7&'8B:

C/ 3,- 1% ,44#@%. /0,/ R+ − (−1)m+1R− ≈ 0' ;0#4 !5 , ;,<+2$ %=>,-4!2- 25D$4/ 2$.%$ 7m = 1: !4 3024%- 6% "%/

(

dx

)

f

(δx+ + δx−) ≈ ψE − ψi 7&'8E:

C5 , 0!"0%$ 2$.%$ ;,<+2$ %=>,-4!2- !4 3024%- 6% "%/

(

dx

)

f

(δx+ + δx−) ≈ ψE − ψi − ǫEi 7&'8F:

60%$% /0% 32$$%3/!2- /%$@ 3,- 1% 3,+3#+,/%. ,4

ǫEi ≈m

k=2

1

k!

(

dkψ

dxk

)

f

[

(δx+)k − (−δx−)k]

7&'(G:

&G

19

Page 20: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

δx−

δx+

∆z=|eiE

|i En

!"#$% &'() *!+,-./%+ #+%0 12$ /-3/#3-,!2. 21 4#5 6%,7%%. /%33 i -.0 !,+ 8%-+,%$.8.%!"962$'

&&

20

Page 21: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "#$ %& '&&$ !(#! # '&")$* )+*&+ ,+&"-'-)$ -' )%!#-$&* .-!( m = 1 #$*

δx+ = δx−/ m = 1 -' "()'&$ 0)+ !(& +&1#!-2& '-3,1& 3)*&1 0)+ +&"!#$451#+

"&11'/ 6(& .-*!( #$* (&-4(! )0 "&11 i #+& *&$)!&* (∆x)i #$* (∆z)i +&',&"!-2&178

!(5' δx− = (∆x)i

2 8 δx+ = (∆x)E

2 #$* |eiE | = (∆z)i = (∆z)E / 6(& )5!.#+*&*

5$-! $)+3#18 niE = [1 0]T / 97 #,,17-$4 &:5#!-)$ ;</=>?8 !(& *-@5'-2& !+#$',)+!

!(+)54( !(& "&11 &#'!&+$ 0#"& -'A

DiE(ψ) = (Kxx)iE2(∆z)i

(∆x)E + (∆x)i(φE − φi) ;</B<?

6(& 4+#2-!#!-)$#1 !+#$',)+! 0+)3 "&11 i !) "&11 E -'A

GiE(ψ) = 0 ;</B=?

0 !(& &#'!&+$ "&11 0#"& )0 "&11 i %&1)$4' !) !(& %)5$*#+7 )0 Ω ;$) &#'!&+$ $&-4(C

%)+?8 BiE′'(#11 %& "#1"51#!&*/ 0 !(& "&11 0#"& (#' # D&53#$$ %)5$*#+7 ")$*-!-)$

.& (#2&

BNiE′(ψ) = −qiE′(∆z)i ;</BE?

.(&+& qiE′-' !(& 3#4$-!5*& )0 !(& F5G !+#$',)+!&* )5! 0+)3 !(+)54( !(& "&11

0#"&/ 0 !(& "&11 0#"& (#2& # H-+-"(1&! %)5$*#+7 ")$*-!-)$A

DDiE′(ψ) = (Kxx)i

2(∆z)i

(∆x)i(ψE′ − ψi) ;</BB?

.(&+& ψE′-' !(& 2#15& )0 ψ -$ !(& 3-*,)-$! )$ !(& &#'!&+$ "&11 0#"& )0 "&11 i/

6(& 4+#2-!#!-)$#1 ,#+! 4-2&'A

GDiE′(ψ) = 0 ;</BI?

!"!# $%&'()*+,+*- .* )/00 1.)/2

6(& ")$*5"!-2-!7 #! !(& "&11 0#"&' %&!.&&$ #*J#"&$! "&11' ;#' 5'&* -$ &:5#!-)$'

;</=>?? #+& -$ H#-'7 "#1"51#!&* %7 &-!(&+ !(& #+-!(3&!-"8 4&)3&!+-" )+ (#+3)$-"

3&#$/ K)+ '!&#*7 '!#!& F). ',&#L' ,(7'-"#1 #+453&$!' 0)+ #,,17-$4 !(& (#+C

3)$-" 3&#$A

1

Kij=

1

2

[

1

K(ψi)+

1

K(ψj)

]

;</BM?

N-351#!-)$ (#2& '().$ !(#! 5'-$4 !(& (#+3)$-" #2&+#4& "#$ (#2& !(& &@&"! !(#!

.#!&+ ,+#"!-"#117 $)! "#$ %& !+#$',)+!&* -$ ')3& "#'&' .-!( '(#+, 4+#*-&$!' -$

!(& ,+&''5+& ,)!&$!-#1' .(-"( "#$ )""5+' -$ '-!5#!-)$' .-!( &2#,)+#!-)$ #$*

1#7&+&* ')-1/ O0 !(#! +&#')$ -' !(& #+-!(3&!-" 3&#$ "()'&$ #' *&0#51!A

Kij =1

2[K(ψi) + K(ψj)] ;</B>?

<=

21

Page 22: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"!# $%%&' ()*+,-'. /)+,010)+

!" #$$"% &'#()*%+ ,'()-.-'( )"/,%-&"/ !'0 1#,! '2 .!" *$$3-") 0*."% *()

/#%2*," 0*."% .!*. -(43.%*."/ -(.' .!" /'-35 6'% -(/.*(," -2 .!" %*." '2 .!" *$7

$3-") 0*."% "8,"")/ .!" *1'#(. '2 0*."% .!*. ,*( -(43.%*." -(.' .!" /'-39 :.!"

-(43.%*&-3-.+; 0*."% -/ /.'%") '( .!" /#%2*,"5

<( .!" /.*%. '2 "*,! '2 .!" -."%*.-'(/9 0-.!-( .!" .-1" /."$9 .!" -(43.%*&-3-.+

-/ ,*3,#3*.") #/-(= >*%,+?/ 3*0 :&*/") '( .!" $%"//#%" *. /#%2*," -( .!" 3*/.

.-1" /."$ *() .!" $%"//#%" -( .!" /#%2*," ,"335; <2 .!" *1'#(. '2 *@*-3*&3" 0*."%

:/#%2*," 0*."% A *$$3-") 0*."% -( .!" ,#%%"(. .-1" /."$; "8,"")/ .!" *1'#(.

'2 0*."% .!*. ,*( -(43.%*." -(.' .!" /'-3 */ ,*3,#3*.") 0-.! .!" -(43.%*&-3-.+9

* >-%-,!3". :$%"//#%"; &'#()*%+ ,'()-.-'( -/ *$$3-")5 <2 .!" *1'#(. '2 0*."%

0!-,! ,*( -(43.%*." -(.' .!" /'-39 */ ,*3,#3*.") 0-.! .!" -(43.%*&-3-.+ "8,"")/ .!"

*1'#(. '2 *@*-3*&3" 0*."% .!"( * B"#1*(( :C#8; &'#()*%+ ,'()-.-'( -/ *$$3-")5

!" #$$"% &'#()*%+ ,*( *. * =-@"( .-1" ,'(/-/./ '2 $*%./ 0-.! >-%-,!3". *()

$*%./ 0-.! B"#1*(( ,'()-.-'(5

!"#$%& '()

<( '%)"% .' .*D" ,*%" '2 .!" /#%2*," 0*."% -( /-1#3*.-'(/ 0-.! * %",.*(=#3*% /'-3

)'1*-(9 * @"%+ /-1$3" /#%2*," C'0 1')#3" -/ )"@"3'$")5

<( >*-/+E> .!" /#%2*," C'0 1')"3 -/ "8",#.") *2."% "*,! .-1" /."$5 <( *

3*."% @"%/-'( 1'%" $!+/-,*3 &*/") 1')"3 ,*( &" -(,3#)")9 2'% -(/.*(," * /'3@"% '2

.!" F*-(.7G"(*(. "H#*.-'(/ :/"" 2'% "8*1$3" I!'0 ! "#$9 JKLL;5 <( .!" $%"/"(.

%& 1')"3 -/ .!" /#%2*," 0*."% )-/.%-&#.") /' .!" %"/#3.-(= 0*."% 3"@"3 -/ "H#*3

2'% .!" 0!'3" /#%2*,"5 !" 0*."% '@"% * $%")"4(") 3"@"3 :)"."(.-'( /.'%*="; -/

%"1'@")5

!"!2 34*01-', ()*+,-'. /)+,010)+

M/ -( .!" "8-/.-(= '("7)-1"(/-'(*3 >*-/+ -. -/ $'//-&3" .' /-1#3*." .!" "8-/."(,"

'2 *( *H#-.*%) &"3'0 .!" 3'0"% &'#()*%+ '2 .!" /'-3 )'1*-(5 !" *H#-.*%) -/

)"/,%-&") &+ * .!-,D("//9 * !+)%*#3-, ,'()#,.-@-.+ *() .!" $%"//#%" $'."(.-*3 -(

.!" *H#-2"% N#/. &"3'0 .!" &'..'1 '2 .!" *H#-.*%)5

<( /.*%. '2 .!" -."%*.-'( 3''$9 -(/-)" "*,! .-1" /."$9 .!" C'0 *,%'// .!" 3'0"%

&'#()*%+ -/ "/.-1*.") #/-(= >*%,+O/ 3*0 0!"%" .!" $%"//#%" -( .!" &'#()*%+

,"33/ *() .!" $%'$"%.-"/ '2 .!" *H#-.*%) *%" %"H#-%")5 !" *H#-.*%) -/ .!"(

-1$3"1"(.") */ * B"#1*(( &'#()*%+ ,'()-.-'(5

!"!5 607& ,'-0+8

<. -/ $'//-&3" .' /-1#3*." * :#/"% )"4("); (#1&"% '2 .-3" )%*-(/5 -3" )%*-(/

%"1'@"/ 0*."% 0!"( .!" 1*.%-8 $%"//#%" $'."(.-*3 -( .!" /'-3 *%'#() .!" )%*-(

-/ $'/-.-@"5 !" *,.#*3 $%"//#%" -( * )%*-( $-$" )"$"()/ '( $'/-.-'( -( .!" )%*-(

/+/."19 .!" !+)%*#3-, %*)-#/9 ".,9 ".,5 M( '2."( *$$3-") /-1$3-4,*.-'( ,')"/ 2'%

@*%-*&3+ /*.#%*.") C'0 -/ .' %"=*%) .!" $%"//#%" -( .!" )%*-( $-$" */ *.1'/$!"%-,5

JP

22

Page 23: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"# $!" %&'( '# $!" )*+'# ,&'#$ '% -#%+$-*+$") .ψ < 0/ $!" %&(-$'&# 0&**"%,&#)%$& $!" %&(-$'&# 1&* +# -#)*+'#") %&'(2 31 $!" %&'( '% %+$-*+$") .ψ > 0/ $!" )*+'#%*"4&5"% 6+$"* 1*&4 $!" %&'( 4+$*'7 !"#0" ψ = 023# $!" #-4"*'0+( 4&)"(8 $!" )*+'# ,'," '% )"%0*'9") +% + ,&'#$2 :!" )*+'#

,&'#$% %!+(( 9" ,(+0") '# $!" '#$"*'&* &1 + 0"(( +#) 0+##&$ 9" ,(+0") +$ 0"(( ");"%2

<&* &9$+'#'#; + #-4"*'0+( %$+9(" %&(-$'&# '$ '% '# $!" 9";'##'#; &1 + #"6

'$"*+$'&# '# $!" $'4" %$", $"%$") '1 $!" 4"+# 5+(-" &1 $!" 4+$*'7 ,*"%%-*" '# $!"

)*+'# 0"(( +#) '$% "+%$"*# +#) 6"%$"*# #"';!9&*% .'1 $!"= "7'%$%/ "70"")% >2 31

$!" 4"+# 5+(-" '% ,&%'$'5" $!" ,*"%%-*" '# $!" )*+'# 0"(( '% 1&*0") $& ?"*&2 @1$"*

"+0! $'4" %$", + 4+%% 9+(+#0" 1&* "+0! &1 $!" )*+'# 0"((% '% 4+)" $& 0+(0-(+$"

$!" +4&-#$ &1 )*+'#") 6+$"*2

:"%$ %'4-(+$'&#% %!&6 $!+$ $!" 0&)" 9&$! '% +9(" $& $-*# &# $!" )*+'# 6!"#

$!" %&'( '% ;"$$'#; 6"$$"* +#) $-*# &1 $!" )*+'# 6!"# $!" %&'( '% ;"$$'#; )*'"*2

<';-*" A2B %!&6% $!" *"%-($% 1*&4 + %'4-(+$'&# 6'$! +# +C-'$+*) 9&-#)+*= 0&#D

)'$'&# +#) + )*+'#2 :!" -,,"* 9&-#)+*= !+% + #& E-7 0&#)'$'&#8 $!-% $!" &#(=

%-,,(= &1 6+$"* '% $!*&-;! $!" +C-'$+*)2 @% '$ 0+# 9" &9%"*5")8 $!" 4+$*'7

,*"%%-*" ,&$"#$'+( '# $!" )*+'# '% >2

<';-*" A2BF G+$*'7 ,*"%%-*" ,&$"#$'+( '# + )*+'#") %&'(2 :!" )*+'# '% '#)'0+$")

6'$! + )&$2 :!" (&6"* 9&-#)+*= '% 1&*4") 9= +# +C-'$+*) 0&#)'$'&#2

AH

23

Page 24: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"!# $%&' &%%&()*&+,

!"!- .*/%)*&+, 012/3/

!"#$%&' ()*+,- ./012%3/0 4&5 $4/ 6#$2%7 82/00"2/ 8&$/'$%#9 %' # :%;/' 1/99

./8/'.0 &' $4/ 6#$2%7 82/00"2/ 8&$/'$%#9 %' $4/ '/%:43&2%': 1/990* <= #00/639%':

/!"#$%&' ()*+,- >&2 i = 1, 2 · · ·N ? $4/ 82&39/6 1#' 3/ 52%$$/' #0 # &2.%'#2=

.%@/2/'$%#9 /!"#$%&' (AB - &' $4/ >&26C

Qdθ

dt= E(ψ)ψ + F(ψ) ()*DE-

54/2/ Q %0 # .%#:&'#9 6#$2%7 5%$4 Q(i, i) = |Qi| #'. θ

= θ

(ψ)* E(ψ)ψ %0

$4/ #00/639= &> Dij #'. DDij′ #'. Gij ? GD

ij′ ? BNij′ #'. Si #2/ #00/639/. %' F(ψ)*

F4/ /!"#$%&' %0 0&9;/. %' $4/ $%6/ .&6#%' "0%': $4/ 3#1G5#2. "9/2 6/$4&.C

Qθn+1,m+1 − θn

∆t= E(ψn+1,m)ψn+1,m + F(ψn+1,m) ()*DH-

I' &2./2 $& :/$ 2%. &> θ

#$ %$/2#$%&' 0$/8 m + 1? $4/ 6%7/. >&26"9#$%&' 3=J/9%# ! "#$ ()HHK- %0 #889%/.* I' $4/ 6%7/. >&26"9#$%&'? $4/ 5#$/2 1&'$/'$ #$

$%6/ 0$/8 n+1 #'. %$/2#$%&' 0$/8 m+1 %0 #882&7%6#$/. 3= # F#=9&2 /78#'0%&'C

θn+1,m+1

= θn+1,m

+dθ

dψ|n+1,m (ψn+1,m+1 − ψn+1,m)

= θn+1,m

+ Cn+1,m(ψn+1,m+1 − ψn+1,m)

()*LK-

54/2/ C = ∂θ

/∂ψ %0 $4/ 08/1%M1 5#$/2 1#8#1%$= >"'1$%&'* F4/ $%6/ ./2%;#$%;/

&> θ

1#' $4/' 3/ #882&7%6#$/. #0C

∂θ

∂t≈

θn+1,m+1

− θn

∆t=

θn+1,m+1

− θn+1,m

∆t+

θn+1,m

− θn

∆t

≈ Cn+1,m ψn+1,m+1 − ψn+1,m

∆t+

θn+1,m

− θn

∆t

()*L)-

F4"0? $4/ %$/2#$%;/ 014/6/ %0

(

1

∆tQC(ψn+1,m) − E(ψn+1,m)

)

ψn+1,m+1 =

F(ψn+1,m) +1

∆tQC(ψn+1,m)ψn+1,m +

1

∆tQ

(

θn − θn+1,m)

()*L+-

54/2/ C %0 # .%#:&'#9 6#$2%7 5%$4 C(i, i) = Ci*

I' $4/ NOFPO<Q82&$&$=8/ %$ %0 8&00%39/ $& 14&&0/ 0%6"9#$%&'0 5%$4 # 1&'0$#'$9=

&2 .='#6%1#99= 0%R/ &> $4/ $%6/ 0$/80? ∆t* S&2 $4/ 9#0$ 14&%1/? $4/ 0%R/ &> ∆t./8/'.0 &' 4&5 .%T1"9$ %$ %0 $& &3$#%' # 0&9"$%&'* O 82&1/."2/ 3#0/. &' 0#6/

82%'1%89/0 %0 ./012%3/. %' ./$#%9 %' N&99/2"8 (+KK)-* I' B#%0=+B $4/ 1"22/'$

B#%0= 6/$4&. 5%99 3/ #889%/.*

)L

24

Page 25: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"! # $%&'() *+,-&(+. &/01.(2-/

! "#$ %&'"'"(%$) *'& +',-.!/ "#$ ,0&/$ 10"&.2 +(+"$1 '* "#$ "(%$ Ax = b 3+$$

$450".'! 36789::) "#$ ;<=><? @0AB+,0+# '%$&0"'& 30,+' A0,,$C ,$*"C.-.+.'!: .+

5+$C7 D'& C$+A&.%".'! '* "#$ 0%%,.$C +%0&+$ 10"&.2 +',-$& .+ &$*$&$$C "' ;',,$&5%

39EE6:7

!"! 345'%-,(0 6'+6/'&(/*

! "#$ F0.+(9F ." +#0,, @$ %'++.@,$ "' A#''+$ @$"G$$! "#$ $2.+".!/ 1'C$,+ *'& "#$

+'., #(C&05,.A %&'%$&".$+ .! F0.+(7 ! "#$ %&'"'"(%$) "#$ &$"$!".'! A#0&0A"$&.+".A+

0&$ C$+A&.@$C G."# "#$ 1'C$, @( -0! H$!5A#"$! 36IJE:K

θ

=

θr + θs−θr

[1+|αψ|n]m *'& ψ < 0

θs *'& ψ ≥ 03678L:

G#$&$ α) n 0!C m 0&$ $1%.&.A0, %0&01$"$&+) θs 0!C θr 0&$ "#$ +0"5&0"$C 0!C

"#$ &$+.C50, G0"$& A'!"$!") &$+%$A".-$,(7 ?( A'1@.!0".'! G."# "#$ #(C&05,.A

A'!C5A".-."( 1'C$, @( ;50,$1 36IMN: 0!C A#''+.!/ m = 1−1/n) "#$ #(C&05,.A

A'!C5A".-."( A0! @$ A0,A5,0"$C 0+

K = KsS1/2e [1 − (1 − S1/m

e )m]2 3678O:

G#$&$ Ks .+ "#$ #(C&05,.A A'!C5A".-."( 0" +0"5&0".'! 0!C Se .+ "#$ $P$A".-$

+0"5&0".'! C$Q!$C 0+

Se =θ

− θr

θs − θr36788:

=#$ &$"$!".'! 1'C$, @( -0! H$!5A#"$! #0+ @$$! 0C0%"$C "' 0 ,0&/$ A,0++ '*

+'.,+7

!" #$%&'()*&+,

=#$ DR;SA'C$ .+ -$&.Q$C @( A'1%0&.!/ +',5".'!+ '@"0.!$C @( DR; G."# 450+.S

0!0,(".A0, +',5".'!+ *'& '!$SC.1$!+.'!0, .!Q,"&0".'! @( T#.,.%7

!7! 8.9,&'%&(+. $+5/, +: ;1(,(6

T#.,.% 36I8M@: +#'G$C "#0" "#$ .!Q,"&0".'! C$%"# 0+ *5!A".'! '* ".1$ 0!C +0"5S

&0".'! A0! @$ G&.""$! 0+ 0 %'G$& +$&.$+ .! t1

27 =#$ A'$UA.$!"+ 0&$ "#$! *5!A".'!+

'* +'., G0"$& A'!"$!") θ

7 D&'1 "#$ $2%&$++.'! *'& "#$ .!Q,"&0".'! C$%"#) 0+ *5!AS

".'! '* G0"$& A'!"$!" 0!C ".1$) ." .+ &$,0".-$,( $0+( "' C$&.-$ "#0" "#$ A515,0".-$

.!Q,"&0".'!) 0,+' A0! @$ G&.""$! 0+ 0 %'G$& +$&.$+ .! t1

27 =#$ 0++51%".'!+ *'& "#$

"#$'&() .+ 0 '!$SC.1$!+.'!0, -$&".A0, V'G .!"' 0 #'1'/$!'5+ +'., +$1.S.!Q!."$

+'., A',51!) .!.".0,,( G."# 5!.*'&1 G0"$& A'!"$!"7 =#$ A515,0".-$ .!Q,"&0".'! .+

$2%&$++$C 0+

I =

+∞∑

n=1

Antn2

3678N:

6N

25

Page 26: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" A1 = S $% &!" '(&") #"("#""* %'#+&$,$&- .% *"/)"* $) 0!$1$+ 2345467 8!"

9'":9$")&% .#" (';)* <- %'1,$)= . %"& '( %;99"%%$," $)&"=#'>*$?"#")&$.1 "@;.&$')%7

A)" *#. <.9B '( &!" +' "# %"#$"% &!"'#- $% &!.& &!" &!"'#- ')1- *"%9#$<"% &!"

$)/1&#.&$') +#'9"%% "11 ('# %!'#& &' $)&"#C"*$.&" &$C"%7 8!" +' "# %"#$"% $%

D+#.9&$9.1 9'),"#=")&D ('# t < t !"#

7 E!"#" t !"#

$% &!" 9!.#.9&"#$%&$9 &$C" '(

&!" $)/1&#.&$') +#'9"%%

t !"#

=

(

S

K0 − Ki

)2

237FG6

!"#" Ki = K(θi) .)* K0 = K(θ0) $% &!" !-*#.;1$9 9')*;9&$,$&- 9'##"%+')*$)=&' &!" $)$&$.1 .&"# 9')&")&H θi .)* &!" .&"# 9')&")& .& &!" %'$1 %;#(.9"H θ07 I'#

+')*"* 9')*$&$')% .& &!" %'$1 %;#(.9" " !.," K0 = Ks7

8!" %'$1 +.#.C"&#$J.&$')H !$9! $% .++1$"* ('# &!" &"%& %$C;1.&$')%H $% &!" K7L7

%$1& 1'.C 2,.) K");9!&")H 34MN6 !"#" Ks = 4.96 9CO*.-H θs = 0.396 9C3/9C3H

θr = 0.131 9C3/9C3H α = 0.00423 9C−1

.)* n = 2.067

P 9')%&.)& %$J" '( ∆tQ 3O5N *.- !.% <"") .++1$"* $) &!" IRS &"%& %$C;1.>

&$')%7 I'# .11 %$C;1.&$')% &!" $)$&$.1 9')*$&$') $% hiQ>TNN 9CH 9'##"%+')*$)= &'

θi = 0.332 9C3/9C3$% 9!'%")7

!"#$%&' (&''$)*+,!&- $).'#"&#$/)

U)$&$.11-H $& .% %!' ) &!.& &!" +' "# %"#$"% %'1;&$') 9.) <" .++1$"* ('# )')>

%.&;#.&"* '# V;%& %.&;#.&"* 9')*$&$')% .& &!" %'$1 %;#(.9" 2%"" 0!$1$+H 34FFH

34FG<H.67 0!$1$+ 234FM6 1.&"# "W+.)*"* &!" &!"'#- &' 9',"# +')*$)= %$&;.>

&$')% $&! 9')%&.)& +'%$&$," +#"%%;#" .& &!" %'$1 %;#(.9"7 X.&"# $& .% %!' )

2S'11"#;+ .)* Y.)%")H TNNG6 &!.& &!" +' "# %"#$"% %'1;&$') .1%' 9.) <" .+>

+1$"* ('# . (.11$)=>!".* 9')*$&$')H !"#" &!" +')*$)= *"+&! $% *"+")*")& ') &!"

.C';)& '( $)/1&#.&"* .&"#7 8!" +#"%%;#" .& &!" %'$1 %;#(.9" $% &!")

H = H0 − I 237FM6

!"#" H0QTN 9C $% &!" $)$&$.1 +')*$)= *"+&!7

U) &!" IRS %$C;1.&$')%H <'&! &!" ,"#&$9.1 .)* !'#$J')&.1 *$%9#"&$%.&$')H ∆z =∆x $% 3 9C7 8!" 1' "# <';)*.#- .% +1.9"* .& z = 600 9C $&! . (#"" *#.$).="

2=#.,$&- Z' 6 9')*$&$')7 I'# &!" %9").#$' $% t !"#

Q[7[\ *.-% .)* &!" &$C" .&

!$9! &!" +')* "C+&$"%H tp =T75NTT *.-% $% 9'C+;&"* <- .++1-$)= &!" $&"#.&$')+#'9"*;#" .% +#'+'%"* $) S'11"#;+ .)* Y.)%") 2TNNG67 U) IRS>%$C;1.&$')H &!"

+')* "C+&$"% .& .++#'W$C.&"1- t =T7FM[[ *.-%7 U7"7 tp $% .++#'W$C.&"1- N7G]!$=!"# ('# &!" +' "# %"#$"% %'1;&$') &!.) ('# &!" %$C$1.# IRS #"%;1&% '<&.$)"*

$&! . #.&!"# #';=! *$%9#"&$J.&$') $) &$C"7 S$)'# "##'#% 9.) <" "W+"9&"* $) &!"

+' "# %"#$"% %'1;&$') .% ')1- &!" /#%& \ &"#C% .#" 9.19;1.&"*7 I'# 9')%&.)&>!".*

%$C;1.&$') &!" /#%& 5 &"#C% .#" 9.19;1.&"*7 0!$1$+ 234FG<6 (';)* &!.& )'#C.11-

')1- /#%& & ' '# &!#"" &"#C% .#" )"9"%%.#- ('# . ('# +#.9&$9.1 ;%" %;:9$")& 9'##"9&

%'1;&$')%7

3G

26

Page 27: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

θ [cm3/cm

3]

Philip

FVM

!"#$% &'() *+,-./!0,- ,+1 23 45-#/!5+ 65$ 7%$/!0,- 6,--!+" 8%,1 !+9-/$,/!5+'

:8% 45-#/!5+ !4 485;+ 65$ t = 1/5, 2/5, 3/5, 4/5 ,+1 1 · t

'

<+ 9"#$% &'(= /8% ;%//!+" >$59-%4 ,4 0,-0#-,/%1 ?. ,>>-.!+" 23 ,+1 /8%

>5;%$ 4%$!%4 /8%5$. ,$% 485;+' :8% ;%//!+" >$59-%4 ,$% 485;+ 65$ t = 1/5, 2/5, 3/5, 4/5,+1 1 · t

' *4 !/ 0,+ ?% 5?4%$7%1= /8% 45-#/!5+4 ,$% ,-@54/ !1%+/!0,- %A0%>/ 65$

t = t

BC'DECC 1,.4F ;8%$% /8% %G%0/4 56 /8% 4-!"8/-. %,$-!%$ %@>/.!+" >5+1%1

;,/%$ !+ /8% 23 4!@#-,/!5+ !+4/,+/-. %G%0/4 /8% ;,/%$ 05+/%+/ >$59-%4'

!"#$!%&'( )!%*&'%&+,-'. #%/(&"'&#!%

5$ ,-45 !+4#$!+" /8,/ 85$!H5+/,- I5;4 ,$% 4!@#-,/%1 05$$%0/-. , 4!@#-,/!5+ ;!/8

, 85$!H5+/,- 5$!%+/%1 05-#@+ !4 @,1%' 5$ /8% 23 4!@#-,/!5+= /8% 05-#@+

8,4 8%!"8/ 56 & 0%-- ,+1 , ;!1/8 56 JEE 0%--4 ;!/8 ∆x = ∆z =& 0@' :8% -%6/?5#+1,$. 05+1!/!5+ !4 H =CE 0@ ,+1 /8% !+!/!,- 05+1!/!5+ !4 hn =KCEE 0@'2%$/!0,- 05+4/,+/K8%,1 !+9-/$,/!5+ 0,+ ,+,-./!0,--. ?% 0,-0#-,/%1 ,4)

I = A1

(t) B&'LMF

;8%$% A1 !4 !1%+/!0,- /5 /8% A1 0,-0#-,/%1 65$ 7%$/!0,- !+9-/$,/!5+ ;!/8 05+4/,+/K

8%,1 B,+1 6,--!+"K8%,1F 05+1!/!5+4' N5+/$,$. /5 7%$/!0,- !+9-/$,/!5+= %O#,/!5+

B&'LMF !4 ,>>-!0,?-% ,-45 65$ -5+"%$ >%$!514' !"#$% &'J 485;4 /8% ;,/%$ 05+/%+/

>$59-%4 ,/ t = 1/5, 2/5, 3/5, 4/5 ,+1 1 · t!"#$

' ,4 0,-0#-,/%1 ;!/8 23 ,+1 /8%

>5;%$ 4%$!%4 /8%5$.' *4 !/ 0,+ ?% 4%%+ ,$% /8% 45-#/!5+4 ,-@54/ !1%+/!0,-'

&J

27

Page 28: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0 50 100 150 200 250 300 350 400 450 5000.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

x [cm]

Philp

FVM

!"#$% &'() *+,-./!0,- ,+1 23 45-#/!5+ 65$ 75$!85+/,- !+9-/$,/!5+' :7% 45-#;

/!5+ !4 475<+ 65$ t = 1/5, 2/5, 3/5, 4/5 ,+1 1 · t !"#

'

!"!# $%&'()*+ ),-.'*-'/0%*1 (-2+'&*'(,- (- * 3(1% ),+45-

=+/!- +5< ,-- /7% >%$!90,/!5+ 4!?#-,/!5+4 ,$% ?,1% 65$ , "$!1 05+4!4/!+" 56 5+-.

& 0%-- !+ /7% 1!$%0/!5+ @%$@%+1!0#-,$ /5 /7% A5< 1!$%0/!5+' *-45 /7% 4!8% 56 /7%

0%--4 <,4 %B#,-' C+ /7% <!1% 05-#?+ %D@%$!?%+/ /7% 0%-- 7%!"7/ >,$!%4 <!/7 /7%

1%@/7' :7% 45!- 05-#?+ 05+4!4/4 56 E 75$!85+4 F*G H ,+1 IJ' :7% *;75$!85+ !4

KL 0? 1%@/7 <!/7 ∆z =& 0?G /7% H;75$!85+ !4 ML 0? 1%@/7 <!/7 ∆z =E 0?G ,+1/7% I;75$!85+ !4 NOO 0? 1%@/7 <!/7 ∆z =( 0?' :7% 45!- 05-#?+ 7,>% , <!1/756 KOO 0? <!/7 ∆x =KO 0?' !"#$% &'P 475<4 /7% ?%47 ,+1 9"#$% &'&O 475<4 ,#@@%$ @,$/ 56 /7% ?%47'

C+ /7% 4!?#-,/!5+ !4 /7% @5+1!+" 1%@/7 05+4/,+/-. H = 20 0?' !"#$% &'&&475<4 /7% <,/%$ 05+/%+/ ,6/%$ & 1,.' *4 !/ 0,+ Q% 5Q4%$>%1G /7% <,/%$ 15 +5/

>,$. <!/7 /7% D;055$1!+,/% 65$ , "!>%+ 1%@/7G !'%' /7%$% !4 +5 !+1!0,/!5+ 56

#+!+/%+1%1 %D07,+"% 56 <,/%$ Q%/<%%+ !+/%$+,- >%$/!0,- 0%-- Q5#+1,$!%4' *-45

7%$% F+5/ 475<+J 05?@,$!45+4 <!/7 , @5<%$ 4%$!%4 45-#/!5+ 475<+ 9+% ,"$%%?%+/

!"!6 7'0%& .(54+*'(,-.

*-45 , 4!?#-,/!5+ <!/7 , R%#?,++ FA#DJ 05+1!/!5+ ,/ /7% #@@%$ Q5#+1,$. ,+1

, 4!?#-,/!5+ <!/7 , +5+;8%$5 4!+S /%$? 7,>% Q%%+ 05+1#0/%1' :7% 4!?#-,/!5+4

475<%1 ?,44;Q,-,+0%4 <!/7 +%"-!"!Q-% %$$5$4'

&P

28

Page 29: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$% &'() *%+, -.$ /,% 0!1% 2.3#45 +!4#36/!.5'

!"#$% &'&7) 899%$ 3%-/ 96$/ .- 4%+, #+%1 -.$ /,% 0!1% 2.3#45 +!4#36/!.5'

:7

29

Page 30: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$% &'&&( )*+%$ ,!-+$!.#+!/0 *1+%$ & ,*2 !0 +3% 4!,% 5/6#70 -!7#6*+!/0'

8&

30

Page 31: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$%& '

!"#$% &!'%&%($

!" #$%&'() &'*+(, *+')-.%+*

!" #$%&"'(')* +,$ %!-.+$ /!0$/$)+1 +,$ %!'- /2+"'3 2% %!-0$# (4 5'&,2"#6 $7.28

+'!) 9$7.2+'!) 9:;<== +,$ >2+$" '% #'0'#$# ')+! +>! #!/2')%1 2 ?"'/2"4 2)# 2

%$&!)#2"4 #!/2')@

θ

= θ!

+ θ"

9A;:=

>,$"$ θ!

2)# θ"

2"$ +,$ >2+$" &!)+$)+ ') +,$ ?"'/2"4 2)# +,$ %$&!)#2"4 #!/2')1

"$%?$&+'0$-4; B,$ ?"'/2"4 ?2"+ "$?"$%$)+')* +,$ C!> ') +,$ %/2--$%+ ?!"$% '%

2->24% D--$# D"%+; E,$) +,$ /2+"'3 >2+$" &!)+$)+1 θ

$3&$$#% 2 &$"+2') -'/'+1

θ#$

+,$ %$&!)#2"4 #!/2') %+2"+ +! ($ D--$#1 ';$ θ#$

'% /23'/./ 02-.$ !F θ!

;

B,.%1 +,$ ?"'/2"4 ?2"+ !F θ

&2) ($ $3?"$%%$# 2%

θ!

= min(θ

, θ#$

) 9A;A=

B,$ %$&!)#2"4 #!/2') "$?"$%$)+')* +,$ C!> ') +,$ -2"*$%+ ?!"$% '% $/?+'$# D"%+;

B,$ %$&!)#2"4 ?2"+ !F θ

&2) +,$) $3?"$%%$# 2%

θ"

= max(0, θ

− θ#$

) 9A;G=

B,$ C.3$% 2% &!/?.+$# (4 H2"&4% $7.2+'!) 2"$ #'0'#$# ')+! +>!I 2 ?2"+ "$?"$8

%$)+')* +,$ C.3$% ') +,$ ?"'/2"4 #!/2')1 q!

2)# 2 ?2"+ "$?"$%$)+')* +,$ C.3$%

') +,$ %$&!)#2"4 #!/2')1 q"

@

q

= q!

+ q"

9A;J=

K'/'-2"-4 '% +,$ ,4#"2.-'& &!)#.&+'0'+4 /2+"'3 #'0'#$# ')+! 2 ?"'/2"4 2)# 2

%$&!)#2"4 ?2"+;

K

= K!

+ K"

9A;L=

>,$"$ K!

&2) ($ &2-&.-2+$#

K!

= K(θ!

) 9A;M=

AA

31

Page 32: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"! #$ %& '(" ()*+,#- . ./%*#.' 0 ') 1#%.' /% ,$ #$"* 1/+ '(" 2,'"+ 3/0"3"%'

./34#',' /%$5 6#' 2 '( θ

%$'",* /1 θ! 7(#$ K!

.,% 6" .,-.#-,'"* ,$8

K!

=

0 1/+ θ!

= 0

K(θ"

) − K(θ#$"

) 1/+ θ!

≥ 09:!;<

=$ , ./%$">#"%." /1 ?,+.)@$ ">#,' /% .,% '(" A#B"$ q

,%* q!

6" .,-.#-,'"* ,$

q

=‖K

‖2

‖K‖2q 9:!C<

q!

=‖K

!

‖2

‖K‖2q 9:!D<

7(" ,$$/. ,'"* ?,+.) 0"-/. ') .,% 6" .,-.#-,'"* ,$ v

= q

,%* v!

= q!

/θ!

!

E' $(/#-* 6" +"3,+F"* '(,' 2("% '("+" $ 2,'"+ % '(" $"./%*,+) */3, % $ '("

,$$/. ,'"* 0"-/. ')5 v!

/1'"% ./%$ *"+,6-) -,+&"+ '(,% v

!

7(" $/-#'" ./%."%'+,' /% $ $ 3 -,+-) * 0 *"* %'/ , 4,+' ,$$/. ,'"* 2 '( '("

4+ 3,+) 2,'"+5 C

,%* , 4,+' ,$$/. ,'"* 2 '( '(" $"./%*,+) 2,'"+5 C!

! 7("

"B.(,%&" /1 $/-#'"$ 6"'2""% '(" 4+ 3,+) ,%* '(" $"./%*,+) */3, % $ *+ 0"%

6) '(" ./%."%'+,' /% * G"+"%."$! 7(" '+,%$1"+ /1 $/-#'"$ 1+/3 '(" 4+ 3,+) */H

3, % '/ '(" $"./%*,+) */3, % .,% 6" +"&,+*"* ,$ , $ %F % '(" 4+ 3,+) */3, %5

Γ% →%!

/+ , $/#+." % '(" $"./%*,+) */3, %5 −Γ%!→%

Γ% →%!

= −Γ%!→%

=

α →!

(C

− C!

) 1/+ C

≥ C!

α!→

(C

− C!

) 1/+ C

< C!

9:!IJ<

7(" +,'"$ 1/+ 3/0 %& $/-#'"$ 1+/3 C

'/ C!

5 α →!

$ %/' %"."$$,+ -) ">#,- '/

'(" +,'" 1/+ 3/0 %& $/-#'" 1+/3 C!

'/ C

5 α!→

!

7(" 3,$$ 6,-,%." 1/+ '(" $/-#'" .,% 6" "B4+"$$"* ,$8

∂(ρbCa)

∂t+

∂(θ

C

)

∂t+

∂(θ!

C!

)

∂t+

∂(θ"&

C"&

)

∂t= −∇ · j

−∇ · j!

−∇ · j"&

− Γ%

9:!II<

2("+" ρb $ '(" $/ - 6#-F *"%$ ') ,%* Ca $ '(" ./%."%'+,' /% % '(" ,*$/+6"*

4(,$"! θ"&

$ '(" 0/-#3"'+ . 2,'"+ ./%'"%' % '(" 3,.+/4/+" */3, % ,%* C"&

$ '(" ./%."%'+,' /%! j

5 j!

,%* j"&

,+" '(" A#B"$ % '(" '(" 4+ 3,+)5 $"./%*,+)

,%* 3,.+/4/+/#$ */3, %! Γ%

$ '(" %"' $ %F '"+3 /1 '(" $/-#'"!

! "#$%&' (#)'('*& +* &,' -.+(/.0 1#(/+*2 31)'4&+#*5

1+6-'.6+#* '7%/&+#*

7(+"" 4()$ .,- 4+/."$$"$ .,% ./%'+ 6#'" '/ 3/0"3"%' /1 $/-#'"$ % '(" 4+ 3,+)

4,+' /1 '(" $/ - 2,'"+8

:K

32

Page 33: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

• !"#$%&'(

• )'*#$+* , !&-+.&'(

• /0!,'!0( )&$ !&.1#,.&'( 2'(*0 &( $'((#$%&'( 3&%/ !"#$%&'(4

5!"#$%&'( 2', 6+*7 8'34 &. %/# 1,'$#.. 3/#,# %/# !&..'*"#! $/#)&$ * )'"#.

3&%/ %/# .'&* .'*+%&'(9 :/# 8+; '< .'*+%# $ ( 6# !#.$,&6#! .=

j

= q

C

2>9?>4

:/# @'*#$+* , !&-+.&'( &. ,#.+*% '< %/# A,'3(& ( )'%&'( 2, (!') 3 *74 '< %/#

)'*#$+*#.9 5 1,'$#.. ,#* %#! %' %/# )'"#)#(% '< %/# 3 %#, &. %/# /0!,'!0( )&$

!&.1#,.&'(B 3/&$/ &. $'(.#C+#($# '< %/# < $% %/ % 8'3 &. ('% +(&<',)B 6#$ +.#

%/# 8'3 1 %/. )'"# ,'+(! '6.% $*#. (! &,B 6+% *.' 6#$ +.# '< " ,& %&'( &(

1',# .&D# (! %/# ('(E+(&<',) "#*'$&%0 !&.%,&6+%&'( &(.&!# %/# 1',#.9 @ %/#E

) %&$ **0 %/# /0!,'!0( )&$ * !&.1#,.&'( 1,'$#.. $ ( 6# !#.$,&6#! . !&-+.&'(

1,'$#..9 :/# )'"#)#(% 60 !&-+.&'( *&7# 1,'$#..#. $ ( 6# #;1,#..#! .=

j

= −θ

D∇C

, D =

[

Dxx Dxz

Dzx Dzz

]

2>9?F4

3/#,# D &. %/# !&.1#,.&'( %#(.', 2', ) %,&;49 :/# $'(.#C+#($# &. %/ % %/#

.'*+%# %,&#. %' )'"# <,') ,# . 3&%/ /&G/ $'($#(%, %&'( %' ,# . 3&%/ *'3#,

$'($#(%, %&'(9 :/# #*#)#(%. &( D ,# '<%#( $ *$+* %#! .=

Dxx = αL

v2 ,x

|v

|+ αT

v2 ,z

|v

|+ D∗

Dzz = αL

v2 ,z

|v

|+ αT

v2 ,x

|v

|+ D∗

Dxz = Dzx = (αL − αT )v ,xv

,z

|v

|

2>9?H4

3/#,# D∗&. %/# )'*#$+* , !&-+.&'(9 :/# ,#.% '< %/# %#,). ,# ,&.&(G <,') %/#

/0!,'!0( )&$ !&.1#,.&'(9 αL &. $ **#! %/# *'(G&%+!&( * !&.1#,.&'( (! αT %/#

%, (."#,. * !&.1#,.&'(9 :/# $ *$+* %&'( '< %/# !&.1#,.&'( %#(.', &. 6 .#! '( v

(! ('% v = q/θ9

:/# )'*#$+* , !&-+.&'( $ ( 6# $ *$+* %#! .=

D∗ = τD0 2>9?I4

3/#,# D0 &. %/# !&-+.&'( $'#J$&#(% <', %/# .'*+%# &( <,## 3 %#, (! τ &. %/#

%',%+'.&%0 < $%',9 5. ( #; )1*# @&**&(G%'( (! K+&,7 2?LM?4 .+GG#.%#!=

τ =θ7/3

θs2>9?M4

5*.' /#,#B %/# " *+# &. 6 .#! '( θ

(! ('% %/# %/# %'% * ) %,&; 3 %#, $'(%#(%

θ!

9 N< 3# ,# +.&(G #C+ %&'( 2>9?M4 (! #;1,#..&(G %/# )# ( "#*'$&%0 &( %/#

>H

33

Page 34: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$ %$$!&'%(#) *'(+ $!,-(# .!/#.#0( 12 q

%0) θ

3 (+# #,#.#0($ !4 θ

D &%0

1# #5 "#$$#) %$6

θ

Dxx = αL

q2 ,x

|q

|+ αT

q2 ,z

|q

|+ D0

θ10/3

θs

θ

Dzz = αL

q2 ,z

|q

|+ αT

q2 ,x

|q

|+ D0

θ10/3

θs

θ

Dxz = θ

Dzx = (αL − αT )q ,xq

,z

|q

|

789:;<

=+# $!,-(# .!/#.#0( &%0 1# #5 "#$$#) %$ % $-. !4 (+# %)/#&('!0 %0) (+# )'4>

4-$'!0 "!&#$$6

j

= θ

C

v

− θ

D∇C

= C

q

− θ

D∇C

789:?<

=+# .%$$ 1%,%0&# !4 )'$$!,/#) $!,-(#$ '0 (+# "'.%"2 )!.%'0 2'#,)$6

∂(θ

C

)

∂t= −∇ · j

− Γ!

789:@<

*+#"# Γ!

'$ (+# $'0A (#". *+'&+ "#.!/# $!,-(#$ 4"!. (+# "'.%"2 *%(#" )!>

.%'09 =+# "#.!/#) 7!" %))#)< $!,-(# &%0 1# %1$!"1#)3 .!/#) (! (+# $#&!0)%"2

)!.%'0 7Γ!

%$ #5 "#$$#) 12 #B-%('!0 789:C< !" (+# .%&"! !"# )!.%'0 !" 1#

$-1D#&( (! &+#.'&%, !" 1'!,!E'&%, "#)-&('!09

=+# 1!-0)%"2 &!0)'('!0$ (! (+# #B-%('!0 $ #&'F#$ % &!.1'0%('!0 !4 C

%0)

'($ )#"'/%('/# !0 (+# 1!-0)%"29 G,$! +#"#3 (+# !"!#$%&' 1!-0)%"2 &!0)'('!0

7$ #&'F#) &!0&#0("%('!0< %0) (+# (&)*+,, -.),/+"0 #.,/!'!.,3 *+#"# (+# H-5

(+"!-E+ (+# 1!-0)%"2 '$ $ #&'F#)3 %"# &!..!09 =+# I'"'&+,#( 1!-0)%"2 &!0)'>

('!0 '$6

C

= C "#

7898C<

*+#"# C "#

'$ (+# "#)#$&"'1#) &!0&#0("%('!09 =+# J#-.%00 1!-0)%"2 &!0)'('!0

'$6

n · (C

q

− θ

D∇C

) = n · j

= j

7898:<

*+#"# j

'$ (+# $'K# !4 (+# H-53 !$'('/# 4!" !-(*%") H-59 G$ 1!-0)%"2 &!0)'>

('!0 4!" (+# '0E!'0E H!* j

= n ·q

C "#

= q

C "#

'$ !4(#0 -$#) *+#"# C "#

'$ (+#

&!0&#0("%('!0 !4 (+# H!*9 G$ ,!*#" 1!-0)%"2 &!0)'('!0 '$ j

= n · q

C

= q

C

!4(#0 -$#)9 L0 1!(+ &%$#$ '( '$ %$$-.#) (+%( (+# )'M-$'!0 &"!$$'0E (+# 1!")#" '$

K#"!9

N-..%"'K#)3 (+# "!1,#. (! 1# $!,/#) 4!" )#(#".'0%('!0 !4 (+# &!0&#0("%('!0

!4 $!,-(# '0 Ω '$6

θ

∂C

∂t + C

∂θ

∂t = −∇ · (C

q

− θ

D∇C

) − Γ!

'0 Ω

n · (C

q

− θ

D∇C

) = j

!0 ∂Ω1

C

= C "#

!0 ∂Ω2

78988<

8O

34

Page 35: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" ∂Ω1 $% &!" '(#& )* &!" +),-.(#/ $&! 0",1(-- 2)-.$&$)-3 (-. ∂Ω2 $% &!"

'(#& )* &!" +),-.(#/ $&! 4$#$2!5"& +),-.(#/ 2)-.$&$)-%6 75%) !"#" $& $% -)&

-"2"%%(#/ &!(& ∂Ω1 (-. ∂Ω23 #"%'"2&$8"5/3 (#" 2)!"#"-&6

!" #$%&'()*+ ,-+$.(-/

9!" +(%$2 '#$-2$'5"% +"!$-. &!" :-$&" 8)5,1" 1)."5$-; )* &!" %)5,&" &#(-%<

')#& (#" 8"#/ %$1$5(# &) &!" -,1"#$2(5 %)5,&$)- )* &!" (&"# 1)8"1"-& "=,(&$)-

>?$2!(#.%@ "=,(&$)-A6 B,& &!"#" (#" %)1" .$C"#"-2"%6 D-" )* &!" 1(E)# .$C"#<

"-2"% $% &!(& &!" (.8"2&$)- .$C,%$)- "=,(&$)- $% 2)-%$."#". (% 5$-"(# $-%$." "(2!

&$1"%&"'6 F6"6 &!" 2)"G2$"-&% $- &!" "=,(&$)- $- "(2! )* &!" &$1"%&"'% (#" $-."<

'"-."-& )* &!" 2)-2"-&#(&$)-% $- &!" 2,##"-& &$1"%&"'6 9!$% %$1'5$:2(&$)- 2(-

+" .)-" !"- &!" %$H" )* &!" %),#2"% (#" ."'"-."-& )-5/ )- &!" 2)-2"-&#(&$)-% $-

&!" '#"8$),% &$1%&"'6 I$1$5(# (#" (.%)#'&$)- (..". (% %$-JK%),#2" &"#16 9!,%

.$C"#"-& *#)1 &!" (&"# 1)8"1"-& %$1,5(&$)-3 &!" L$2(#. $&"#(&$)-% 5))' ,%".

$-%$." "(2! &$1"%&"' 2(- +" (8)$.".6

!"!# $%&'()(*&%(+, -.%/+01

9!"#" (#" )*&"- ( 5)& )* -,1"#$2(5 '#)+5"1% $-8)58". $&! &!" %)58$-; )* &!"

2)-8"2&$)- .$C,%$)- '#)+5"1 "%'"2$(55/ !"- &!" '#)+5"1% (#" .)1$-(&". +/

2)-8"2&$)-6 9!" -,1"#$2(5 %)5,&$)-% !(8" )*&"- ,-"M'"2&". )%2$55(&$)-% $- &!(&

%$&,(&$)-6 9!"#" !(8" +""- ."8"5)'". ( 5)& )* 1)#" )# 5"%% 2)1'5$2(&". 1"&!).%

&) #".,2" &!" '#)+5"1%6 9!#"" )* &!" 1"&!).% (#" !"#$%&' (%)*+#),*3 "#$%&'-),%

.)/ ")0,3 (-. #)'%"#%! $%. 1#)0,6

!"#$%&' (%)*+#),*

N!"- %&""' 2)-2"-&#(&$)- *#)-&% )22,#3 -,1"#$2(5 )%2$55(&$)-% 2(- #($%"6 7

1"&!). &) %&(+$5$H" &!" %/%&"1 $% &) (''5/ ,'%&#"(1 "$;!&$-; *)# &!" (.8"2&$8"

%)5,&" 1)8"1"-&6 O)# (.8"2&$8" &#(-%')#& +"& ""- & ) 2"55% $% &!" 2)-2"-&#(&$)-

(& &!" *(2" +"& ""- &!" 2"55% -)#1(55/ 2(52,5(&". (% &!" (8"#(;" 2)-2"-&#(&$)-

)* &!" & ) 2"55%6 O)# *,55/ ,'%&#"(1 "$;!&$-; $% &!" 2)-2"-&#(&$)- (& &!" 2"55

*(2" "=,(5 &) &!" ,'%&#"(1 2)-2"-&#(&$)-6

F- 4($%/P4 $& $% ')%%$+5" &) %"& ( '(#(1"&"#3 0 ≤ α ≤ 1 !"#" α = 1 2)##"<%')-.% &) ( *,55/ ,'%&#"(1 "$;!&$-; (-. α = 0.5 2)##"%')-.% &) %"&&$-; &!"2"55 *(2" 2)-2"-&#(&$)- &) &!" (8"#(;" 2)-2"-&#(&$)- )* &!" & ) 2"55%6 F& $% -)&

#"2)11"-.". &) (''5/ (- α < 0.56

-

&,. /

!

,0'1%$"

9!"#" (#" & ) .$C"#"-& -,1+"#% !$2! (#" $1')#&(-& *)# &!" %&(+$5$&/6 9!"

2%1-%# , '3%$ Q

L

= v!

∆x/D >P6PRA

PS

35

Page 36: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" v $% &!" '"()*$&+, ∆x $% &!" %-.*" $/*#"0"/& ./1 D $% &!" 1$23%$)/ *)"45

*$"/& 6$/*(31$/7 0)("*3(.# 1$23%$)/ ./1 !+1#)1+/.0$* 1$%-"#%$)/89 :!" !"#$%&

%"'()# $% 1";/"1 .%<

=

= v!

∆t/∆x 6>9>?8

:!")#"&$*.( %&.@$($&+ $/'"%&$7.&$)/% .#" #.&!"# *)0-($*.&"1, "%-"*$.((+ $/ . & ) )#

&!#""51$0"/%$)/.( %-.*" $&! !"&"#)7"/")3% %)$(9 A)%& )B &!" &!")#"&$*.( %&.@$(5

$&+ *)/%$1"#.&$)/% .#" 1)/" B)# )/"51$0"/%$)/.( C) $&! 3/$B)#0 '"()*$&+9 :!"

*(.%%$*.( *)/%&#.$/&% B)# %&.@$($&+ B)# &!" %&./1.#1 =#./D5E$*!)(%)/5F.("#D$/ 6G$5

/$&" H("0"/& A"&!)18 $% I

"

≤ 2 ./1 =

≤ 1, I"##)*!"& ./1 JK#)1 6LMMN89

O& *./ ".%$(+ @" *)/*(31"1 &!.& D""-$/7 &!" =)3#./& /30@"# () "# &!./ )/"

$% P3%& . Q3"%&$)/ )B %34*$"/&(+ %0.(( &$0"%&"-%9 J3& $% $& -)%%$@(" &) 0.D" .

0"%! !$*! 3/1"# .(( *$#*30%&./*"% -#"'"/&% &!.& &!" I"*("& /30@"# #.$%"% )'"#

>R9 :!" I"*("& /30@"# B)# &!" C) $/ &!" S51$#"*&$)/ $%<

(I"

)x =q!,x∆x

θ!

Dxx=

q!,x∆x

αLq ,xq

,x

|q| + αTq ,zq

,z

|q| + D0θ10/3

θs

<q!,x∆x

αTq ,xq

,x+q ,zq

,z

|q

|

=q!,x∆x

αT |q!

|≤

∆x

αT

6>9>T8

!"#" $& $% .%%30"1 &!.& αL ≥ αT 9 :!" %.0" -#)*"13#" *./ )B *)3#%" @" 3%"1

&) "'.(3.&" (I"

)z9 O& *./ &!"/ @" *)/*(31"1 &!.& &!" 0.S$030 I"*("& /30@"# $%

() "# &!./ ∆x/αT 9 OB &!" ()/7$&31$/.( 1$%-"#%$'$&+ $% T *0 ./1 &!" &#./%'"#%.( $%

LULV )B &!" ()/7$&31$/.( ./1 &!" 0.S$030 .(() "1 I

"

$% > *./ $& @" *)/*(31"1

&!.& &!" 0.S$030 %$1" ("/7&! )B &!" "("0"/&% %!.(( @" .--#)S$0.&"(+ L *09

:!$% $(( #"%3(& $/ . '"#+ ;/" 0"%!9

J"%$1"% &!" 3-%&#".0 "$7!&$/7 0"&!)1 $& $% -)%%$@(" &) *!))%" @"& ""/ > %&.5

@$($W$/7 0"&!)1%<

L9 O/&#)13*$/7 "S&#. 1$23%$)/ $/ &!" %&#".0($/" 1$#"*&$)/ %) I

"

=

≤ γ9 X!"#"γ $% &!" -"#B)#0./*" $/1"S9

>9 Y.#+$/7 &!" %$W" )B ∆t %) I"

=

≤ γ9

O& $% )B *)3#%" .(%) -)%%$@(" &) 1"%"("*& ./+ %&.@$($W$/7 0"&!)1%9 :!" (.%&

%&.@$($W$/7 0"&!)1 $% %&#.$7!& B)# .#1, @3& &!" ;#%& 1"%"#'"% $&% ) / %3@%"*&$)/<

!"#$%&'(# )'*+,'-(

G)# -#.*&$*.( %$&3.&$)/ .#" &!"#" )B&"/ %&.@$($&+ %) ()/7 I

"

=

≤ γ !"#" 2 ≤ γ ≤10 6I"##)*!"& ./1 JK#)1, LMMN8 !$*! 3/1"# .(( *$#*30%&./*"% $% ("%% #"%&#$*&$'"&!./ D""-$/7 @)&! I

"

≤ 2 ./1 =

≤ 19 γ $% *.(("1 &!" *)#+!#'$%,) -%.)/9

O/ &!" %&#".0($/" 1$23%$)/ $% .**)#1$/7 &) I"##)*!"& ./1 JK#)1 6LMMN8 .11"1

>Z

36

Page 37: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"# $%%&'&!($) )!(*&'+%&($) %& ,#- &!( '! ,-#.#(' '/$' 0

!

!"#$%$ &'%! ()% *)&+

$%, -%!.&!/",*% #,0%12 3)% "00#(#&,"4 4&,5#(60#,"4 0#$-%!$#&,7 αL #$ *"4*64"(%0

"$8

αL =

|v

|∆tγ − αL − D∗

|v

| , .&! αL + D∗

|v

| < |v

|∆tγ

0, .&! αL + D∗

|v

| ≥|v

|∆tγ

9:2:;<

!"#$%$!& !'(!(

3& #,'%$(#5"(% ()% $("=#4#(> &. ()% ,6/%!#*"4 /&0%4 #$ " $#/-4% $>$(%/ /&0%4%02

3)% $#(6"(#&, )%!% #$ " &,%+0#/%,$#&,"4 *&46/,7 )&!#?&,("4 *&46/, @#() $(%"0>+

$("(% @"(%! A&@ @#() -&!% '%4&*#(> v2 3)%!% #$ ,& $%*&,0"!> @"(%!7 θ"

()6$ v#

=v2 3)% 0#B6$#&,7 D 9=&() /&4%*64"! 0#B6$#&, ",0 )>0!&0>,"/#* 0#$-%!$#&,<

#$ 5#'%,2 C&! ()% -!%$%,( (%$( #$ ()% $&46(% ,&,+"0$&!-#,52 C&! " $*%,"!#& @#()

4#,%"! "0$&!-#,5 9*&,$(",( !%("!0"(#&, ."*(&!< ()% "0$&!-(#&, )"'% " $("=#4#?#,5

%B%*(7 ()6$ .&! 4#,%"! "0$&!-#,5 $&46(%$ ()% /&0%4 #$ %1-%*(%0 (& =% /&!% $("=4%2

3)% "0'%*(#&,+0#$-%!$#&, %D6"(#&, #, &,% 0#/%,$#&, *", =% @!#((%, "$8

∂C#

∂t= D

∂2C#

∂x2− v

∂C#

∂x9:2:E<

@)%!% v = q/θ2 3)% #,#(#"4 *&,0#(#&, #$ " ?%!& *&,*%,(!"(#&, #, ()% @)&4% *&46/,8

C#

(x, 0) = 0 9:2:F<

G( ()% 4%.( =&6,0"!> #$ ()% $&46(% A61 *&,$(",(2

(

−D∂C

#

∂x+ vC

#

)∣

x=0

= vC#$%

9:2:H<

3)% $&46(#&, *", ()%, "**&!0#,5 (& '", I%,6*)(%, ",0 G4'%$ 9JHF:< =%

@!#((%, "$8

CJ(x, t) =1

2C

#$%

erfc

[

x − vt

2(Dt)1/2

]

+

(

v2t

πD

)

exp

[

−(x − vt)2

4Dt

]

−1

2C

#$%

(1 +vx

D+

v2t

D) exp(vx/D) erfc

[

x + vt

2(Dt)1/2

] 9:2KL<

C&! ()% $#/64"(#&,$ #$ /"0% " @"(%! A&@ $#(6"(#&, @#() $(%"0> $("(% A&@

@#() ()% *)&$%, -&!% @"(%! '%4&*#(> v = 1 */M)&6!2 C#$%

#$ .&! ()% $#/-4#*#(>

*)&$%, (& J ",0 D = 0.05 */2M)&6!2 C&! ()% N"#$> $#/64"(#&,$ #$ ()% '#!(6"4

$&#4 *&46/, JL */ @#0% ",0 J */ )#5)2 O, ()% 0&/"#, #$ 5%,%!"(%0 " !%564"!

/%$) @#() JLL %D6"44> 4"!5% %4%/%,($7 %"*) @#() ∆x = 0.1 */2 P#() ∆t *)&$%,(& J )&6! "!%

!

= 10 ",0 Q

= 27 #2%2 Q

!

= 202 3)% ,6/%!#*"4 -"!"/%(%!7 ω#$ $%( (& JM:7 #2%2 " !",R+S#*)&4$&, $*)%/%2

T, U56!% :2J #$ ()% ","4>(#*"4 $&46(#&, *&/-"!%0 @#() ,6/%!#*"4 $&46(#&,$ @#()

",0 @#()&6( 6-$(!%"/ @%#5)(#,5 *&!!%$-&,0#,5 (& α = 1 ",0 α = 0.57 !%$-%*+(#'%4>2 V(!%"/4#,% 0#B6$#&, ",0 (#/%$(%- !%06*(#&, )"$ ,&( =%%, "--4#%02 G$ #(

:F

37

Page 38: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$ %#&$'($)* !'$ +,$ -.//0$& &./".1 !"+02 &3!00$' -,$" !4402."/ 54&+'$!3

-$./,+."/6 7,$ %"02 )'!-#! 8 &$$3& +% #$ &0./,+02 3%'$ "53$'. !0 ).95&.%"

%34!'$) -.+, +,$ "53$'. !0 &%05+.%" :%' α = 0.56 ;" +,$ :%00%-."/ !&$& 54<

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

1.4

x

C

Analytical

Regular

Upstream

=./5'$ >6?@ A"!02+. !0 &%05+.%" %34!'$) -.+, "53$'. !0 &%05+.%" -.+, '$/50!'

-$./,+."/ Bα = 0.5C !") 54&+'$!3 -$./,+."/ Bα = 1.0C6 7,$ &%05+.%"& !'$ &,%-"

!& %" $"+'!+.%" !& :5" +.%" %: D !:+$' &.350!+.%" %: E ,%5'&6 =%' +,$ ! +5!0 !&$

!'$ v = 1 3F,%5'* D = 0.05 3

2F,%5'6 =%' +,$ "53$'. !0 &.350!+.%"& !'$

∆t = ? ,%5' !") ∆x = 0.1 3* .6$6 G

= 2 !") H

!

= 106

&+'$!3 -$./,+."/ ,!& "%+ #$$" !440.$) Bα = 0.5C6

;" 1/5'$ >6> .& +,$ !"!02+. !0 &%05+.%" &,%-"6 I$&.)$& .& +,$ "53$'. !0 &%05<

+.%" &,%-" :%' +,$ !&$&@ "% &+!#.0.J!+.%"* +.3$&+$4 '$)5 +.%" !") &+'$!30."$

).95&.%"6 =%' #%+, +,$ +.3$&+$4 '$)5 +.%" !") &+'$!30."$ ).95&.%" 3$+,%) .&

+,$ 4$':%'3!" $ .")$D* γ = 10 ,%&$"6 =%' +,$ &.350!+.%" -.+,%5+ !"2 &+!#.<

0.J!+.%" !'$ +,$ -.//0$& &./".1 !"+6 7,$ -.//0$& !'$ &3!00$' :%' +,$ &.350!+.%"

-.+, &+'$!30."$ ).95&.%"6 I2 %34!'."/ -.+, +,$ !"!02+. !0 &%05+.%" !" +,$

!)).+.%"!0 ).95&.%" #$ %#&$'($)6 7,$ !)).+.%"!0 ).95&.%"& $9$ +.($02 '$)5 $)

+,$ G

<"53#$' :'%3 >K +% ?K6 7,$ '$3!."."/ /'!4, &,%-& +,$ &.350!+.%" -.+,

+,$ +.3$&+$4 '$)5 +.%" &+!#.0.J."/ 3$+,%) -,$'$ +,$ &.J$ %: ∆t .& ,!"/$) &%

G

H

!

≤ 106 L$'$ +,$ &.J$ %: +,$ +.3$&+$4 .& '$)5 $) :'%3 ∆t = 1 ,%5' B"%

&+!#.0.J!+.%"C +% K6M ,%5'6 N9$ +.($02 +,$ H

!

<"53#$' .& '$)5 $) :'%3 ?K +% M*

>O

38

Page 39: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"! #$% &'" ($)*+&,& $- . +."/ 0 & )". .$ ),-1 & )".&"*. 2$% ,**%$3 ),&"41

0 & )". .$ 4$-5 6789& )":! 6$)*,%"/ ; &' &'" -+)"% (,4 .$4+& $- ; &'$+&

.&,< 4 =,& $- ,%" ; 554". %"/+("/> <+& ',?" ,4.$ .),44"% ;,?"4"-5&'!

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

1.4

x

C

Analytical

No stabilization

Timestep reduction, γ=10

Streamline diffusion, γ=10

@ 5+%" 0!0A B-,41& (,4 .$4+& $- ($)*,%"/ ; &' / C"%"-& -+)"% (,4 .$4+& $-.!

D'" .$4+& $-. ,%" .'$;- ,. ($-("-&%,& $- ,. #+-(& $- $# 3 ,#&"% . )+4,& $- $# E

'$+%.! @$% &'" -+)"% (,4 .$4+& $- ; &'$+& .&,< 4 =,& $- ,%" 7

= 2 ,-/ 6

!

= 10!

F- G5+%" 0!H . &'" ,-,41& (,4 ,-/ -+)"% (,4 .$4+& $-. .'$;-! D'" -+)"% (,4

.$4+& $-. ,%" ($)*+&"/ +. -5 / C"%"-& *"%#$%),-(". -/"3".! D'" *"%#$%),-("

-/"3> γ . (',-5"/ ,**41 -5 & )".&"* %"/+(& $-! F& (,- <" $<."%?"/ &',& &'"

; 554". ,%" . 5- G(,-& #$% γ = 10> <+& #$% γ = 5 2,-/ 4$;"%: &'" . =" $# &'"

; 554". .""). &$ <" ,(("*&,<4" #$% )$.& *+%*$.".!

F- G5+%" 0!E . &'" ,-,41& (,4 .$4+& $- .'$;-! B4.$ &'" -+)"% (,4 .$4+& $-. #$%

?,%1 -5 *"%#$%),-(". -/"3". ,%" .'$;-! D'" *"%#$%),-(" -/"3> γ . (',-5"/

,**41 -5 .&%",)4 -" / C+. $-! D'" ; 554". ,%" %"/+("/ ;'"- +. -5 , 4$; ?,4+"

$# γ> <+& ($)*,%"/ ; &' &'" ,-,41& (,4 .$4+& $-> &'" .&""*-".. $# &'" #%$-& .

%"/+("/ /%,),& (,441!

HI

39

Page 40: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

1.4

x

C

Analytical

Timestep reduction, γ=10

Timestep reduction, γ=5

Timestep reduction, γ=2

!"#$% &'() *+,-./!0,- 12-#/!2+ 0234,$%5 6!/7 5!8%$%+/ +#3%$!0,- 12-#/!2+1 29:

/,!+%5 #1!+" /!3%1/%4 $%5#0/!2+ 6!/7 ;,$.!+" 4%$<2$3,+0% !+5%=' 2$ /7% 1!3#-,:

/!2+ ,$% v = 1 03>72#$ ,+5 D = 0.05 032>72#$' 2$ /7% +#3%$!0,- 1!3#-,/!2+1

!1 ∆x = ?'@ 03 ,+5 ∆t !1 $,+"!+" <$23 @>@? 72#$ Aγ = 2B /2 @>& 72#$ Aγ = 10B'

(@

40

Page 41: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

1.2

1.4

x

C

Analytical

Streamline diffusion, γ=10

Streamline diffusion, γ=5

Streamline diffusion, γ=2

!"#$% &'() *+,-./!0,- 12-#/!2+ 0234,$%5 6!/7 +#3%$!0,- 12-#/!2+1 28/,!+%5

#1!+" 1/$%,3-!+% 5!9#1!2+ 6!/7 :,$.!+" 4%$;2$3,+0% !+5%<' 2$ /7% ,+,-./!=

0,- 12-#/!2+ ,$% v = 1 03>72#$ ,+5 D = 0.05 03

2>72#$' 2$ /7% +#3%$!0,-

1!3#-,/!2+1 ,$% ∆x = ?'@ 03 ,+5 ∆t = @ 72#$'

A&

41

Page 42: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"! #$$%& '()*+,&- .(*+/0/(*

!" #$$"% &'#()*%+ ,'()-.-'( )"/,%-&"/ .!" 0'1"0"(. '2 /'3#." *$$3-") *. .!"

/#%2*," .!*. 0'1"/ -(.' .!" /'-34 5. *3/' )"/,%-&"/ .!" 0'1"0"(. '2 /'3#."/ '#.

2%'0 .!" )'0*-( -2 .!" 6*."% -/ 7'6-(8 '#. *. .!" #$$"% &'#()*%+4

52 .!" /'-3 /#%2*," ('. -/ $'()")9 .!" 7#: -(.' .!" /'-3 -/ 0'1") &+ *)1",.-'(

-(.' .!" )'0*-(9 6-.! .!" 6*."%4 52 .!" /#%2*," -/ $'()") 6-.! 6*."% ,'(.*-(-(8

* /'3#."9 .!" /'3#." -/ *3/' 0'1") /'3"3+ &+ *)1",.-'(4 ; 3-..3" 0'%" *,,#%*." )"<

/,%-$.-'( ,'#3) !*1" &""( '&.*-(") -2 .!" &'#()*%+ ,'()-.-'( 6*/ -0$3"0"(.")

*/ * =-%-,!3". ,'()-.-'( 6!-,! *3/' *33'6") .!" /'3#." .' &" 0'1") &+ )-/$"%/-'(

*() )->#/-'( -(.' .!" /'-34 5. -/ *//"//") .!*. .!" "%%'% -/ -(/-8(-?,*(.4

@!"( .!" 6*."% 0'1-(8 '#. '2 .!" )'0*-(4 A' /'3#." -/ 2'33'6-(8 .!" 6*."%4

!-/ -/ 2'% 0'/. /'3#."/ * 8'') &'#()*%+ ,'()-.-'( < *. 3"*/. 2'% "1*$'%*.-'(

$%',"//"/4 B'% * /-.#*.-'( 6-.! 3-C#-) 6*."% -/ 3"*1-(8 .!" /'-3 .!%'#8! .!" #$<

$"% &'#()*%+ .!" )"/,%-$.-'( -/ ('. *$$%'$%-*."9 &#. *. $%"/"(. =*-/+ -/ ('.

-(."()") 2'% .!*. D-() '2 /,"(*%-'/4 E#00*%-F") .!" #$$"% &'#()*%+ ,'()-.-'(

,*( &" ":$%"//") */G

(

−θ

Dzz∂C

∂z+ qzC

)∣

z=z !"#

=

q!"#

C$"%&

, q!"#

< 0

0, q!"#

> 0HI4JKL

6!"%" z$"%&

-/ .!" z<,''%)-(*." '2 .!" /'-3 /#%2*,"9 qz -/ .!" 7'6 H$'/-.-1" #$<

6*%)/L *() q!"#

-/ .!" 7#: '#. '2 .!" )'0*-( H("8*.-1" 2'% 7#: -(.' .!" )'0*-(L4

C$"%&

-/ .!" ,'(,"(.%*.-'( '2 .!" /#%2*," 6*."%4

A#0"%-,*33+ *33 .!" .+$"/ '2 #$$"% &'#()*%+ ,'()-.-'(/ -/ -0$3"0"(.") */ ":<

$3-,-. A"#0*(( ,'()-.-'(/9 -4"4 .!" /'3#." 0'1"0"(. '1"% .!" &'#()*%+ -/ -()"<

$"()"(. '2 .!" /'3#." ,'(,"(.%*.-'(/ -( .!" )'0*-(4

!"!" 1(2%& '()*+,&- .(*+/0/(*

!" 3'6"% &'#()*%+ ,'()-.-'( )"/,%-&"/ .!" 0'1"0"(. '2 /'3#." .!%'#8! .!"

3'6"% &'#()*%+4 52 .!" 6*."% !*/ * 2%"" )%*-(*8" ,'()-.-'(9 .!"%" -/ * 7#: ,'()-<

.-'( 2'% .!" /'3#." 6!"( .!" /'3#." -/ 0'1") '#. '2 .!" )'0*-( &+ *)1",.-'(4 52

.!"%" -/ /$",-?") * 8%'#()6*."% .*&3" '% *C#-.*%) &'#()*%+ ,'()-.-'(9 -4"4 $%"/<

/#%" H=-%-,!3".L ,'()-.-'(/ 2'% .!" 6*."% 7'69 *3/' .!" /'3#." 0'1"0"(. !*1" *

=-%-,!3". ,'()-.-'( 6-.! * /$",-?") ,'(,"(.%*.-'( *. .!" &'#()*%+4 B'% * /$",<

-?") /."*)+</.*." 6*."% 7#: H0'/.3+ #/") 2'% ."/.-(8 $#%$'/"/L9 -. -/ $'//-&3"

&'.! .' ,!'/" /$",-?") ,'(,"(.%*.-'( H=-%-,!3".L *() 7#: &'#()*%+ ,'()-.-'(/4

A#0"%-,*33+ .!" A"#0*(( &'#()*%+ ,'()-.-'(/ -/ -0$3"0"(.")9 "-.!"% -0$3-,-.

'% ":$3-,-. < -0$3-,-. 6!"( .!" 6*."% 7#: -/ '#.6*%)") 2%'0 .!" 3'6"% &'#()*%+

*() .!" ,'(,"(.%*.-'( *//',-*.") 6-.! .!" 7#: -/ 8-1"( &+ .!" ,'(,"(.%*.-'(

-(/-)" .!" )'0*-( < ":$3-,-. 6!"( .!" 6*."% 0'1"/ -(.' .!" )'0*-( *() .!"

JJ

42

Page 43: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!!"#$ %&' #"(#&(%) %$"( $! %*& #"(#&(%) %$"( "+%!$'& %*& '", $(-

.*& /$)$#*0&% 1"+(' )2 #"('$%$"( $! $,30&,&(%&' ! ( &430$#$% 5&+, (( 1"+('6

)2 #"('$%$"(- 7 !&' "( %*& !"0+%$"( $( %*& 3)&8$"+! %$,&!%&3 %*& 9+4 $! # 06

#+0 %&' :$%* %*& ;$8&( #"(#&(%) %$"( "( %*& 1"+(' )2- .*& ,&%*"' $! '$<&)&(%

=)", %*& ,&%*"' +!&' =") %*& : %&) ,"8&,&(%> 1+% 3)&8&(%! ( &4%) $%&) %$"(

0""3 $(!$'& & #* %$,&!%&3 :$%* ="00":$(; $(#)& !&' #",3+% %$"( 0 %$,&!- ?( %*&

: %&) ,"8&,&(% !$,+0 %$"(!> %*& $%&) %$"( 0""3 : ! +('&) 00 #$)#+,!% (#&! (&#6

&!! )2 !$(#& %*& &@+ %$"( $! ("(60$(& )- 7+% :$%* 8&)2 0 );& #"(#&(%) %$"( ;) '$6

&(%! A (' ="00":$(; 0 );& ,"8&,&(% 12 '$<+!$"( (' '$!3&)!$"( 3)"#&!!&!B ('

!, 00 #&00! % %*& 1"+(' )2 !",& (+,&)$# 002 3)"10&,! # ( "##+)- ." 3)&8&(%

%*$! C$(' "= $(!% 1$0$%2> %*& !$D& "= %*& %$,&!%&3! # ( 1& 0":&)&' $= 0!" %$,&!%&3

)&'+#%$"( $! #*"!&( ! !% 1$0$D$(; ,&%*"' %" 3)&8&(% %" *$;* E

F

!

6(+,1&)!- ?=

%$,&!%&3 )&'+#%$"( $! #*"!&(> %*& %$,&!%&3 $! )&'+#&' !"G

• H") '$<+!$"( $(%" %*& #&00> "(02 * 0= "= %*& 8"0+,& "= %*& #"(#&(%) %$"(

'$<&)&(#& 1&%:&&( 1")'&) (' #&00 # ( 1& %) (!3")%&' 12 '$<+!$"( "8&)

%*& 1"+(' )2 $(%" %*& #&00 $( %$,&!%&3-

• H") '$<+!$"( "+% =)", %*& #&00> "(02 * 0= "= %*& 8"0+,& "= %*& #"(#&(%) %$"(

'$<&)&(#& 1&%:&&( #&00 (' 1")'&) # ( 1& %) (!3")%&' 12 '$<+!$"( "8&) %*&

1"+(' )2 "+% =)", %*& #&00 $( %$,&!%&3-

." 3)&8&(% %" 0 );& #",3+% %$"( 0 %$,&!> %*& %$,&!%&3 # ( ("% 1& 0":&) %* (

#*"!&( ,$($,+, 8 0+&- ?= %*& $(!% 1$0$%$&! )& *$;* (' 3)"'+#& (&; %$8&

#"(#&(%) %$"(! % %*& #&00! % %*& 1"+(' )2> %*& #",3+% %$"(! $( %*& %$,&!%&3

)& )&3& %&' (' %*& !"0+%& $! "(02 ,"8&' 12 '8&#%$"( "8&) %*& 1"+(' )2- .*$!

# ( * 33&( $= %*& ,$($,+, 8 0+& "= %*& !$D& "= %*& %$,&!%&3! $! #*"!&( %" *$;*-

!"!# $%&'()*+',-. /-%01'2%-3',-*4 5,6 6'+7 &%+*&1*+',-

*-1 1%8&*1*+',-

.*&)& )& '&8&0"3&' 0"% "= ( 02%$# 0 !"0+%$"(! =") %*& "(&6'$,&(!$"( 0 #"(8&#%$8&6

'$!3&)!$8& &@+ %$"(> !&& =") &4 ,30& 8 ( I&(+#*%&( (' J08&! AKLMNB- .*& &@+ 6

%$"(! )& '&8&0"3&' =") !$%+ %$"(! :*&)& %*& '$<+!$"( $! #"(!% (% (' %*& : %&)

9": $! !%& '2 !% %& A$-&- ∂θ"

/∂t = 0 (' #"(!% (% qB- .*& !&#"(' )2 : %&)

#"(%&(%> θ#

= 0 (' 00 %*& '!")3%$"( 3)"#&!!&! )& ;"$(; %*)"+;* %*& 3)$, )2

: %&) %" %*& !")3&' 3* !&- .*&!& #"('$%$"(! )& !&0'", =+0O00&' $( %*& P)& 0

0$=&P :*&)& 1"%* %*& : %&) #"(%&(% (' %*& 9+4 )& %$,&6'&3&('&(%- H") %&!%$(;

%*& !"0+%& %) (!3")% ,"'&0 $! !$%+ %$"(! :$%* !%& '2 !% %& : %&) ,"8&,&(%

!$,+0 %&'-

?= %*& '!")3%$"( 3)"#&!! $! 8&)2 = !%> %*& ,"+(% "= '!")1&' !"0+%& # ( 1&

&43)&!!&' :$%* '!")3%$"( $!"%*&), :*$#* $! )&0 %$"(!*$3 1&%:&&( '!")1&'

ACaB (' '$!!"08&' #"(#&(%) %$"(> C"

- .*& 1+0C '&(!$%2 $! !!+,&' %" 1& #"(6

!% (% %*)"+;* %$,&- .*& %:" O)!% %&),! "= %*& 0&=% * (' !$'& "= &@+ %$"( AN-KKB

QR

43

Page 44: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$ %$&%'(($" !)*

ρb∂Ca

∂t+

∂(C

θ

)

∂t= ρb

∂Ca

∂C

·∂C

∂t+ θ

∂C

∂t+ C

∂θ

∂t=

θ

R∂C

∂t+ C

∂θ

∂t

+,-.,/

&0$%$ R 12($" '" (0$ 3'($%!(4%$ ') !33$5 (0$ !"#$%#"&'( )#*"'$ *

R =ρb

θ

·∂Ca

∂C

+ 1 +,-../

60$ 71)( )'783$ !5)1%8('1" ')1(0$%7 ') (0$ 3'"$!% !5)1%8('1" &0$%$ Ca = KdC

!"5 !) ! 1")$94$" $ R = 1 + ρbKd

θ

-

:$%1 1% ;%)( 1%5$% <'"$(' ) !%$ '" 345$5 '" (0$ 715$3- =" >$%1 1%5$% <'"$(' )?

(0$ @$31 '(A 12 (0$ %$! ('1" ') '"5$8$"5$"( 12 (0$ 1" $"(%!('1" !"5 '" B-)( 1%5$%

<'"$(' ) (0$ %$! ('1" @$31 '(A ') 8%181%('1"!3 (1 (0$ 1" $"(%!('1"- 604) (0$

!5@$ ('1" 5')8$%)'1" $94!('1" A'$35)*

∂C

∂t+C

∂θ

∂t= −∇ · (C

q

− θ

D∇C

) − θ

µlC

+ ρbµs +,-.C/

&0$%$ (0$ )$ 1"5 3!)( ($%7 %$8%$)$"() ! ;%)( 1%5$% 8%154 ('1" '" (0$ 3'94'5

80!)$- µl ') (0$ %!($ 1")(!"(- D" 12($"E4)$5 ($%7 ') (0$ 0!32E3'2$- =" ! #!( 0

$F8$%'7$"( (0$ 0!32E3'2$ ') (0$ ('7$ %$94'%$5 21% (0$ 7!)) 12 %$! ('"G 7!($%'$3

(1 5$ %$!)$ (1 0!32 (0$ 1%'G'"!3 7!))- 60$ %$! ('1" 0!32E3'2$ !" #$ !3 43!($5

!) t1/2 = ln(2)/µl- 60$ $94!('1" !" #$ 4)$5 21% 7!"A 0$7' !3 8%1 $))$)? !"5

21% %!5'1! ('@$ 5$ !A- 60$ 3!)( ($%7 1" (0$ %'G0( 0!"5 )'5$ 12 $94!('1" +,-.C/

%$8%$)$"() ! >$%1 1%5$% %$71@!3 2%17 (0$ )13'5 (1 (0$ 3'94'5 80!)$- µs ') (0$

%!($ 1")(!"( 21% (0$ >$%1 1%5$% 8%1 $))- =" @!" H$"4 0($" !"5 D3@$) +BIJ,/ ')

1")'5$%$5 ! 1"$E5'7$")'1"!3 !)$ &'(0 5$G%!5!('1" 12 #1(0 >$%1 !"5 ;%)( 1%5$%-

60$ G1@$%"'"G 5'K$%$"('!3 $94!('1" !" (0$" #$ $F8%$))$5 !)*

R∂C

∂t= D

∂2C

∂x2− v

∂C

∂x− µC

+ γ +,-.L/

&0$%$ µ ') (0$ %!($ 1")(!"( 21% ;%)( 1%5$% 5$ !A '" (0$ 3'94'5 !"5 γ %$8%$)$"()

(0$ )'7'3!% %!($ 1")(!"( 21% >$%1E1%5$% 8%154 ('1" '" (0$ 3'94'5 80!)$- M1% (0$

)'743!('1"? (0$ '"'('!3 1"5'('1" ')

CB(x, 0) = C !"

+,-.N/

!"5 (0$ 488$% #14"5!%A 1"5'('1" ')

(

−D∂C

∂x+ vC

) ∣

x=0

=

vC !#

, 0 < t ≤ t0

0, t > t0+,-.O/

.L

44

Page 45: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$%&'($) (#

C

=

γ

µ+ (C

!"

−γ

µ)A(x, t) + (C

!#

−γ

µ)B(x, t), 0 < t ≤ t0

γ

µ+ (C

!"

−γ

µ)A(x, t) + (C

!#

−γ

µ)B(x, t) − C

!#

B(x, t − t0), t > t0

*+,-./

0!"1" A(x, t) 2)3 B(x, t) 42) 5" 42%4&%2'"3 2#

A(x, t) = exp(−µt/R)·

1 −1

2erfc

[

Rx − vt

2(DRt)1/2

]

(

v2t

πDR

)1/2

exp

[

−(Rx − vt)2

4DRt

]

+1

2

(

1 +vx

D+

v2t

DR

)

exp(vx/D) erfc

[

Rx + vt

2(DRt)1/2

]

*+,-6/

B(x, t) =v

v + uexp

[

(v − u)x

2D

]

erfc

[

Rx − ut

2(DRt)1/2

]

+

v

v − uexp

[

(v + u)x

2D

]

erfc

[

Rx + ut

2(DRt)1/2

]

+

v2

2µDexp

[

vx

D−

µt

R

]

erfc

[

Rx + vt

2(DRt)1/2

]

*+,78/

0('!

u = v

1 +4µD

v2*+,79/

:$1 4$;<21()= '!" 2)2%>'(42% #$%&'($) 0('! '!" ?2(#> #$%&'($) (# 4!$#") 2)

#('&2'($) 0('! v = 10 4;@32>A D = 5 4;2@!$&1A γ = 0.2 !$&1 −1

2)3 µ = 0.5!$&1

−1, :$1 '!" #(;&%2'($) (# ∆xB9 4;, !" %")='! $C '!" '(;"#'"<#A ∆t (#

9@98 32>, D) E=&1" +,F (# '!" ?2(#> #$%&'($) 4$;<21"3 0('! '!" 25$G" 3"#41(5"3

2)2%>'(42% #$%&'($), H# (' 42) 5" #"") 21" '!" #$%&'($)# () <124'(#" 4$()4(3")',

!" #$%&'( )$*()(+' ,+ '-( .(/$+0123 0$)1,+4

50*(/',$+

!" !"'"1$=")"('("# 21" )$1;2%%> 1"%2'(G"%> #;2%% () '!" #"4$)321> 3$;2(), H)3

0!") θ!

6= 0 21" '!" ;$G";")' 5> 23G"4'($) 1"%2'(G"%> %21=" 4$;<21"3 '$ '!";$G";")' 5> ;$%"4&%21 3(I&#($), H# 2 4$)#"J&")4" (# 3(I&#($)K%(L" <1$4"##"#

*3(I&#($) 2)3 3(#<"1#($)/ () '!" #"4$)321> 3$;2() )"=%(=(5%", !&# '!" #$%&'"

;$G";")' (# ;$3"%"3 2# 2 <&1"%> 23G"4'($) <1$4"##M

j!

= q!

C!

*+,7+/

!" ;2## 52%2)4" $C 3(##$%G"3 #$%&'"# () '!" #"4$)321> 3$;2() >("%3#M

∂(θ!

C!

)

∂t= −∇ · j

!

− Γ"!

*+,7-/

-N

45

Page 46: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0 10 20 30 40 50 60 70 80 90 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x [cm]

Concentr

ation,

C

Analytical

Daisy2D

!"#$% &'() *+,-.$!/+0 1%23%%0 .0.452!6.4 .07 8.!/5 /!,#4.2!+0 +9 . -$+6%//

3!2: .7/+$-2!+0; <%$+ +$7%$ -$+7#62!+0 .07 =$/2 +$7%$ 7%"$.7.2!+0'

3:%$% Γ !

!/ 2:% /!0> 2%$, 3:!6: $%,+?% /+4#2%/ 9$+, 2:% /%6+07.$5 3.2%$

7+,.!0' @:% $%,+?%7 A+$ .77%7B /+4#2% 6.0 1% .1/+$1%7; ,+?%7 2+ 2:% -$!,.$5

7+,.!0 AΓ "

./ %C-$%//%7 15 %D#.2!+0 A&'EFB +$ 2+ 2:% ,.6$+-+$% 7+,.!0 +$ 1%

/#1G%62 2+ 6:%,!6.4 +$ 1!+4+"!6.4 $%7#62!+0'

HI

46

Page 47: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$%& '

!"# #$"%&'!$

!" #$%&'(

!" #$%&'()* #+"(,&&,& ()- ("-.+'/0., ." $,). .+)-&1,+ 2"3,2,-. '- .$, 2).+'4

#)+. 5-"- 2)(+"#"+"0& #)+.6 "1 &"'*7

• ("-80(.'"-

• ("-3,(.'"-

9).$,2).'()* .$, .+)-&#"+. ()- /, ,4#+,&&,8 )&7

qh = −KH∇T + CwρwTq

5:;<6

!$,+, T '& .$, .,2#,+).0+,= KH '& .$, .$,+2)* ("-80(.'3'.%= Cw .$, &#,('>(

$,). &."+)?, "1 !).,+= ρw .$, 8,-&'.% "1 !).,+ )-8 q

'& .$, !).,+ @04 3,(."+

1"+ 2).+'4 @04; A".$ KH )-8 Cw )+, ()*(0*).,8 )& '- .$, ,4'&.'-? <B B)'&%

$, ("-&,+3).'"- "1 $,). ()- /, ,4#+,&&,8 )&

∂H

∂t= −∇ · qh + Sh = ∇ · (KH∇T − CwρwTq

) + Sh 5:;C6

!$,+, H '& .$, $,). ("-.,-. "1 .$, &"'*= t .$, .'2, )-8 Sh '& ) $,). &"0+(,;

D1 !).,+ '& )88,8 ." .$, 8"2)'- /% 8+'# '++'?).'"- !'.$ )- )2"0-. "1 Si .$,

)&&"(').,8 )88,8 $,). '& CwρwSiTi !$,+, Ti '& .$, .,2#,+).0+, "1 .$, '++'?).'"-

!).,+ !$'($ ). .$, 2"2,-. '& .$, &)2, )& T = ';,; Ti = T ; E"+ !).,+ +,2"3,81+"2 .$, &"'* !'.$ ) +)., "1 Sw= .$, ("++,&#"-8'-? )2"0-. "1 $,). '& CwρwSwT ;D- .$, 2"8,* $,). ()- )*&" /, )88,8 8'+,(.*% !'.$"0. ,4($)-?'-? !).,+;

$, *,1. $)-8 &'8, "1 ,F0).'"- 5:;C6 ()- /, !+'..,- )&

∂H

∂t=

∂(CsT )

∂t= Cs

∂T

∂t+ T

∂Cs

∂t5:;:6

:G

47

Page 48: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#" Cs $% &!" %'"($)( !"*& (*'*($&+ ,- &!" %,$. /$0(.12$03 *&"#45

6!" 7,102*#+ (,02$&$,0% %'"($)"% * (,87$0*&$,0 ,- &!" &!" &"8'"#*&1#" *02

$&% 2"#$9*&$9" ,0 &!" 7,102*#$"%5 :(&1*. $0 -,#8 ,- %'"($)"2 !"*& ;1< KH∇T −CwρwTq

/ !"#$%% &'"%($)* +'%(,-,'%4 ,# %'"($)"2 &"8'"#*&1#" T0 /.,),+/0

1!- &'"%($)* +'%(,-,'%45 =188*#$>"2? &!" '#,7."8 &, 7" %,.9"2 -,# 2"&"#8$0*@

&$,0 ,- &!" &"8'"#*&1#"% $0 Ω $%A

Cs∂T∂t + T ∂Cs

∂t = ∇ · (KH∇T − CwρwTq

) + Sh $0 Ω

n · (CwρwTq

− KH∇T ) = qh ,0 ∂Ω1

T = T0 ,0 ∂Ω2

/B5C4

!"#" ∂Ω1 $% &!" '*#& ,- &!" 7,102*#+ $&! D"18*00 (,02$&$,0? *02 ∂Ω2 $%

&!" '*#& ,- &!" 7,102*#+ $&! E$#$(!."& 7,102*#+ (,02$&$,0%5 :.%, !"#" $& $%

0,& 0"("%%*#+ &!*& ∂Ω1 *02 ∂Ω2? #"%'"(&$9".+? *#" (,!"#"0&5 n $% &!" ,1& *#2"2

10$& 0,#8*. &, &!" 7,102*#+ *02 qh $% &!" %$>" ,- &!" !"*& 8,9"8"0& ,1& ,- &!"

7,102*#+5

!" #$%&'()*+ ,-+$.(-/ -0 1&*. .'*/,0&' &2$*.(-/

6!" 7*%$( '#$0($'."% 7"!$02 &!" )0$&" 9,.18" 8,2".$03 ,- &!" !"*& &#*0%-"# $%

*.8,%& "F1*. &, &!" 018"#$(*. %,.1&$,0 ,- &!" "F1*&$,0 -,# &!" %,.1&" 8,9"8"0&

/*29"(&$,0@2$%'"#%$,0 "F1*&$,045

G1& &!"#" *#" %,8" 2$H"#"0("%5 I0 E*%$%+JE $% 8*2" &!" *%%18'&$,0 &!*& &!"

&!"#8*. (,021(&$9$&+ $% "F1*. $0 *.. 2$#"(&$,05 6!$% 8*K"% &!" $8'."8"0&*&$,0

"*%$"# &!*0 &!" *29"(&$,0@2$%'"#%$,0 "F1*&$,0 !"#" &!" !+2#,2+0*8$( 2$%'"#@

%$,0 *#" 2"'"02"0& ,0 &!" 2$#"(&$,05 L1#&!"#8,#" &!" !"*& 8,9"8"0& 7+ (,0@

21(&$,0 $% %, 2,8$0*0& ,9"# &!" 8,9"8"0& (*1%"2 7+ (,09"(&$,0 &!*& 018"#$(*.

$0%&*7$.$&$"% 102"# 0,#8*. (,02$&$,0% 0,& $% "<'"(&"25 6!1% 2$H"#"0& -#,8 &!"

$8'."8"0&*&$,0 ,- &!" *29"(&$,0@2$%'"#%$,0 "F1*&$,0 &!"#" $% 0,& $8'."8"0&"2

8*2" *0+ %&*7$.$>$03 8"&!,2%? "<("'& -,# &!" 7,102*#+ (,02$&$,0% /%"" .*&"#45

6!" '*#&$*. 2$H"#"0&$*. "F1*&$,0 /MEN4 2"%(#$7$03 &!" !"*& &#*0%-"# /%"" "F1*@

&$,0 /B5C44 $% (,0%$2"#"2 .$0"*# $0%$2" "*(! &$8"%&"' !"#" &!" 9*.1"% -#,8 &!"

7"3$00$03 ,- &!" &$8"%&"' $% 1%"25 L,# -#,%&O&!* '#,("%%"% 7,&! &!" (,021(&$9@

$&+ -,# !"*& *02 &!" !"*& (*'*($&+ $% &"8'"#*&1#" 2"'"02"0&5 G1& &!" (!*03"%

21#$03 * &+'$(*. &$8"%&"' 9"#+ %8*..5 L,.., $03 *#" &!" "##,#%? (,0%$2"#$03 &!"

MEN .$0"*# -,# "*(! &$8"%&"' %8*..5 :% * (,0%"F1"0(" ,- &!" F1*%$ .$0"*#$&+ *#"

M$(*#2 $&"#*&$,0% $0%$2" "*(! &$8"%&"' *9,$2"25

!"!# $%%&' ()*+,-'. /)+,010)+2

6!" 1''"# 7,102*#+ (,02$&$,0 2"%(#$7"% &!" &#*0%-"# ,- !"*& "0"#3+ 7"& ""0

&!" *&8,%'!"#" *02 &!" %,$.5

BP

48

Page 49: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "#$%& $% '() *++), -.*!/#,& 0.!/$'$.! .1 "$,$0(2)' '&+)3 $4) '() %*,1#0)

$% 1.,0)/ '. (#5) # %+)0$60 ')7+),#'*,)4 890)+' :()! %!.: $% 0.5),$!; '() %*,<

1#0) '() %.$2 ')7+),#'*,) $% #++,.9$7#')/ :$'( '() #$, ')7+),#'*,)4 =., %!.:

0.5),)/ %*,1#0)% #,) '() %.$2 ')7+),#'*,) )%'$7#')/ #% $! '() )9$%'$!; "#$%&4

>' 6,%' '() *++), -.*!/#,& :#% $7+2)7)!')/ $! # %$7$2#, 7#!!), #% *%)/

1., '() "$,$0(2)' -.*!/#,& 0.!/$'$.!% 1., %.2*') 7.5)7)!'4 =., '() ()#' %$7*2#<

'$.!%3 '() ')7+),#'*,) $% :$'( '() 7)'(./ ;$5)! )9#0'2& #' '() -.*!/#,$)%4 ?*'

:$'( '() ,)2#'$5)2& 2#,;) '$7)%')+% $!')!/)/ '. -) *%)/ $! '() ()#' %$7*2#'$.!%

'() 7)'(./ $% %.7)'$7)% *!%'#-2)4

!%')#/ # 7.,) %$7+2) #!/ %'#-2) 7)'(./ $% #++2$)/4 ! '() $7+2)7)!'#'$.!3

'() -.*!/#,& ')7+),#'*,) $% %)' $! '() '() !./#2 +.$!'% $! '() *++), -.*!/#,&

0)22%4 @()! '() %+)0$6)/ ')7+),#'*,) $% ;$5)! # (#21 0)22 2.:), '(#! :#!')/4 @()

',#/).A 0.7+#,)/ '. '() .'(), 7)'(./ $% %7#22 %$!0) '() *!0),'#$!'$)% $! '()

()#' %$7*2#'$.!% #,) *!/), #22 0$,0*7%'#!0)% 2#,;)4 >!/ ,)/*0$!; '() BCD<0.%'%

-& *%$!; 2#,;) '$7)%')+% :()! +.%%$-2) $% $7+.,'#!'4

!"!" #$%&' ($)*+,'- .$*+/0/$*

@() 2.:), -.*!/#,& 0.!/$'$.! /)%0,$-)% '() ',#!%1), .1 ()#' )!),;& '(,.*;( '()

2.:), -.*!/#,&4 ' $% +.%%$-2) '. 0(..%) -)':))! E -.*!/#,& 0.!/$'$.!%F > G*9

0.!/$'$.!% :(),) !. )!),;& $% ',#!%1),,)/ '(,.*;( '() -.*!/#,& ., #% $! "#$%&

H" # 1.,0)/ ')7+),#'*,) :$'( # #!!*#2 .%0$22#'$.!4

@() 1.,0)/ ')7+),#'*,) $% $7+2)7)!')/ $! # %$7$2#, 7#!!), #% 1., '() *++),

-.*!/#,& 0.!/$'$.!4 =., # !. G*90.!/$'$.! !.'($!; (#% '. -) /.!)4

IJ

49

Page 50: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#!$%&'()*

!"#$% &' ('% )*+"*+,$-% .' /'% $01 2$34$% 5' 6' 7899:;' ( <!0!3$" =$-->

?*0-!3@$,#@! 0+=!3#?$" -*"+,#*0 A*3 ,B! +0-$,+3$,!1 C*D !E+$,#*0' !"#$

%#&'($) %#&)% !7F;% 8GHIJ8G9K'

B*D% L' /'% &$#1=!0,% M' 5'% $01 &$N-% 6' O' 789HH;' *++,-#. /0.$','10'

&?P3$D>Q#""'

Q#""!"% M' 7899H;' 234-$'35#3"!, 6'-, 780&-9&' (?$1!=#? R3!--% 6*01*0% ST'

&#""#0<,*0% 5' U' $01 V+#3W% U' R' 789K8;' R!3=!$4#"#,N *A X*3*+- -*"#1-' :$!3&)

;!$!.!0 6'9)% "#% 8Y::J8Y:F'

&*""!3+X% &' 7Y::8;' <(5#$-9!, ='.#,,-31 '> !"#$ !3. 6',("# ='4#5#3" -3

:-,,#. :'+&'-,' RB'M' ,B!-#-% /B! 5*N$" L!,!3#0$3N $01 (<3#?+",+3$" S0#@!3>

-#,N% /Z-,3+X% M!0=$3W'

&*""!3+X% &' $01 Q$0-!0% [' 7Y::F;' R*D!3 -!3#!- -*"+,#*0 A*3

A$""#0<>B!$1 X*01!1 #0\",3$,#*0' !"#$ %#&'($) %#&)% $%' O:IGY]%

1*#^8:'8:Y9_Y::KO5::G9YH'

&+$"!=% `' 789FK;' ( 0!D =*1!" A*3 X3!1#?,#0< ,B! BN13$+"#? ?*01+?,#@#,N *A

+0-$,+3$,!1 X*3*+- =!1#$' !"#$ %#&'($) %#&)% & 7I;% ]8IJ]YY'

R!33*?B!,% R' $01 )a3*1% M' 7899I;' [,$4#"#,N *A ,B! -,$01$31 3$0W>b#?*"-*0

-?B!=! $XX"#!1 ,* ,B! 1#c+#*0>?*0@!?,#*0 !E+$,#*0^ -*=! 0!D #0-#<B,-' !"#$

%#&'($9#& %#&#!$98% '79;% IY98JIY9F'

RB#"#X% U' 5' 789]];' b+=!3#?$" -*"+,#*0 *A !E+$,#*0- *A ,B! 1#c+-#*0 ,NX!

D#,B 1#c+-#@#,N ?*0?!0,3$,#*0>1!X!01!0,' :$!3&!9"-'3 '> "8# ;!$!.!0 6'9-?

#"0% "&7F;% HH]JH9Y'

RB#"#X% U' 5' 789]F$;' b+=!3#?$" -*"+,#*0 *A !E+$,#*0- *A ,B! 1#c+-#*0 ,NX! D#,B

1#c+-#@#,N ?*0?!0,3$,#*0>1!X!01!0,' dd' *(&"$!,-!3 @'($3!, '> 780&-9&% &(%

Y9JGY'

RB#"#X% U' 5' 789]F4;' /B! ,B!*3N *A #0\",3$,#*0^ 8' ,B! #0\",3$,#*0 !E+$,#*0 $01

#,- -*"+,#*0' 6'-, 69-)% )%% IG]JI]F'

G8

50

Page 51: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#"$% &' (' )*+,-.' /!0 1!0234 25 "67#1381"269 :' 0;0<1 25 =8103 >0$1! 2?03

@2"#' !"# $"%% !% AB-CA-:'

!"#"$% &' (' )*+:+.' /!0234 25 "67#1381"26' &'()*$+, "* -.'/!,$"+*$+% $8D0@

A*,CA+:'

?86 E06F<!106% G' /' )*+-H.' I <#2@0>J523K 0LF81"26 523 $30>"<1"6D 1!0 !4J

>38F#"< <26>F<1"?"14 25 F6@81F3810> @2"#@' !"# $"%% ""'

?86 E06F<!106% G' /' 86> I#?0@% M'J&' )*+-A.' &*)#.0"$)# !#10"!*, !2 0-+ !*+3

'"4+*,"!*)# $!*(+$0"(+3'",5+/,"(+ ,!#10+ 0/)*,5!/0 +61)0"!*' N6"10> O1810@

P0$831K061 25 ID3"<F#1F30'

QA

51

Page 52: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.2 Daisy 2D code developmentA major requirement for every programming project involving Daisy for the last 10 years has been that the

added functionality of the project should me merged into the mainstream code. When individual project

requirements conflicted, such as when they specified different models for the SAME process, both models

would be implemented as a user selectable choice. When the program framework didn't allow this, the

program framework would have to be modified to allow it. This approach is significantly more expensive to

implement than to branch the mainstream code for each project. However, the advantage to the individual

projects is even more significant, each project will benefit from improvements made in all the other projects.

The major requirement to Daisy in SAFIR is the 2D transport of water and solutes in the soil. This

requirement goes against the existing framework in one major way, and also requires a generalisation in

other areas. The main conflict was that Daisy was organised so the transport code was close to the turnover

code. This has been changed to all transport functionality now are part of the SAME selectable "Movement"

component. This component also contains the discretization, which has been generalized so the

discretization framework now in theory can handle 1, 2 or 3 dimensions. Only 1D and a simple 2D

discretization have been implemented so far. The old, 1D functionality of Daisy is available if the user

chooses the "vertical" Movement model. A new 2D model named "rectangle" supporting a simple,

rectangular grid of vertical and horizontal lines has been implemented as a proof-of-concept of the new

framework.

A stand-alone prototype for coupled 2D transport has also been developed, and needs to be integrated in the

new Daisy framework. Heat and solute transport has not yet been developed for anything but the old 1D

solution, but they have been ported to the new framework so the "vertical" model now has functionality

nearly identical to the old code.

52

Page 53: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.3 The stomata-photosynthesis model and the sunlit-shadow radiation

model in DAISY

Introduction

Photosynthesis is the conversion of CO2 to organic compounds in the presence of light. The chloroplasts of a

plant cell are the seat of photosynthesis and they are present only in the cells of the green parts of the plant.

Photosynthesis can be conveniently treated as three separate components: 1) light reactions, in which radiant

energy is absorbed and used to generate the high energy compounds ATP and NADPH; 2) dark reactions,

which include the biochemical reduction of CO2 to sugars using high energy compounds generated in the

light reactions; and 3) supply of CO2 from the ambient air to the site of reduction in the chloroplast.

Plants can be classified into at least three major groups on the basis of the biochemical pathway by which

they fix CO2, the C3, C4, and CAM. The latter will not be described in this context. The C4 photosynthesis

differs from C3 in several biochemical and physiological properties and C4 plants lack several features of C3

plants that are associated to photorespiration. Both C3 and C4 plants use the enzyme ribulose biphosphate

carboxylase (RuBP or Rubisco) for the primary fixation of CO2; however, the Rubisco reaction is

compartmented differently and.

The sun/shade radiation model in Daisy is inspired by the sun/shade model of de Pury and Farquhar (1997).

The sun/shade model of de Pury and Farquhar (1997) is a single-layer model which describes the sun and

shaded leaves separately. In the sun/shade model of de Pury and Farquhar (1997) the angel of incidence on

leaves is not considered. Instead the partitioning between the sunlit and shaded fractions of the canopies is

changed every time step. In Daisy, the canopy is divided in several layers with equal leaf area index. The

cumulative absorbed irradiance (from the top of the canopy) in the sun/shade model is calculated for each

canopy layer.

A number of mechanistic models of photosynthesis and stomatal conductance at the leaf level has been

developed and widely used that derive from the C3 photosynthesis model of Farquhar et al. (1980) and the

empirical stomatal conductance model of Ball et al. (1987). Boegh et al. (1987) and Collatz et al. (1991)

have implemented these two models combined with the leaf energy balances for both C3 and C4 plants.

These interacting models are solved by a numerical method, the Newton Raphsons method. There are two

models, based on the Farquhar-Ball-Collatz models, for C3 and for C4 plants implemented in the DAISY

code, the FC-C3 and the FC-C4 model, respectively.

53

Page 54: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Absorbed irradiance of the canopies

Each plant community has a unique spatial pattern for displaying photosynthetic surfaces and to capture

photosynthetic active radiation (PAR). The photosynthetic quantum flux, I, is often the major factor

determining the rate of carbon dioxide (CO2) assimilation of individual leaves. Only about 50% of global

radiation is PAR.

eq. 1

,0 totalTotalI c R ,

c: Fraction of radiation which is PAR (0.5).

Conversion factor to convert daylight from units W m-2

to mol m-2

s-1

( = 46 10-6

mol s-1

W-1

(McCree, 1981)).

Rtotal: Global radiation [W m-2

].

I(Total,0): Total PAR per unit ground area above the canopy (mol m-2

s-1

).

In the sun-shade model, irradiance absorbed by sunlit leaves is calculated as absorbed beam plus absorbed

diffuse and scattered beam (total PAR). The irradiance absorbed by shaded leaves is calculated as absorbed

diffuse and absorbed scattered beam. Diffuse and scattered radiations are assumed isotropic and beam

radiation is unidirectional. If the global diffuse radiation is given in the climate input file, the diffuse PAR

above the canopy, I(d,0), is given by:

eq. 2

,0d dI c R ,

Rd: Global diffuse radiation [W m-2

].

I(d,0): Diffuse PAR per unit ground area above the canopy (mol m-2

s-1

).

and the photosynthetic quantum flux I for beam PAR above the canopy, I(b,0), is given by:

eq. 3

,0b total dI R R c ,

Diffuse radiation model (DifRad) If the global diffuse radiation is not given as an input driving variable, the diffuse radiation model (DifRad)

in DAISY calculates the fraction of the total PAR that is diffuse PAR by the principles described de Pury

and Farquhar (1997). It is furthermore assumed, that the fraction of the total PAR that is diffuse, equals the

fraction of total global radiation that is diffuse. Direct beam PAR calculated from extra-terrestrial PAR is

given by:

eq. 4

_ sinm

b optimal exI R ,

Ib_optimal: Beam PAR under a cloudless sky [W m-2

].

: Atmospheric transmission coefficient of PAR (0,72)

m: Optical air mass [unit less].

Rex: Extraterrestrial radiation [W m-2

].

: solar elevation angle [radians].

where the optical air mass is given by:

eq. 5

sin0P

Pm ,

P: Atmospheric pressure [Pa].

P0: Atmospheric pressure at sea level (1.013 105

Pa).

54

Page 55: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The diffuse PAR under a cloudless sky is given by:

eq. 6

sin1_ e

m

aoptimald IfI ,

Id_optimal: Diffuse PAR under a cloudless sky [W m-2

].

fa: Forward scattering coefficient of PAR in atmosphere (0,426).

An expression for the fraction of diffuse radiation (fd) of the total attenuated radiation for cloudless skies is

then given by:

eq. 7

optiamlboptiamld

optiamld

dII

If

__

_,

fd: fraction of diffuse radiation under a cloudless sky [unit less].

Id_optimal: Diffuse PAR under a cloudless sky [W m-2

].

At nighttime the sinus function of the solar elevation angle, sin , becomes negative and then it is assumed

that all radiation is diffuse by setting fd = 1.0. The global diffuse radiation is then given by eq. 8, which is

used to calculated the diffuse and beam PAR according to:

eq. 8

totalRfR dd ,

Rd: Global diffuse radiation [W m-2

].

Rtotal: Global radiation [W m-2

].

This model was originally developed for the decrease of short wave radiation. Short wave radiation has

different scattering and absorption than PAR but, as assumed by de Pury and Farquhar (1997), it is assumed

in the DifRad model that the process is similar for PAR.

Distribution of irradiance in the canopyAbsorption of I depends i.e. on leaf orientation, leaf arrangement in the canopy, sun elevation in the sky,

changes in spectral distribution of I through the canopy, and multiple reflections of I within the canopy. To

describe the penetration of diffuse, beam and scattered PAR in the canopy it is assumed that the decrease of

I down into a canopy is analogous to absorption of light by chlorophyll or other pigments in a solution,

which is described by Beer’s law (Nobel, 1991).

The sunlit leaf area fraction (or the sun fleck penetration), fsun, i, of canopy layer, i, is given by:

eq. 9

( , ) expsun i b if k L ,

Li: Cumulative leaf-area index from top of canopy to layer i (unit less, L = 0 for i = 0 (top), L = Lc for i = n (bottom)).

kb: Extinction coefficient of beam radiation (unit less).

55

Page 56: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The extinction coefficient of beam radiation is given by:

eq. 10

06250 sin ,0.8

06250 sin ,sin

50

,

,.

kb ,

: The solar elevation (radiance).

However, when the sinus function to the solar elevation is close to zero, kb may reach unrealistic values.

Therefore kb has a maximum value when the sinus function returns zero, negative values, or larger the

0.0625 which corresponds to about 4°.

The penetration of sun fleck in the canopy at two different development stages is shown in Figure 1.

Increasing leaf area index through the canopy layers decrease the penetration of sun fleck.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.1 0.2 0.3 0.4 0.5

Leaf area index in layer i , L (total,i)

su

n fle

ck, f

(sun,i)

))

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2

Leaf area index in layer i , L (total,i)

Figure 1. The sun fleck penetration in the canopy layers given by eq. 9 and eq. 10 (using sin = 0.87) at two different

leaf area index of the total canopy (Lc). Left: Lc = 0.5. Right: Lc = 2.3.

The sunlit leaf area index, L(sun,i), of canopy layer, i, is then given by:

eq. 11

1,exp exp /b i b i bsun i

L k L k L k ,

Li: Cumulative leaf-area index from top of canopy to layer i (unit less, L = 0 for i = 0 (top), L = Lc for i = n (bottom)).

While the shaded leaf area index, L(sh,i), in the canopy layer is:

eq. 12

, ,ish i sun iL L L ,

L(sun,i): Cumulative leaf area index of sunlit fraction in canopy layer i (unit less).

L(sh,i): Cumulative leaf area index of shaded fraction in canopy layer i (unit less).

The cumulative sunlit and total leaf area indexes in the canopy layers, at two leaf area index of the canopy,

are shown in Figure 2. In the early stage of crop development, where the total leaf area index is low (top,

Figure 2) all the leaves in the canopy are sunlit. However, at later development stage, where the total leaf

area index is increased the shaded fractions of the leaves increases (bottom, Figure 2).

56

Page 57: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Figure 2. The cumulative sunlit leaf area index, L(sun,i) and shaded leaf area index, L(sh,i) as function of total leaf area

index, L(total,i), through the canopy layers given by eq. 11 and eq. 12 at two different leaf area index of the total canopy

(Lc). Left: Lc = 0.5. Richt: Lc = 2.3.

Sunlit leavesBoth sunlit leaves and shaded leaves absorb diffuse and scattered diffuse irradiance. The total absorbed

irradiance is the sum of absorbed direct beam irradiance, the diffuse irradiance and the scattered beam

irradiance for the sunlit fraction. The cumulative (from top of the canopy to the actual layer) direct absorbed

beam (without scattering) irradiance, I(b,i), is given by:

eq. 13

, ,01 1 exp b ib i b

I I k L ,

I(b,0): Beam quantum flux per unit ground area above the canopy (mol m-2

s-1

).

L: Cumulative leaf-area index from top of canopy (unit less, L = 0 when i = 0 (top), L = Lc when i = 30).

The cumulative (from top of the canopy to the actual layer) quantum flux of scattered beam irradiance, I(bs,i),

is given by:

eq. 14

´´

, ,0 ´

1 exp 21 1 exp 1

2

b ib

cb b b ibs i b

b b

k LkI I k k L

k k

k´b: Modified extinction coefficient of beam radiation due to scattering (unit less).

cb: Canopy reflection coefficient for diffuse PAR ( cb = 0,029 (de Pury & Farquhar, 1997)).

The modified extinction coefficient of beam radiation due to scattering is affected by the leaf scattering.

eq. 15

bb kk ,

57

Page 58: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The cumulative (from top of the canopy to the actual layer) quantum flux of diffuse irradiance, I(d,i), is given

by:

eq. 16

´´

, ,0 ´1 1 exp d

cd d b id i d

d b

kI I k k L

k k,

I(d,0): Diffuse quantum flux per unit ground area above the canopy (mol m-2

s-1

).

k´d: Extinction coefficient of diffuse and scattered PAR radiation (unit less, k´d: = 0,719 (de Pury & Farquhar, 1997)).

cd: Canopy reflection coefficient for diffuse PAR ( cd = 0,036 (de Pury & Farquhar, 1997)).

Li: Cumulative leaf-area index from top of canopy to layer i (unit less, L = 0 for i = 0 (top), L = Lc for i = n (bottom)).

The cumulative (from top of the canopy to the actual layer) quantum flux of irradiance absorbed by sunlit

leaves, I(sun,i), and that absorbed by shaded leaves, I(sh,i), are calculated separately by assuming that diffuse,

scattered diffuse, and scattered beam irradiance reach all leaves.

For the sunlit leaves the total quantum flux in each canopy layer is calculated as the sum of eq. 13, eq. 14,

and eq. 16:

eq. 17

, , , ,sun i b i bs i d iI I I I ,

I(bs,i): Scattered beam quantum flux per unit ground area in the canopy (mol m-2

s-1

).

I(b,i): Direct beam quantum flux per unit ground area in the canopy (mol m-2

s-1

).

I(d,i): Diffuse quantum flux per unit ground area in the canopy (mol m-2

s-1

).

The absorbed irradiances of the sunlit fractions in the canopy layers, at two different leaf area index of the

canopy, Lc, are shown in Figure 3. It is seen that for the sunlit fraction of the leaves the most dominating

type of irradiance which is absorbed is the direct beam fraction even at high leaf area index. However, the

sunlit leaf area fraction decrease through the canopy layers which is not shown in Figure 3. The diffuse and

scattered radiation remains relatively small through the canopy in this example. If the shaded fraction

increases, as during cloudy conditions, then the diffuse and scattered radiation also increases.

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4 0.5

Leaf area index in layer i , L(total,i)

Quantu

m f

lux, I

(m

ole

m-2

s-1

)

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5

Leaf area index in layer i , L(total,i)

I_Sunlit I_beam I_scattered beam I_diffuse

Figure 3. The absorbed quantum flux of the sunlit fractions, I(sun,i), as a function of the cumulative leaf area index, Li ) in

the canopy layers given by eq. 13 - eq. 17 at two different leaf area index of the total canopy (Lc). Left: Lc = 0.5. Right:

Lc = 2.3.

58

Page 59: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Shaded leaves

The irradiance absorbed by the shaded leaf area of the canopy is calculated as the difference between the

total irradiance absorbed by the canopy, I(total,i), (eq. 18) and the irradiance absorbed by the sunlit leaf area,

I(sun,i) (eq. 17). The total quantum flux absorbed by the canopy, I(total,i), is given by:

eq. 18

´ ´

, ,0 ,01 1 exp 1 1 expcb b i cd d itotal i b d

I I k L I k L ,

The quantum flux absorbed by the shaded leaf area, I(sh,i) is then given by:

eq. 19

, , ,sh i total i sun iI I I ,

The absorbed quantum flux of the total, sunlit and shaded parts are shown in Figure 4.

Figure 4. The actual quantum flux of absorbed irradiances (total, sunlit and shaded) as a function of the total leaf area

index in each canopy layer, Li, at two different leaf area index of the total canopy (Lc). Top: Lc = 0.5. Bottom: Lc = 2.3.

Photosynthesis and stomata conductance model

A number of mechanistic models of photosynthesis and stomata conductance at the leaf level has been

developed and widely used (e.g. Boegh et al., 2002; Leuning, 1995; Collatz et al., 1991; Sellers et al., 1996)

that derive from the C3 photosynthesis model of Farquhar et al. (1980) and the empirical stomatal

conductance model of Ball et al. (1987). These interacting models are solved by a numerical method, the

Newton Raphsons method, described by Collatz et al. (1991).

The majority of plant uses the C3 pathway including all the temperate cereals (wheat, barley, etc) root crops

(e.g. potato and sugar beet), and leguminous species (beans, etc.). Another pathway, the C4 pathway, is

important in certain agricultural (and natural) systems. The C4 pathway is important for agricultural crops

like corn, sugar cane, and certain grasses for pasture as Sudan grass.

There are two Farquhar-Ball-Collatz models of photosynthesis for C3 and for C4 plants implemented in the

DAISY code, the FC-C3 and the FC-C4 model, respectively.

Stomatal sub-model

Complex physiological mechanisms adjust the opening of stomata in response to changes in environmental

conditions which affect the stomatal conductance of leaves and the canopy. The stomatal response to

environmental and physiological factors is modeled according to the empirical model developed by Ball et

59

Page 60: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

al. (1987). The model describes stomatal conductance, gs, as linearly related to CO2 assimilation rate, A, and

relative humidity, hs, and CO2 partial pressure, s, at the leaf surface. To improve the description of stomatal

behavior at low CO2 concentrations, s is replaced with s minus the CO2 compensation point, *, according

to Leuning (1995). The stomatal conductance, gs, for the sunlit or shaded fraction, f, and canopy layer, i,

(noted as (f,i)) is given by:

eq. 20

, ,

, ,*

, ,

,

, ,

0

0

totf i s f i

f i f i

s f i f i

s f i

f i f i

A P hwsf m b A

g

b A

,

wsf: Water stress factor (unit less, wsf = 1).

m: Empirical vegetation constant (m = 9 for wheat, m = 11 for soybean unitless).

b(f,i): Stomatal intercept factor, b(f,i) = b L(f,i) (b = 0.01 mol m-2

s-1

).

L(f,i): Cumulative leaf area index (unit less).

hs: The relative humidity at the leaf surface calculated by eq. 21 (unit less). *(f,i): CO2 compensation point of photosynthesis (Pa).

A(f,i): The net photosynthesis rate (mol m-2

s-1

).

s(f,i): The leaf surface partial CO2 pressure (Pa).

Ptot: The atmospheric pressure (100000 Pa).

The stomata conductance for the influx of CO2 and the simultaneous efflux of water are directly linked to

two vegetation-dependent coefficients (m, b). The two vegetation-dependent coefficients, m and b, have

been parameterized by Wang and Leuning (1998) and Ball and Berry (1982) for wheat and soybean,

respectively. The water stress factor, wsf, may be given as a function of ABA.

The stomatal model is merged with diffusion equations for water vapor flux through leaf boundary layer and

stomata. The humidity at the leaf surface, hs, is given, according to Collatz et al. (1991), by solving the

following quadratic (eq. 21) by the second root:

eq. 21

, 2

, , , , , ,* *

_, , ,

0sf tot sf totf i f,i a

s bw s bwf i f i f i f i f i f i

s s l satf i f i f i

w mP A w mP A eh b g h g b

e,

gbw(f,i): Leaf boundary-layer conductance of water (mol m-2

s-1

).

ea: Actual vapor pressure in the air (Pa).

el_sat: Saturated vapor pressure at the leaf surface given by eq. 24 (Pa).

where the actual air vapor pressure, ea, is given by:

eq. 22

sataaa ehe _ ,

ha: The relative humidity of the air (mol mol-1

).

60

Page 61: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The saturated vapor pressure, esat, at the leaf surface or in the air, is according to the code of Collatz et al.

(1991):

eq. 23

6790.4985exp 54.8781919 5.02808ln 273.15

273.15sat a

a

e TT

,

Ta: Air temperature (°C).

The CO2 partial pressure in the leaf interior, i, for C3 and C4 plants, are given by Collatz et al. (1991) and

Collatz et al. (1992), respectively:

eq. 24

, ,

, ,

, ,

1.6 1.4b f i s f i

a totf i f i

s f i b f i

g gi P A

g g, for C3

, ,

,

1.6i a totf i f i

s f i

P Ag

, for C4

i(f,i): CO2 partial pressure in leaf interior (Pa).

A(f,i): Net rate of photosynthesis (mol m-2

s-1

).

gs(f,i): Stomatal conductance of leaves given by eq. 20 (mol m-2

s-1

).

gb(f,i): Leaf boundary-layer conductance (mol m-2

s-1

).

a: The air partial CO2 pressure (35 Pa).

Photosynthesis of C3 leaves

Leaf assimilation (or gross photosynthetic) rate of C3 leaves is described as the minimum of two limiting

rates, wc and we, which are functions that describe the assimilation rates as limited by the efficiency of the

photosynthetic Rubisco capacity, wc, the amount of PAR absorbed, we. Thus, the net leaf photosynthetic

rate, A, is given by:

eq. 25

, , , ,min ; c ef i f i f i f i

A w w R ,

A(f,i): Net photosynthesis (mol m-2

s-1

).

R(f,i): Leaf respiration (mol m-2

s-1

) given by eq. 34.

wc(f,i): Rubisco limited rate of assimilation (mol m-2

s-1

).

we(f,i): Light limited rate of assimilation (mol m-2

s-1

).

61

Page 62: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The transition from one limitation to another appears to be somewhat gradual in reality, it is more correct to

estimate A by solving the following quadratic (eq. 26) by the first root (Collatz et al., 1991):

eq. 26

2

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0f i c f i e f i f i c f i e f iA w w A w w ,

: Empirical curvature constant (0.95).

is an empirical constants that describing the transition between limitations, and are typical close to one

(Collatz et al., 1991). Solving eq. 26, the net photosynthetic rate is given by:

eq. 27

2

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )

4

2

c f i e f i c f i e f i e f i c f i

f i f i

w w w w w wA R ,

0102030405060708090

100

0 10 20 30 40 50

Overall photosynthesis [mmol m-2

s-1

]

Lim

ite

d r

ate

s [m

mo

l m

-2 s

-1]

we wc

0102030405060708090

100

0 10 20 30

Overall photosynthesis [mmol m-2

s-1

]

Figure 5. Relation between the light limited rate, we, and the Rubisco limited rate, wc, as a function of the overall

photosynthesis (A+R) with the parameter settings: Ta = 25 °C, i = 25 Pa, and Vmax25-2

s-1

. Left: Itotal,i =-2

s-1

, Right: Itotal,i-2

s-1

.

Figure 5 shows the relation between the light limited rate, we, and the Rubisco limited rate, wc, as a function

of the overall photosynthesis. When the quantum light flux is high, wc limits the photosynthesis (Fig. 5 left).

On the contrary, when the quantum light flux is low, we limits the photosynthesis (Fig. 5 right). The

assimilation rate limited by the efficiency of the photosynthetic Rubisco capacity, wc, is given by:

eq. 28

*

,

, ,

,

i f i

c f i m f i

cli f i

w VK

,

Vm(f,i): Photosynthetic Rubisco capacity (mol m-2

s-1

).

i(f,i): CO2 partial pressure in leaf interior (Pa).*: CO2 compensation point of photosynthesis (3.69 Pa at 25 °C (de Pury and Farquhar, 1997)).

62

Page 63: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

where the parameter Kcl is given by:

eq. 29

o

cclK

OKK 21 ,

Kc: Michaelis-Menten constant of Rubisco for CO2 (40.4 Pa at 25 °C (de Pury and Farquhar, 1997)).

Ko: Michaelis-Menten constant of Rubisco for O2 (24800 Pa at 25 °C (de Pury and Farquhar, 1997)).

O2: O2 partial pressure in leaf interior (20.5 103

Pa (de Pury and Farquhar, 1997)).

and Vm is the maximum catalytic capacity of Rubisco per unit leaf area (Farquhar et al., 1980).

The light limited rate of photosynthesis, we, is given by:

eq. 30

*

, ,

, , *

, ,2

i f i f i

e f i f i

i f i f i

w J ,

J(f,i): Rate of electron transport (mol m-2

s-1

).

The rate of electron transport, J, depends on the absorbed irradiance, Ile, and an empirical constant, . The

constant describes the non-linear curvature of leaf electron transport responds to irradiance (Farquhar et

al., 1980). The rate of electron transport J is estimated by solving the following quadratic (eq. 31) by the

small root:

eq. 31

2

, , , , , ,0le m le mf i f i f i f i f i f i

J I J J I J ,

Ile(f,i): PAR effectively absorbed (mol m-2

s-1

).

J(f,i): Rate of electron transport (mol m-2

s-1

).

Jm(f,i): Potential rate of electron transport (mol m-2

s-1

).

: Empirical constant, curvature of leaf responds to irradiance (0.7 (de Pury and Farquhar, 1997)).

where the potential rate of electron transport, Jm, is given by:

eq. 32

, ,2.1 m mf i f i

J V ,

The photosynthetic active radiation (PAR) effectively absorbed by the leaf, Ile, is given by Collatz et al.

(1991):

eq. 33

, ,le f i f iI I ,

: Fraction of PAR effectively absorbed (unit less, 0.08 (Collatz et al., 1991)).

I(f,i): Absorbed irradiance given by eq. 17 and eq. 19 (mol m-2

s-1

).

63

Page 64: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

10

20

30

40

50

0 10 20 30 40 50 60

Intercellular CO2 partial pressure [Pa]

Overa

ll p

ho

tosynth

esis

ssss

[m

ol m

-2 s

-1]

0

5

10

15

20

0 500 1000 1500 2000

Absorbed irradiance [ mol m-2

s-1

]

Overa

ll p

ho

tosynth

esis

ss

[m

ol m

-2 s

-1]

Figure 6. The effect of a) the intercellular partial pressure of CO2 and b) the absorbed quantum flux of leaf C3

photosynthesis. The parameter settings: The temperature T = 25 °C, and Vmax-2

s-1

in eq. 42. In a): The

absorbed irradiance (quantum flux density) by the leaf Itotal,0-2

s-1

, in b): The parameters of the

intercellular partial pressure of CO2 i = 25 Pa.

The plot of photosynthesis in Figure 6 is plotted against the intercellular partial pressure of CO2 in the

absence of stomata limitations, and the absorbed quantum flux density.

A central process in cellular metabolism is respiration, the oxidation of sugar to CO2 and water. With

respiration, cells obtain the useful chemical energy, adenosine triphosphate (ATP), from sugar in order to

maintenance life and growth. The leaf respiration rate, R is proportional to the photosynthetic Rubisco

capacity (de Pury & Farquhar, 1997):

eq. 34

, ,0.0089mf i f i

R V ,

R(f,i): Leaf respiration per unit leaf area (mol m-2

s-1

).

Figure 7 compare the Farquhar leaf respiration calculated by eq. 34 with the overall respiration calculated in

Daisy for different crop components. In Daisy the respiration is divided in maintenance and growth

respiration. The overall respiration calculated by eq. 34 is comparable to the total respiration of all the

contribution for growth and maintenance respiration in Daisy. Therefore the net photosynthesis equilibrated

with stomata conductance is calculated by eq. 25. The net photosynthesis is thereafter re-calculated by

adding the respiration given by eq. 34 and subtracting the overall respiration which is the sum of growth and

maintenance respiration for root, storage organ, leaf and stem compartment.

a)

b)

64

Page 65: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Maintenance and growth respiration in Daisy

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(g C

O2 m

-2 h

-1)

RootMaintRespirationSOrgMaintRespirationLeafMaintRespirationStemMaintRespirationRootGrowthRespirationSOrgGrowthRespirationStemGrowthRespirationLeafGrowthRespiration

Farquhar respiration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

01-0

3-9

8

15-0

3-9

8

29-0

3-9

8

12-0

4-9

8

26-0

4-9

8

10-0

5-9

8

24-0

5-9

8

07-0

6-9

8

21-0

6-9

8

05-0

7-9

8

19-0

7-9

8

02-0

8-9

8

16-0

8-9

8

30-0

8-9

8

(g C

O2 m

-2 h

-1)

Figure 7. Top: The maintenance and growth respiration calculated by different crop components in Daisy. Bottom:

Farquhar “leaf respiration” calculated by eq. 34.

Photosynthesis of C4 plants

The photosynthetic model of C4 plants is based on the model developed by Collatz et al. (1992) and predicts

photosynthesis as a function of temperature, photosynthetic active quantum flux density, CO2 pressure and

relative humidity at the leaf surface. The important adjustable parameters in the C4 model are the capacities

of Rubisco and PEP carboxylase to fix CO2 which can be estimated from leaf photosynthetic responses to

light and CO2. The C4 photosynthesis model link the C3 photosynthesis in the bundle sheath chloroplast with

a carbon pump driven by the activity of PEP carboxylase in the mesophyll leaf cells. Carbon derived from

intercellular CO2 is fixed into C4 acids in the mesophyll, transported to the bundle sheath cells and released

as CO2. Leakage of inorganic carbon from the bundle sheath cells to the intercellular spaces occurs because

there is a large gradient in CO2 concentration created by the pump. The steady state balance of these

transport processes, the net leaf photosynthetic rate, A, is given by:

eq. 35

, , , , ,min c e sf i f i f i f i f i

A w ; w ; w R ,

A(f,i): Net photosynthesis (mol m-2

s-1

).

R(f,i): Leak of CO2 from the bundle sheath (mol m-2

s-1

).

65

Page 66: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

wc(f,i): CO2 limited rate of assimilation (mol m-2

s-1

).

we(f,i): Light limited rate of assimilation (mol m-2

s-1

).

ws(f,i): Rubisco limited rate of assimilation (mol m-2

s-1

).

At rate limiting light intensities, the efficiency of CO2 fixation with respect to absorbed light (quantum

yield) determines the rate of photosynthesis. The light dependent rate is given by:

eq. 36

, ,e absf i f iw a I ,

aabs: Leaf absorbtivity to PAR (aabs = 0.86 (Collatz et al., 1992)).-1

(Collatz et al., 1992)).

I(f,i): Absorbed irradiance given by eq. 17 and eq. 19 (mol m-2

s-1

).

At low CO2 concentrations, empirical studies show that net photosynthesis, A, increases linearly from the

compensation point (near zero Pa) to rate saturation which occur at an intercellular CO2 partial pressure of

about 10 Pa. Thus, the CO2 limited flux given by Collatz et al. (1992):

eq. 37

,

,

i f i

c Tf i

tot

w kP

,

kT: Initial slope of photosynthetic CO2 response (0.6 mol m-2

s-1

(Collatz et al., 1992)).

(f,i): CO2 partial pressure in leaf interior (Pa).

Ptot: The atmospheric pressure (100000 Pa).

Empirical observations show when wc and we are not limiting, then the rate of assimilation approaches a rate,

ws, that is largely independent of CO2 and light. The rate under these conditions is controlled by the capacity

for CO2 fixation by Rubisco:

eq. 38

, ,s mf i f iw V ,

Vm(f,i): Photosynthetic capacity per unit leaf area given by eq. 52 (mol m-2

s-1

).

The transition from one limitation to another appears to be somewhat gradual and therefore the

photosynthesis is estimated by solving the following quadratics (eq. 39 and eq. 40) by the first root:

eq. 39

2

, , , , , ,0s e s ef i f i f i f i f i f i

M w w M w w ,

M(f,i): The flux determined by Rubisco and light (mol m-2

s-1

).

: Curvature parameter (0.83 (Collatz et al., 1992)).

where the curvature parameter, , gives a gradual transition between the light limited and Rubisco limited

flux. The limitation on the overall rate M and the CO2 limited flux, wc, the likewise expressed as a quadratic:

eq. 40

2

, , , , ,0c cf i f i f i f i f i

A A M w M w ,

A(f,i): The flux determined by M and CO2 (mol m-2

s-1

).

: Curvature parameter (0.93 (Collatz et al., 1992)).

66

Page 67: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

where the curvature parameter, , gives a gradual transition between M and the CO2 limited flux.

Photosynthetic capacity

Rubisco is the most abundant protein in leaves of C3 plants, constitution up to half the total leaf protein. For

this reason it plays a crucial role in the nitrogen economy of plants. To estimate photosynthetic active

nitrogen (N) the non-functional and critical limits of N is estimate. The non-functional N is considered

structural N, and not used in photosynthesis. The N content above critical is considered luxury N uptake,

and also not used in photosynthesis. Hence, the photosynthetic active Rubisco nitrogen, Np, is given by:

eq. 41

, 0

,

0, 0

a n a n c n

p c n a n c n

a n

N N N N N N

N N N N N N N

N N

,

Np: Photosynthetic active Rubisco associated nitrogen (mol m-2

).

Na: Actual leaf nitrogen (mol m-2

).

Nc: Critical (luxury) leaf nitrogen (mol m-2

).

Nn,: Non-functional (structural) leaf nitrogen (mol m-2

).

where the actual leaf nitrogen content in the canopy, Na, is given by the crop production component in

DAISY. The critical, Nc, and non-functional, Nn, limits are given by the CropN component in DAISY.

The Rubisco N distribution with depth in the canopy layer Np(f,i) can be defined by different functions. An

example could be the exponential distribution given by Boegh et al. (2002) as described in section 0.

The maximum leaf Rubisco capacity in each layer, Vmaxi, at 25 °C is given by:

eq. 42

max 2 5( , ) ( , )f i n p f iV N ,

Vmax25,i: The maximum leaf Rubisco capacity at 25 °C (mol m-2

s-1

).

n: Ratio of measured Rubisco capacity to leaf nitrogen (0.116 mol mol-1

s-1

for wheat (Boegh et al., 2002)).

The canopy photosynthetic capacity in the canopy is described as a function of the Rubisco N distribution:

eq. 43

( , ) max ( , ) ( , )m f i f i p f iV V N ,

Vmax(f,i) The maximum leaf Rubisco capacity at leaf temperature given by eq. 52 (mol m-2

s-1

).

The partitioning of leaves into sunlit and shaded fractions is continually changing throughout the day. The

calculation of the photosynthetic capacity is affected by these separate fractions.

Sunlit leaves

The photosynthetic capacity of the sunlit leaf fraction, VmSun,i, of each canopy layers is given by:

eq. 44

67

Page 68: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

,

max( , ), ,

,

1 exp n b sun i

sun im sun i sun i

n b sun i

k k LV L V

k k L,

kb: Extinction coefficient of beam radiation (unit less, given by eq. 10).

Vm(sun,i): The canopy photosynthetic capacity in sunlit leaves layer i (mol m-2

s-1

).

Vmax(sun,i): The maximum leaf Rubisco capacity in sunlit leaves at temperature Ta given by eq. 52 (mol m-2

s-1

).

Shaded leaves

Photosynthetic capacity of the shaded leaf fraction, VmSh, of each canopy layers is given by:

eq. 45

, , ,m sh i m total i m sun iV V V ,

Vm(sun,i): The Rubisco photosynthetic capacity to leaf nitrogen in the sunlit leaf fraction (mol m-2

s-1

).

Vm(sh,i): The Rubisco photosynthetic capacity to leaf nitrogen in the shaded leaf fraction (mol m-2

s-1

).

Figure 8 show the different fractions of the photosynthetic capacity in the canopy together with the nitrogen

distribution.

0

50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5

Cummulative leaf area index in layer i , L i

Ca

no

py p

ho

tosynth

etic_

cap

acity (

mm

ol m

-2 s

-1)

0

50

100

150

200

250

nitro

ge

n d

istr

ibu

tio

n

(mm

ol m

-2)

0

50

100

150

200

250

300

0 0.5 1 1.5 2

Cummulative leaf area index in layer i , L i

Ca

no

py p

ho

tosynth

etic_

cap

acity (

mm

ol m

-2 s

-1)

0

50

100

150

200

250

nitro

ge

n d

istr

ibu

tio

n

(mm

ol m

-2)

Vmsun Vmsh Np

Figure 8. The canopy photosynthetic capacity distributions (left axis) and the nitrogen distribution of Rubisco N (right

axis) in the canopy layers. Lc = 2.3 and NC = 64.3 mg g-1

.

68

Page 69: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Canopy nitrogen distribution sub-model (N-dist)The maximum leaf Rubisco capacity in each layer is defined as function of photosynthetic active nitrogen.

The distribution of photosynthetic active nitrogen in the canopy can be described by different functions. An

example could be the Ndist exp model which is an exponential distribution according to Boegh et al.,

(2002):

eq. 46

, , , ,0 ,exp np f i p f f i

N N k L ,

kn: Coefficient of leaf nitrogen allocation in a canopy (0,713 (Boegh et al., 2002)).

L(f,i): Cumulative leaf-area index.

Np(f,i): Photosynthetic active Rubisco associated nitrogen distribution (mol m-2

).

N p,(f,0): Photosynthetic active Rubisco associated nitrogen in the top of the canopy (mol m-2

).

where the photosynthetic active nitrogen (Rubisco N) in the top of the canopy, Np,(f,0), is given by:

eq. 47

, ,0

,1 exp

n p

p f

n f i

k NN

k L,

Np: Photosynthetic active Rubisco associated nitrogen (mol m-2

) given by eq. 41.

Figure 9 show the distribution of photosynthetic active nitrogen (Rubisco N) in the canopy where the Np,C =

248 mmol m-2

and Np,0 = 221 mmol m-2

.

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5

Cummulative leaf area index in layer i , L i

nitro

ge

n d

istr

ibu

tio

n

(mm

ol m

-2)

0

50

100

150

200

250

0 0.5 1 1.5 2

Cummulative leaf area index in layer i , L i

Np Ns

Figure 9. The nitrogen distribution of Rubisco N (left axis) as a function of the cumulative leaf area index in the canopy

layers (Li) with Np,c = 248 mmol m-2

. Left: Lc = 0.5. Right: Lc = 2.3.

Temperature dependencies

Several of the photosynthetic- and stomatal-parameters depend on the temperature of the leaf. For C3 plants

this includes the parameters Kc, Ko, m, and Jm. For C4 plants it concerns the parameters kT and Vm.

kT

The pseudo-first order rate constant with respect to CO2, kT, is given by (Collatz et al., 1992):

eq. 4825

10

10

Ta

kTk kQ , for C4

Ta: Air temperature (°C).

69

Page 70: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

kT: The pseudo-first order rate constant with respect to CO2 (mol m-2

s-1

).

k: Rate constant (0.6 mol m-2

s-1

).

Q10k: The Q10 parameter of k (1.8).

Kc, Ko, and *

For the C3 photosynthesis model, the parameters Kc, Ko, and are adjusted for the effect of temperature by

the Arrhenius function (de Pyry and Farquhar, 1997). For the C4 photosynthesis model, only the is used

in the model and adjusted by the Arrhenius function:

eq. 49

,

, 25,

( 25)exp(

298 273

a x a

T x x

a

E Tk k

R T, for C3 and C4

kT,x: Parameter x at T °C.

k25,x: Parameter x at 25 °C.

Ea,x: Activation energy for parameter x (x = Kc, Ko,*).

Ta: Air temperature (°C).

Activation energies of the model parameters adjusted for temperature dependencies by eq. 49 and values at

25 °C are listed in Table 1 and defined as default values in the Daisy model.

Table 1 Activation energies and values at 25 °C of the model parameters adjusted for temperature dependencies by eq.

49 listed in de Pury & Farquhar (1997).

Parameter Ea k25

(J mol-1

) (Pa)*

29000 3.69

Ko 36000 24800

Kc 59400 40.4

Jm

The parameter Jm, for calculation of the electron-transport limited rate of photosynthesis, is also adjusted by

temperature according to de Pury & Farquhar (1997). However, for temperatures below 10 C° the

temperature function is reduced with a linear function. Below 4 C° Jm = 0:

eq. 50

25

,

2981 exp

273,15 298 298exp

273,15 298 273,151 exp

273,15

a a Jm

m m

a a

a

S H

T E Rj J

R T S T H

R T

70

Page 71: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

eq. 51

, 10

4, 4 10

6

0, 4

T

m a

am m a

a

j T C

TJ j T C

T C

, for C3

Ta: Air temperature (°C).

Jm25: Jm at 25 °C is given by 2.1 Vmax25(f,i) (de Pury and Farquhar, 1997).

R: Universal gas constant (8.314 J mol-1

K-1

).

H: Curvature parameter of Jm (220000 J mol-1

(de Pury and Farquhar, 1997)).

S: Electron transport temperatures response parameter (710 J mol-1

K-1

(de Pury and Farquhar, 1997)).

Ea,Jm: Activation energy for Jm (37000 J mol-1

(de Pury and Farquhar, 1997)).

Vm

In the C3 photosynthesis model, the maximum photosynthetic Rubisco capacity is adjusted for the

temperature dependency by a function defined by Harley et al. (1992) and partly by Bernacchi et al. (2001):

eq. 52

, max

max

, max 25 ,

, max

exp273,15

273,151 exp

273,15

a V

V

a

m f i f i

a d a V

a

EC

R TV V

Sv T E

R T

, for C3

Vmax25(f,i): The maximum leaf Rubisco capacity given by eq. 42 (mol m-2

s-1

).

Ea,Vmax: Activation energy for Vmax (65330 J mol-1

(Bernacchi et al., 2001)).

Eda,Vmax: Deactivation energy for Vmax (202900 J mol-1

(Harley et al., 1992)).

C,Vmax: Temperature scaling constant for Vmax (26,350, (Bernacchi et al., 2001)).

Sv: Entropy term for Vmax (650 J mol-1

K-1

(Harley et al., 1992)).

In the C4 photosynthesis model, the effect of temperature on the photosynthetic Rubisco capacity is given by

Collatz et al. (1992):

eq. 5325

10

10max 25

,1 exp 0 3 40 1 exp 0 2425 15

Ta

Vm

m f i

a a

V QV

+ . T - + . -T, for C4

Ta: Air temperature (°C).

Vmax25(f,i): The maximum leaf Rubisco capacity given by eq. 42 (mol m-2

s-1

).

Q10Vm: The Q10 parameter of Vm (2.4).

The effect of temperature on the leaf C3 parameters are show in Figure 10 together with the effect of

temperature on the overall photosynthesis.

71

Page 72: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Figure 10. The effect of temperature on leaf C3 photosynthesis parameters: a) Jm and Vm, b) Kc, Ko, Kcl given by eq. 29,

and *, c) the overall photosynthesis and respiration calculated by Farquhar. The intercellular partial pressure of CO2 is -2

s-1

and Vmax-2

s-1

in eq.

42.

Calculation procedure of the photosynthesis-conductance model

There is a strong interaction between the photosynthesis and the stomatal sub-models in this system. The

Daisy code is constructed to obtain a numerical solution, using an initial guess for the stomatal conductance

(gs = (Li-1 -Li)/5 mol s-1

m-2

), and the CO2 partial pressure in the leaf interior ( i = 0.5 a = 17.5 Pa), the code

calculates the leaf temperature, photosynthesis, gs and i by iterations using the Newton-Raphson method

until i is stable. Newton-Raphson Method states that if x = r is an approximation to f(x) = 0, then a better

solution is given by:

eq. 54

rf

rfrr new

,

72

Page 73: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

When estimating i, the function f(x) is given by:

eq. 55

, ,1i if i f i

f x t t ,

i(f,i): CO2 partial pressure in leaf interior in the sunlit or shaded fraction, f, in canopy layer i (Pa).

t: Time step (hour).

where i for C3 plants is calculated using eq. 24. The derivates of f follows:

eq. 56

, ,

1 1 1.6 1.4 1tot

s f i b f i

f x P dxg t g t

,

gs(f,i): Stomatal conductance of leaves (mol m-2

s-1

).

gb(f,i): Leaf boundary-layer conductance (mol m-2

s-1

).

where dx for C3 plants is given by:

eq. 57

, 2

,

*clm f i

i clf i

Kdx V

K

, if wc < we

, 2

,

*3

2 *m f i

i f i

dx J , if wc we

Vm(f,i): Photosynthetic capacity per unit leaf area in the sunlit or shaded fraction, f, in canopy layer i (mol m-2

s-1

).

i(f,i): CO2 partial pressure in leaf interior in the sunlit or shaded fraction, f, in canopy layer i (Pa).

Kcl: The effective Michaelis-Menten coefficient CO2 (Pa).*: CO2 compensation point of photosynthesis (Pa).

Then the Newthon-Rapson solution to i(f,i)(t) is then given by:

eq. 58

, ,

, ,

, ,

11

1 1 1.6 1.4 1

i if i f i

i if i f i

tot

s f i b f i

t tt t

P dx tg t g t

, for C3

Which is used to calculate the partial pressure of CO2 in stomata. For C4 plants, the same consideration can

be done giving:

eq. 59

, ,

, ,

,

11

1 1.6 1

i if i f i

i if i f i

tot

s f i

t tt t

P dx tg t

, for C4

73

Page 74: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

where the dx for C4 plants is given by:

eq. 60

ififif

ififT

wcMA

MAktdx

,,,

,,

2, for C4

kT: Initial slope of photosynthetic CO2 response (k = 0.6 mol m-2

s-1

(Collatz et al., 1992)).

References

Ball,J.T. and Berry,J.A., 1982. The Ci/Cs ratio: A basis for predicitong stomatal control of photosynthesis.

In: pp. 88-92.

Ball,J.T., Woodrow,I.E. and Berry,J.A., 1987. A model predicitng stomatal conductance and its contribution

to the control of photosynthesis under different environmental conditions. In: I.Biggins (Editor),

Progress in Photosynthesisi Research. Martinus Nijhoff Publishers, Netherlands, pp. 221-224.

Bernacchi,C.J., Singsaas,E.L., Pimentel,C., Portis,A.R. and Long,S.P., 2001. Improved temperature

response functions for models of Rubisco-limited photosynthesis. Plant Cell and Environment,

24(2): 253-259.

Boegh,E. and Soegaard,H., 2004. Remote sensing based estimation of evapotranspiration rates. International

Journal of Remote Sensing, 25(13): 2535-2551.

Boegh,E., Soegaard,H., Broge,N., Hasager,C.B., Jensen,N.O., Schelde,K. and Thomsen,A., 2002. Airborne

multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic

efficiency in agriculture. Remote Sensing of Environment, 81(2-3): 179-193.

Collatz,G.J., Ball,J.T., Grivet,C. and Berry,J.A., 1991. Physiological and Environmental-Regulation of

Stomatal Conductance, Photosynthesis and Transpiration - A Model That Includes A Laminar

Boundary-Layer. Agricultural and Forest Meteorology, 54(2-4): 107-136.

Collatz,G.J., Ribas-Carbo,M. and Berry,J.A., 1992. Coupled Photosynthesis-Stomatal Conductance Model

for Leaves of C4 Plants. Australian Journal of Plant Physiology, 19(5): 519-538.

de Pury,D.G.G. and Farquhar,G.D., 1997. Simple scaling of photosynthesis from leaves to canopies without

the errors of big-leaf models. Plant Cell and Environment, 20(5): 537-557.

Farquhar,G.D., Caemmerer,S.V. and Berry,J.A., 1980. A Biochemical-Model of Photosynthetic Co2

Assimilation in Leaves of C-3 Species. Planta, 149(1): 78-90.

Harley,P.C., Thomas,R.B., Reynolds,J.F. and Strain,B.R., 1992. Modeling Photosynthesis of Cotton Grown

in Elevated Co2. Plant Cell and Environment, 15(3): 271-282.

Leuning,R., 1995. A Critical-Appraisal of A Combined Stomatal-Photosynthesis Model for C-3 Plants. Plant

Cell and Environment, 18(4): 339-355.

McCree,K.J., 1981. Photosynthetically active radiation. In: O.L.Lange, P.S.Nobel, C.B.Osmond, and

H.Zeigler (Editors), Physiological Plant Ecology. Vol 12A, Encycclopedia of plant physiology.

Springer-Verlag, Berlin, pp. 41-55.

Nobel,P.S., 1991. Physicochemical and environmental plant physiology. Academic Press, San Diego.

Sellers,P.J., Randall,D.A., Collatz,G.J., Berry,J.A., Field,C.B., Dazlich,D.A., Zhang,C., Collelo,G.D. and

Bounoua,L., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model

formulation. Journal of Climate, 9(4): 676-705.

Wang,Y.P. and Leuning,R., 1998. A two-leaf model for canopy conductance, photosynthesis and

partitioning of available energy I: Model description and comparison with a multi-layered model.

Agricultural and Forest Meteorology, 91(1-2): 89-111.

74

Page 75: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.4 Estimating root density in Daisy

75

Page 76: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$%"#&' "() *++" ,)&!#"- .*+$ *++" ,*- $%"")*%&, !#/) !" #$"%&%'(!)∗* +,--!. +/..!"01* %)2 34"!) 5%)(!) !"#$%&"'( )* +),$!-./$!0 12346!1%"7'!)7 /8 #9", 0.70"%. 3 ,!) !(54;$%--!9<"2 #..= >* ?@AB C%%(7"01* 6!)'%"-D 7/$!" ?E* ?BBE !"#$% # ! "#$% &'&() *( (+"(!, '! (-&()$ '/ )00" ,(!%$"1 ,$%")$23"$0! 2'%(,0! ,(!%(/1 &0&3/'"(, #0-04(!$03% 5(/,% "0 )0* )0&%6 7#( )0* )0&% ')(-0,(/(, '% #'8$!4 ' 3!$90)- ,(!%$"1 $! "#( ,$)( "$0! &')'//(/ "0 "#( )0*%:23" 8')$'2/( $! "#( ,$)( "$0! &()&$!,$ 3/') "0 "#( )0*6 ! (' # '%( #0*"0 5!, "#( ,$%")$23"$0! &')'-("()% 9)0- "#( )00" ,)1 -'""() '!, "#( %$;(09 "#( )00" ;0!(6 !"#$%&' ()(*&+,"- ."&-$ ! " $%&"! ' ()*+ ,'%()*- "!& ."/' 0123456 *+' %$$* &'!7)*8 &)7*%)9:*)$! Lz;$% " %$< "! 9' &'7 %)9'& 98Lz = L0 e−az 015(+'%' L0 )7 *+' %$$* &'!7)*8 "* *+' 7$)= 7:%;" '6 a )7 " &)7*%)9:*)$! <"%">'*'%6"!& z )7 *+' &'<*+ 9'=$( 7$)= 7:%;" '?@' +'%' "77:>' *+"* *+' &'!7)*8 )7 :!);$%>=8 &)7*%)9:*'& $! *+' +$%)-$!*"=<="!'6 "! "77:><*)$! *+"* ;")=7 ()*+ '?/? %$( %$<7?A+' <"%">'*'%7 a "!& L0 ()== 9$*+ B"%8 ()*+ *)>'? C$% " <%$&: *)$! $%)'!*'&7)>:="*)$! >$&'= =)D' E")78 0F"!7'! '* "=?6 1221G H9%"+">7'! "!& F"!7'!6 IJJJ56)* "! 9' >$%' $!B'!)'!* *$ 7<' );8 *+' &'!7)*8 )! *'%>7 $; " :>:="*'& %$$*&%8 >"**'% Mr "!& *$*"= %$$* &'<*+ dc6 "7 &'7 %)9'& )! F"!7'! '* "=? 0122J5 $%*+' ;$==$()!/?@' &'K!' *+' %$$* &'<*+ "* *+' =$('7* &'<*+ (+'%' *+' %$$* &'!7)*8 )7 "*"9$B' 7<' )K'& *+%'7+$=& Lm? L8 )!7'%*)!/ *+)7 )! 0156 (' /'*

Lm = Ldc= L0 e−adc 0I5@' $!B'%* *+' %$$* >"77 *$ %$$* ='!/*+ lr 98 "77:>)!/ *+' 7<' )K %$$*='!/*+ Sr )7 " D!$(! $!7*"!* 0%"*+'% *+"! B"%8)!/ ()*+ &'<*+5

lr = Sr Mr 0M5∗ !""#$%!&'(&) *+,-!". /*01 23454555563 78*(91 '*($:'(&*.<=9.'<1

76

Page 77: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$#%& '$$# &"()#! *+ %&+$ #!" *(#")'%& $, #!" '$$# -"(+*#. $/"' #!" 0'$1&"lr =

0Lz dz =

0L0 e−az dz =

L0

a2345. *(+"'#*() #!" "60'"++*$( 7" )"# ,$' L0 ,'$8 234 *( 294 7" )"#

Lm = lr a e−adc 2:4;, 7" +<=+#*#<#" W = −adc %(- *+$&%#" #!" >($7( /%&<"+ $( #!" '*)!# +*-"#!*+ )*/"+ <+WeW = −Lm

dc

lr2?4 !" +$&<#*$( #$ #!*+ "@<%#*$( 7*#! '")%'- #$ W !%00"(+ #$ =" #!" -"1(*#*$( $,#!" A%8="'#BC ,<( #*$( 2E<&"'F GHIJK A%8="'#F GH:I4L !" ,<( #*$( $( #!" &",#!%(- +*-" $, #!" "@<%#*$( *+ -"0* #"- $( 1)<'" GL

BML:MML:GGL:9

9L:J

B: B3 BJ B9 BG M GN*)<'" GO WeWP*( " 7" ($7 >($7 #!" /%&<" ,$' W8 7" %( 1(- #!" -"+*'"- -"(+*#. 0%B'%8"#"'+ L0 %(- a =. +<=+#*#<#*() =% >a = −W/dc 2H4

L0 =Lm

e−adc= Lmeadc 2I4 ! "#$%&' )*+#,'*- ,* WC" +#%'# =. -*/*-*() #!" ,<(#*$(+ *(#$ 8$($#$(* *(#"'/%&+ =. 1(-*() #!" -"'*/%B#*/"

dW eW

dW= eW + WeW 2Q49

77

Page 78: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" "#$%&'()eW + WeW = 0 *+,-!%. ()" .(/$&'()0 W = −11 !" "234"..'() W eW '. 5" 4"%.')7 8"/(9 −1 %)5') 4"%.')7 %8(:" −11 !$.0 W = 0 '. % 7/(8%/ ;')';$;1<') " limQ→−∞ W eW = 0 9" 7"& % .')7/" .(/$&'() 9!") −Lm

dc

lr'. "2% &/=%& &!" 8(&&(; 3(')& *−1e−1-0 &9( 9!") '& '. %8(:" *'& '. )":"4 3(.'&':"-0 %)5)()" 9!") '& '. 8"/(91 !" /%&"4 .'&$%&'() (44".3()5. &( &!" %." 9!"4" &!"4"%4" ').$> ")& 4((& lr &( .%&'.?= &!" ;')';%/ 4((& 5").'&= Lm 9'&!') &!" 7':")4((& @()" dc1A(&! .(/$&'(). %4" :%/'50 8$& 4"34".")& 5'B"4")& 5'.&4'8$&'().1

• !" .(/$&'() ?(4 W < −1 4"34".")&. % /%47" a 3%4%;"&"41 C4(; *D- 9"."" &!'. %/.( ;"%). L0 '. /%47"1 !$.0 &!" .(/$&'() (44".3()5. &( % 4((&@()" 9'&! % !'7! 5").'&= )"%4 &!" &(3 &!%& 5" 4"%.". 4%3'5/= &( Lm %&&!" 8(&&(; (? &!" 4((& @()"0 %)5 ()&')$". &( 5" 4"%." .( ()/= % .;%// ()&4'8$&'() &( &!" &(&%/ 4((& /")7&! ?4(; 8"/(9 !" 4((& @()"1• !" .(/$&'() ?(4 W > −1 *%)5 &!$. .;%// :%/$". (? a %)5 L0- (44".3()5.&( % /(9 4((& 5").'&= )"%4 &!" &(3 &!%& 5" 4"%.". ./(9/=0 %)5 &!$. 7':". %/%47"4 ()&4'8$&'() &( &!" &(&%/ 4((& /")7&! ?4(; 8"/(9 &!" 4((& @()"1E. &!" &(&%/ 4((& /")7&! ') 4"%.".0 34"..')7 W &(9%45. 0 (4 −∞0 &!" 5'B"4") "8"&9"") &!" .(/$&'(). 74(91 F!") &!"4" '. G$.& ")($7! 4((&. &( .%&'.?= &!" ()&4%')&. %& W = −10 &!" &9( .(/$&'(). ():"47". &( ()"1 E. 9" /'H" ($4 4((&.&( .&%= ;(.&/= 9'&!') &!" 4((& @()"0 9" !((." &!" .(/$&'() ?(4 W < −11 F" %) &!$. I)5 W )$;"4' %//= $.')7 J"9&()K. ;"&!(5 %)5 %) ')'&'%/ 7$".. (? −21 !" #$%$&'( )*+,&- !" 5'.&4'8$&'() ') *+- ';3/'". % 74%5$%/ 5" 4"%." (? 4((&. 7(')7 &(9%45.0 8$&)":"4 4"% !')7 @"4(1 !"4" %4" &9( 34(8/";. 9'&! &!'.1 !" I4.& ()" '. ";L34' %/0 ?(4 .(;" .('/. '& 5(".)K& ;%& ! 9!%& 9" (8."4:"0 4%&!"4 &!%) % 74%5$%/5" 4"%."0 &!"4" '. .!%43 5" 4"%." %& % .3" 'I 5"3&!0 %. &!" 4((&. %4" $)%8/"&( 3")"&4%&" ?$4&!"4 5(9) 1 !" (&!"4 ()" '. 34% &' %/0 &(( /%47" % 4((& @()";%H". (;3$&%&'() ';34% &' %/1 !" 9%= 9" ;(5"/ &!" I4.& '..$" '. &( 5':'5" &!" 4((& 5"3&! ')&( % 4(3.3" 'I %)5 .('/ ')5"3")5")& 3(&")&'%/ 4((& 5"3&! dc0 %)5 .('/ .3" 'I %)5 4(3')5"3")5")& ;%2';$; 4((& 5"3&! ds1 !" % &$%/ 4((& 5"3&! da '. &!") &!".!%//(9".& (? &!"." &9(1

da = min(dc, ds) *++-F" )(9 4"%&" % ;(5'I"5 4((& 5").'&= ?$) &'() L∗

z 8= 5"I)')7 '& &( @"4(8"/(9 da0 %)5 % Lz . %/"5 &( 34"."4:" ;%.. 8%/%) " %8(:"1L∗

z =

k∗Lz '? z ≤ da

0 '? z > da

*+M-9!"4"k∗ =

lr∫ da

0 Lz dz*+N-N

78

Page 79: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"# #$%&'() *$ ! +,$*%-.#/ !"# %"&'0- 2( 3-# ,'*- 2 ,$4 ,$+ 4' ! 2 4$ 3'.-(#'$(2% .$3-% *5 2##".'() !2 !- +%2( # 2,- 3-(#'%5 +2 6-3 '( !- ,$4/ 7", #- $(3 3'.-(#'$( x '# !$,'8$( 2%9$, $)$(2% $ !- ,$4/ :!- ,$$ 3-(#' 5 2 2 #+- '; +$'( 2( *- 3-($ -3 Lz,x92(3 4- !$$ - $,')$ #$ L0,0 '# !- !- ,$$ 3-(#' 5 '( !- $+ $< !- ,$4/ =--;)",- >/:7?7@ A(#-, ;)",- !-,-/ B')",- >@ C,$+ ,$4/0- !-( 3-;(- !- <$%%$4'() ,$$ 3# ,'*" '$(Lz,x = L0,0 e−azze−axx DEFG4!-,- az 2(3 az $( ,$% !- 3-(#' 5 3- ,-2#- '( !- 4$ 3'.-(#'$(#/ !" #$%&$%' ()* +,-,.*(*-/:$ ;(3 !- +2,2.- -,# az9 ax 2(3 L0,09 4- 2##".- 2# *-<$,- !2 !- ,$$ 3-+ !2(3 ,$$ .2## '# 6($4(9 2(3 ($4 233' '$(2%%5 !2 !- ,$$ ,23'"# wc '# 6($4(/0- 3-;(- !- ,$$ 8$(- 3-+ ! dc $ *- !- 3-+ ! ,')! *-%$4 !- ,$4 Dx = 0G4!-,- !- ,$$ 3-(#' 5 '# Lm/ H# x = 0 '# !- +%2 - 4!-,- DEFG +,-3' # !-!')!-# 3-(#' 59 !- 2&-,2)- ,$$ 3-(#' 5 2 !2 3-+ ! 4'%% *- 4-%% *-%$4 Lm/='.'%2,'%59 4- 3-;(- !- ,23'"# wc 2# !- !$,'8$( 2% 3'# 2( - <,$. !- ,$4 4!-,- !- ,$$ 3-(#' 5 2 !- #",<2 - Dz = 0G

Lm = Ld,0 = L0,r DEIG:!- $ 2% ,$$ %-() ! $( $(- #'3- $< !- ,$4 DlRG9 4!' ! 4- 2##".- '# 6($4(<,$. $", ,$+ .$3-%9 '# !- '( -),2% $< !- ,$$ 3-(#' 5 $&-, !- !2%< +%2(-lR =

0

0 Lz,x dz dx=

0

0 L0,0 e−azze−axx dz dx

=L0,0

azax

DEJG:!"# DEFG 2( *- ,-4,' -(Lz,x = lR az ax e−azze−axx DEKGL5 "#'() DEKG '( DEIG 4- )-

Lm = lR az ax e−azd DEMGLm = lR az ax e−axr DENG:!"# e−azd = e−axr $,

ax =dc

wc

az D>OGF79

Page 80: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "#$%&'"#( )*+, "# )-., /% (%'Lm = lR az

d

raz e−azd )*-,01 /% $23$'"'2'%

Q = −azd )**,4#5 "$674'% '8% 9#6/# :472%$ 6# '8% &"(8' $"5%; '8"$ (":%$ 2$<Q2 eQ = Lm

d r

lR)*=,>8% 7%1' 84#5 $"5% %?@&%$$"6# "$ "772$'&4'%5 "# A(2&% =B C#7"9% )D,; #6365!36'8%&%5 '6 (":% '8% $672'"6# '6 )*=, 4 #4E%B

++BF--BF**BF=

G-+ GH GD GI G* +J"(2&% =< Q2eQ ! "#$%&' )*+#,'*- ,* QK% $'4&' 3! 5":"5"#( '8% 12#'"6#$ "#'6 E6#6'6#" "#'%&:47$ 3! A#5"#( '8% 5%&":4G'":%d(Q2 eQ)

dQ= 2QeQ + Q2eQ )*I,>8% %M24'"6#

2QeQ + Q2eQ = 0 )*F,84$ '/6 $672'"6#$; Q = 0 4#5 Q = −2; 4#5 '8% %?@&%$$"6# Q2 eQ "$ "# &%4$"#(3%76/ −2; 5% &%4$"#( 3%'/%%# −2 4#5 0; 4#5 "# &%4$"#( 436:% 0B >82$; Q = 0 "$4 76 47 )4#5 "# '8"$ 4$% 47$6 (76347, E"#"E2E; 4#5 Q = −2 "$ 4 76 47 E4?"E2EBK% 4&% #6' "#'%&%$'%5 "# @6$"'":% :472%$ 16& Q; '8%! 6&&%$@6#5 '6 #%(4'":%:472%$ 16& az; 4#5 '8% $"E@7"A 4'"6# "# )-D, 4&% 6#7! :47"5 "1 az > 0BF80

Page 81: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" $ limQ→−∞ Q2 eQ = 0 %$ &$' ( )!"&*$ "$&('!+$ ),*-'!," %.$" Lmd rlR

!)$/( '*0 (' '.$ ',1 1,!"' 222e−234 '%, %.$" !' !) )5(**$6 2!' !) "$+$6 "$&('!+$34("7 ","$ %.$" !' !) *(6&$68 9.$ *('$6 )!'-('!," ,66$)1,"7) ', '.$ ()$ %.$6$'.$6$ (6$ !")-: $"' 6,,' lR ', )('!);0 '.$ 5!"!5(* 6,,' 7$")!'0 Lm %!'.!" '.$&!+$" 6,,' <,"$ d r8=,'. "$&('!+$ ),*-'!,") (6$ +(*!74 >-' 6$16$)$"' 7!?$6$"' 7!)'6!>-'!,")8• 9.$ ),*-'!," ;,6 Q < −2 6$16$)$"') ( *(6&$ az 2("7 '.-) (*), ax3 1(6(5@$'$68 A6,5 2BC3 %$ )$$ '.!) (*), 5$(") L0,0 !) *(6&$8 9.-)4 '.$ ),*-'!," ,66$)1,"7) ', ( 6,,' <,"$ %!'. ( .!&. 7$")!'0 "$(6 '.$ $"'$6 '.(' 7$@ 6$()$) 6(1!7*0 ', Lm "$(6 '.$ $7&$ ,; '.$ 6,,' <,"$4 ("7 ,"'!"-$) ',7$ 6$()$ ), ,"*0 ( )5(** ,"'6!>-'!," ', '.$ ','(* 6,,' *$"&'. ;6, ,-')!7$'.$ 6,,' <,"$8• 9.$ ),*-'!," ;,6 Q > −2 2("7 '.-) )5(** +(*-$) ,; ax4 ax ("7 L0,03 ,66$)1,"7) ', ( *,% 6,,' 7$")!'0 "$(6 '.$ $"'$6 '.(' 7$ 6$()$) )*,%*04("7 '.-) &!+$) ( *(6&$6 ,"'6!>-'!," ', '.$ ','(* 6,,' *$"&'. ;6,5 ,-')!7$'.$ 6,,' <,"$8D) '.$ ','(* 6,,' *$"&'. !" 6$()$)4 16$))!"& Q ',%(67) 0 ,6 −∞4 '.$ 7!?$6$" $>$'%$$" '.$ ),*-'!,") &6,%8 E.$" '.$6$ !) F-)' $",-&. 6,,') ', )('!);0 '.$ ,"'6(!"') (' Q = −24 '.$ '%, ),*-'!,") ,"+$6&$) ', ,"$8 D) %$ *!G$ ,-6 6,,')', )'(0 5,)'*0 %!'.!" '.$ 6,,' <,"$4 %$ .,,)$ '.$ ),*-'!," ;,6 Q < −28E$ (" H"7 Q "-5$6! (**0 -)!"& I$%',"J) 5$'.,7 ("7 (" !"!'!(* &-$)) ,;

−38 A6,5 '.(' %$ (" H"7 az ;6,5 2KK34 ax ;6,5 2KL34 ("7 L0,0 ;6,5 2BC38 !" #$%&'(%) *+,-M; '.$ 6,%) (6$ *,)$ $",-&.4 '.$ 6,,' )0)'$5) %!** ,+$6*(1 () ).,%" ," H&-6$ N8M; R !) '.$ 7!)'(" $ >$'%$$" 6,%)4 ("7 %$ ())-5$ (" !"H"!'$ "-5>$6 ,;!7$"'! (* 6,%)4 '.!) (" >$ $/16$))$7 >0 '.$ $O-('!,"L∗

z,x =

i=0(Lz,x+iR + Lz,R+iR−x) !; x < R/2

0 !; x ≥ R/22KC3P)!"& 2BN3 ("7 '.$ 6-*$) ;,6 &$,5$'6! )$6!$)$) %$ (" 6$%6!'$ '.$ H6)' ()$', &$' 6!7 ,; '.$ )-5

i=0(Lz,x+iR + Lz,R+iR−x)

= L0,0 e−azz∑

i=0(e−ax(x+iR) + e−ax(R+iR−x))

= L0,0 e−azz(e−axx∑

i=0 e−axiR + e−ax(R−x)∑

i=0 e−axiR)

= L0,0 e−azz(e−axx + e−ax(R−x))∑

i=0 e−axiR)

= L0,0 e−azz(e−axx + e−ax(R−x))∑

i=0((1e)axR)i

=L0,0 e−azz(e−axx+e−ax(R−x))

1− 1e

axR

2KQ3C

81

Page 82: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! " # $ % & ' ( ) !

*! *" *# *$ *%

+,- .//0123450 .//016780 .//01

934:.7 $; <57 =>?=31 [email protected] 057 A310?- 7 8./C ? ./, 0/ 057 C3A@/3-0 D70,77-30 ?-A 057 ./, 0/ 301 .3450* <57 E>?=31 31 057 .//0 A7-130E 8/. .//01 /.343-?03-4 3-? 1@7 3F ./,* <57 0/@ G3-7 [email protected] 057 .//01 8./C 057 ./, 3017G8* <57 -7=0G3-7 057 .//01 8./C 057 ./, 0/ 057 .3450* H-A 057 G?10 G3-7 057 .//01 8./C 057 ./,0/ 057 G780* I- 057/.EJ ?GG 057 ./,1 /- 057 F7GA ,3GG /-03D:07 1/C7 .//01 0/ 0573-07.K?G* <57 .//0 A7-130E 3- 057 3-07.K?G ,3GG D7 057 1:C /8 ?GG 057 3-A3K3A:?G /-0.3D:03/-1*

'82

Page 83: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!" #$%%&'( )*+,**' +-* ./0*12 ! "#$%& %'(! )# *!)+', #$* #*'-',+% &'.)*'/$)'#, "0!, '-,#*',- )0! 1 &'2!,.'#,3 ! #$&,5) &# )0+) "0!, %##(',- #,%6 +) )0! *##) .6.)!2 7#* + .',-%! *#"8 +. ')'. ',9,')!%6 "'&! +,& )0$. 0+. +, +:!*+-! &!,.')6 #7 ;!*#3 <#"!:!*8 '7 "! %##(+) )0! *##). #7 .',-%! *#"8 "! -!)Lz =

2∫

0 Lz,x dx

R=>?@ ! 2$%)'A%6 /6 )"# +. "! +..$2! )0! )"# .'&!. #7 )0! *#". +*! '&!,)' +%3 B6',)!-*+)',- )# ∞ *+)0!* )0+, C$.) R/2 "! &# ', %$&! *##). 7*#2 #$).'&! )0!*#"3 <#"!:!*8 /! +$.! )0! .6.)!2 0+. +, ',9,')! ,$2/!* #7 '&!,)' +% *#".8 )0!+2#$,) #7 *##). 7*#2 )0! *#A #$).'&! '). #", *#" '. !1+ )%6 )0! .+2! +. )0!+2#$,) #7 *##). 7*#2 #)0!* *#". ',.'&! )0! *#" "! +*! !1+2',',-3D,.!*)',- =EF@ +,& =E@ ', =>?@ "! -!)

L0 e−az = 2R

0 L0,0 e−azze−axxdx

=2L0,0 e−azz

R

0 e−axxdx= L0,0 e−azz 0−1

−ax

=2L0,0

Raxe−azz

=>G@H# "! -!)

az = a =IJ@L0,0 =

1

2axRL0 =IE@

L0 =2L0,0

axR=I>@

+. )0! !K$+)'#, )# $.! "0!, ."') 0',- /!)"!!, )0! #,! +,& )"# &'2!,.'#,+%&!. *'A)'#,.3 ?83

Page 84: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"# $% "&'($)" !"#$% &'() *+, .(/)($'a "−1 0$$) 1+',()! 1(,).(#2)($' /3.3"+)+.az "−1 4+.)( 3% .$$) 1+',()! 1(,).(#2)($' /3.3"+)+.ax "−1 5$.(6$')3% .$$) 1+',()! 1(,).(#2)($' /3.3"+)+.da " $(% %("()+1 .$$) 1+/)7dc " 8.$/ /$)+')(3% .$$) 1+/)7ds " $(% "39("2" .$$) 1+/)7k∗ $(% .$$) %("() :3 )$.lr ";"2 <$)3% .$$) %+'=)7 /+. 3.+3lR ";" <$)3% .$$) %+'=)7 /+. %+'=)7 $: .$> $' $'+ ,(1+L0 ";"3 ?@+.3=+ .$$) 1+',()! 3) ,$(% ,2.:3 +L0,0 ";"3 0$$) 1+',()! (' .$> 3) ,$(% ,2.:3 +Lm ";"3 A('("3% .$$) 1+',()!Lz ";"3 0$$) 1+',()! 3) ,$(% 1+/)7 zL∗

z ";"3 $(% %("()+1 .$$) 1+',()! 3) ,$(% 1+/)7 zLz,x ";"3 0$$) 1+',()! 3) ,$(% 1+/)7 z 3'1 1(,)3' + x :.$" .$>L∗

z,x ";"3 0$$) 1+',()! :.$" "2%)(/%+ .$>,Mr B=;"2 <$)3% .$$) 1.! "3))+.Q 2#,)()2)($' @3.(3#%+R " *(,)3' + #+)>++' .$>,Sr ";B= /+ (C .$$) %+'=)7W D3"#+.)EF :2' )($'wc " 5$.(6$')3% .$$) .31(2,x " 5$.(6$')3% 1(,)3' + :.$" .$>z " $(% 1+/)7*+%+,+- +"?#.373",+'G HIG 53',+'G IG A3.I JKKKI *3(,!L ?' $/+' ,$(%E .$/E3)"$,/7+.+"$1+%I M'@(.$'"+')3% A$1+%%('= 3'1 $:)>3.+ NO PQRG QNQSQQKIM2%+.G DIG NTUQI *+ ,+.(+ %3"#+.)('3 /%2.("(,V2+ +(2, (',(='(#2, /.$/.(+)3)(#2,I? )3 ? 31I (+')I H+).$/$% JG JWSONIX+.>()6G ?IG H3=+G MI 0IG ?2=I NWTYI ?' +"/(.( 3% "3)7+"3)( 3% "$1+% )$ 1+E, .(#+ /%3') .$$) ,!,)+",I <7+ Z$2.'3% $: ?//%(+1 M $%$=! NN PJRG TTQSQUNI53',+'G IG Z+',+'G 5I MIG [(+%,+'G [I MIG @+'1,+'G 5IG NWWKI *3(,! \ ,$(%/%3') 3)"$,)/7+.+ ,!,)+" "$1+%I <+ 7I 0+/I ?NKG A(%]^,)!.+%,+'I&0D !!"#$$%%%&'(!&)*$+),-.$/+01- 3!-45($6778$9:;<8=;9:78;6$")>$9:;<8=;9:78;6&/?@53',+'G IG Z+',+'G 5I MIG [(+%,+'G [I MIG @+'1,+'G 5IG NWWNI ("2%3)($' $:'().$=+' 1!'3"( , 3'1 #($"3,, /.$12 )($' (' >(')+. >7+3) 2,('= )7+ *3'(,7,("2%3)($' "$1+% *3(,!I _+.)(%(6+. 0+,+3. 7 JTG JYOSJOWID3"#+.)G ZI 5IG NTOUI `#,+.@3)($', @3.(3+ (' "3)7+,(' /2.3"I ? )3 5+%@()( 3G/7!,( $E"3)7+"3)( $E3'3)$"( $E#$)3'( $E"+1( 3 QG NJUSNaUIW

84

Page 85: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.5 ABA in Daisy

85

Page 86: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "# $%"&'

!" #$"%&%'(!)

*+,-$!" ./0 .112

!"#$%&'(#)%"

! "# $ %&$'( )*+,*, -)".) +/01&$(/#2 $,*'0 *()/+ ()"'0#2 ()/ .&*#"'0 *3

#(*,$($4 !5 (+"00/+"'0 ()/ %+*61.("*' *3 ! "' .+*%# "( "# #*,/(",/# %*##"7&/

(* .*,7"'/ $ #"0'"8.$'( +/61.("*' "' -$(/+ 1#/2 -"() $ ,*6/+$(/ +/61.("*' "'

5"/&64 !5 #1%%*+("'0 ! "' 9$"#52 -/ )*%/ (* 7/ 7/((/+ $( %+/6".("'0 -)/'

$'6 )*- #1.) #$:"'0# .$' 7/ $.)"/:/64

! "# %+*61./6 "' ()/ +**( #5#(/, $'6 )$# "(# /;/.( "' ()/ .$'*%54 <' ()/

%+/#/'( ",%&/,/'($("*' "' 9$"#5 (+$'#%*+(2 #(*+$0/2 $'6 6/0+$6$("*' *3 !

$+/ $&& "0'*+/6 "' 3$:*+ *3 $ #5#(/, -)/+/ ()/ ! .*'./'(+$("*' "' ()/ .$'*%5

"# #*&/&5 31'.("*' *3 ()/ .1++/'( -$(/+ #($(1# "' ()/ +**( #5#(/,4

! $&#* )$# *()/+ /;/.(#2 #1.) $# *' +*() 0+*-() $'6 %&$'( %)/'*&*052 71(

()/#/ $+/ '*( ",%&/,/'(/6 "' 9$"#5 $'6 *1(#"6/ ()/ #.*%/ *3 ()"# %$%/+4

* +,+ -$%&'(#)%" )" .%)/

=/( V +/%+/#/'( ()/ #*"& :*&1,/ -/ $+/ #",1&$("'04 >)/ #*"& :*&1,/ #)*1&6 $#

,"'",1, "'.&16/ ()/ /'("+/ +**( ?*'/4 @*+ /:/+5 %*"'( "' V 2 9$"#5 -"&& .$&.1&$(/

()+// :$&1/#A ()/ :*&1,/(+". -$(/+ 1%($B/ S2 ()/ +**( 6/'#"(5 l2 $'6 ()/ -$(/+

%*(/'("$& h4

!$#/6 *' ()/#/ :$&1/#2 -/ )$:/ #/:/+$& ,*6/&# 3*+ /#(",$("'0 ! "' ()/

#(/, C !

!"#$

D 3+*, ()/ .*'6"("*'# "' ()/ #*"&4

!" #$%&' () *+,$-& .(/$,0()

>)/ 8+#( ,*6/& "# 7$#/6 6"+/.(&5 *' %*( /E%/+",/'(# -)/+/ 7*() !

!"#$

$'6

()/ -$(/+ %*(/'("$& ChD "# ,/$#1+/64 >)/ %*(# $+/ #1F."/'(&5 #,$&& ()$( ()/

-$(/+ %*(/'("$& "# $##1,/6 (* 7/ ()/ #$,/ /:/+5-)/+/ "' ()/ %*(4 @+*, ()"# $'

/,%"+".$& +/&$("*'#)"% C !

%&'()#

(h)D 7/(-//' h $'6 ! !"#$

"' ()/ %*(# .$'

7/ 6/:/&*%/64 !5 $##1,"'0 ()/ #$,/ +/&$("*'#)"% 7/(-//' ! .*'./'(+$("*'

$'6 1%($B/' -$(/+ $&#* )*&6# "' $ 8/&62 -/ 0/( CGD4

!

!"#$

=

∫V

S !

%&'()#

(h) dV∫V

S dVCGD

>)/ 31'.("*' !

%&'()#

(h) ,1#( 7/ #1%%&"/6 75 ()/ 1#/+4

G

86

Page 87: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

! "#$%& '( )*'&+,-.'( .( *''-$

! "# $%&'()*' "+ ,-* %&&,# .",- / %/,* ,-/, '*$*+'# "+ ,-* ./,*% $&,*+,"/0

1 !

!!"

(h)23 45 .* /##(6* /00 ,-* ! $%&'()*' *+'# ($ "+ ,-* #,*67 .* )/+(#* !

!!"

(h) ,& 8+' ! #$%&'

7 /# "+ 1923

!

#$%&'

=

∫V

l ! !!"

(h) dV∫V

S dV192

:-* 5(+),"&+ !

!!"

(h) 6(#, ;* #($$0"*' ;< ,-* (#*%3

!/ "#$%& '( )*'&+,-.'( .( $'.0

!&,- S ! ()"*+&

(h) /+' l ! !!"

(h) /%* #$*)"/0 )/#*# &5 )/0)(0/,"+= ,-* ! )&+,%";(,"&+ 5%&6 ,-* #&"0 ./,*% $&,*+,"/07 %&&, ($,/>*7 /+' %&&, '*+#",<3 ?* )/00

,-* =*+*%/0"@*' 5(+),"&+ !

,!-%

(S, l, h)7 /+' ,-* =*+*%/0"@*' *A(/,"&+ 5&% 1B23

!

#$%&'

=

∫V !

,!-%

(S, l, h) dV∫V

S dV1B2

?* =*, 1C2 ;< #*,,"+= !

,!-%

(S, l, h) = S !

()"*+&

(h) /+' 192 ;< #*,,"+= !

,!-%

(S, l, h) = l ! !!"

(h)3:-* 5(+),"&+ !

,!-%

(S, l, h) 6(#, ;* #($$0"*' ;< ,-* (#*%3

!1 2' 3"3 )*'&+,-.'(

:-* #"6$0*#, 6&'*0 5&% ! $%&'(),"&+ "# ,& /##(6* +& ! "# $%&'()*'7

.-")- /0#& ="D*# ,-* #"60*#, *A(/,"&+ 11E223

!

#$%&'

= 0 1E2

!"! #$#%& '( %)(*+,

/!4 3"3 %5%,- '( )6'-'$7(-6%$.$

:-* ! *F*), &+ $-&,&#<+,-*#"# "# ,-%&(=- / 5/),&% 1 !

.!/0

2 .-")- "# 6(0G

,"$0"*' ,& ,-* #,&6/,/ )&+'(),/+)*3 :-* 5/),&% "# )/0)(0/,*' /# '*)%";*' "+

1H23

!

.!/0

= e−k*1* !"#$

1H2

/! 3"3 %5%,- '( -*#($).*#-.'(

:-* #(+ #-/'* &$*+ )/+&$< 1##&)2 #&"0 D*=*,/,"&+ /,6&#$-*%* 1#D/,2 6&'*0 ."00

(#* ,-* )/0)(0/,*' #,&6/,/ )&+'(),/+)* /# $/%, &5 /+ *+*%=< ;/0/+)* ;*,.**+

#&"07 /,6&#$-*%*7 )/+&$<7 '/%>7 /+' #(+0", 0*/D*#3 :-* 6*)-/+")# &5 ,-* ##&)

#D/, 6&'*0 "# &(,#"'* ,-* #)&$* &5 ,-"# +&,*3 # $/%, &5 ,-"# *+*%=< ;/0/+)*7

,%/+#$"%/,"&+ ."00 ;* *#,"6/,*'3 :-* ,%/+#$"%/,"&+ ."00 /F*), ! $%&'(),"&+

"+ #&"07 .-")- /=/"+ ."00 /F*), #,&6/,/ )&+'(),/+)*3 &+* #,*$ ",*%/,"&+ 6&'*0

"# (#*' 5&% 8+'"+= / #&0(,"&+ 5&% ;&,- ! $%&'(),"&+ /+' #,&6/,/ )&+'(),/+)*3

9

87

Page 88: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

!"#$ %& #'()%*#

!"#$% &'() *+,-.(/)($'

!

!"#

0$'+ 121 +3+-) $' ,)$"4)4 -$'56-)4'-+7

!

$!!%

(h) 8 ! 9-" "##$9: 121 /.$56-)($' (' .$$),

!

&!'(

(S, l, h) 8 ! 9-"

3%#&'9: 121 -$').(#6)($' ;.$" ,$(%

!

)*%+,-

(h) 8 ! 9-"

3( $)" 121 -$'-+').4)($' (' <4)+. ;.$" .$$),

!

./(-0

8 ! 9-"

3( $)" 121 -$'-+').4)($' (' =!%+"

h :>4 $(% <4)+. /$)+')(4%

k -"

3( $)"98 ! ?$+@-(+') ;$. -4%-6%4)('8 !

!"#

l -" "##$9-"

3%#&' A$$) 5+',()!

S -"

3( $)"9-"

3%#&'9: B$%6"+).(- <4)+. 6/)4C+

V -"

3%#&' $(% D$%6"+

E

88

Page 89: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.6 Soil Vegetation Atmosphere Transfer (SVAT) model

A SVAT model simulates the exchange of gases and energy between the canopy-soil-system and the

atmosphere. This SVAT model is based on the resistance/conduction concept and considers three sources

viz. soil, sunlit and shaded leaves. The SVAT model considers the following surface fluxes:

atm S c snl c shl cH H H H (0.1)

atm S c snl c shl cE E E E (0.2)

atm S c snl c shl cF F F F (0.3)

where H, E, and F denote ecosystem fluxes of sensible heat [W m-2

], water vapour [kg m-2

s-1

], and CO2-2

s-1

]

respectively. The subscripts describes the pathway of the fluxes; atm, S , snl , and shl , are the flux into the

atmosphere, the flux from the soil to the canopy air space, the flux from the sunlit leaves to the canopy air space, and

the flux from the shaded leaves to the canopy air space. The conceptualization for the exchange of latent heat or water

vapour is shown in Fig. 1.

Latent heat flux from

soil surface

Atmosphere: wind, temperature and vapor pressure

Aerodynamic resistance

, ,z a au T e

ar

Shade

,b snlr

Sunlit

sE

cTce

,b shlr,s snlr,s shlrsnlT shlT

Canopy:– Air space temperature

– Air space vapor pressure

– Boundary resistance for sunlit and shaded leaves

Leaves:– Leaf temperature for

sunlit and shaded leaves

– Stomata resistance for sunlit and shaded leaves

Figur 1 Conceptual model of the exchange of latent heat (water vapour)

Latent heat fluxes [W m-2

] are obtained by multiplying the corresponding water vapour flux by the latent

heat of vaporization, [J kg-1

]:

3149000 2370 aT (0.4)

where aT is the air temperature [K].

89

Page 90: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The model is based on the principles of conservation of energy and matter, i.e.:

abs soil o soil soil S c S cR L G H E (0.5)

abs snl o snl snl c snl cR L H E (0.6)

abs shl o shl shl c shl cR L H E (0.7)

where eq. (1.5), eq. (1.6), and eq. (1.7) are energy balances of the soil, sunlit leaves and shaded leaves,

respectively. The term on the left side of the equations represents the absorbed radiation of the considered

part of the system and Gsoil is the ground heat flux at the surface. The model considers the absorption of

photosynthetically active radiation (PAR), near infrared radiation (NIR), and long-wave thermal radiation

separately. Adding the three radiation components in (1.5), eq. (1.6), and eq. (1.7) and subtracting the

emission of long-wave radiation from each fraction (o soilL ,

o snlL , and o shlL ) yields the net radiation of

canopy-soil system. Gsoil [W m-2

] is estimated by:

1

1

hsoil S z

kG T T

z (0.8)

where sT and 1zT is the soil surface temperature [K] and the soil temperature at the depth 1z [m],

respectively, and hk is the thermal conductivity of the soil [W m-1

]. 1zT , 1z , and hk are obtained from the

soil temperature model. For simplicity the values from the beginning of the considered time-step are used.

S cE in eq. (1.5) is estimated by the soil water dynamics model and surface model. S cE represents the

combined evaporation through the soil surface and from water stored at the soil surface. Again, the value

from the beginning of the considered time-step is used.

The term S cF in eq. (1.3) comprises soil respiration (soil microbial biomass and plant roots) and is obtained

from the soil organic matter model and the plant growth model. snl c shl cF F comprises photosynthesis of

sunlit and shaded leaves in combination with the respiration of the above ground plant biomass. Values are

obtained from the photosynthesis model and the plant growth model. The photosynthesis model considers

sunlit as well as shaded leaves and in linked to the SVAT through a common dependence of stomata

conductance.

Absorption of radiative energy Shortwave radiation comprises photosynthetically active radiation (PAR) and near infrared radiation (NIR).

In the model they each contribute 50% to the solar radiation and they are treated in the same way. They only

differ in respect to optical properties, Table 1.

The canopy cover fraction as function of the leaf area index of aiL is estimated as:

1 exp 0.5can aif L (0.9)

Shortwave radiation, PAR or NIR, (tI , W m

-2) is divided into a direct beam (

bI , W m-2

) and a diffuse (dI ,

W m-2

) component, i.e.:

1b dif tI f I (0.10)

d dif tI f I (0.11)

where diff is the diffuse fraction of the global radiation.

Shortwave radiation absorbed by a canopy with a leaf area index of aiL and a spherical leaf distribution is

estimated as:* *

, ,1 1 exp 1 1 expabs can d d c s d ai b b c s b aiI I k L I k L (0.12)

where parameters is obtained from Table 1 and Table 2.

90

Page 91: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Shortwave radiation absorbed by the sunlit fraction of the canopy is: * * * *

, ,1 1 2

1 exp

abs snl d d c s d d b b b c s b b b b b b b

ai

I I k F k k I k F k k I a k F k F k

F x xL x

(0.13)

and the sunlit fraction of the leaf area index, aiL , is estimated as:

1 exp b ai

snl

b ai

k Lf

k L (0.14)

Shortwave radiation absorbed by the shaded fraction of the canopy is:

abs shl abs can abs snlI I I (0.15)

Shortwave radiation absorbed by the soil is:

, ,1 1abs soil d d c s b b c s abs canI I I I (0.16)

91

Page 92: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Table 1. Optical properties of leaves and soil surface.

PAR NIR Long-wave

Leaf absorptance 0.80 0.17

Soil surface reflectance s 0.10 0.18

Leaf emissivity l 0.98

Soil emissivity l 0.95

Table 2. Canopy and canopy-soil parameters assuming spherical leaf distribution. aiL is the leaf area index

of the canopy

Parameter Equation

Direct-beam extinction coefficient for black leaves. =

sun elevation angle

0.5

sinbk

Direct-beam extinction coefficient *

b bk k

Direct-beam canopy reflectance ,

11 exp 2

1 1

bb c

b

k

k

Direct-beam canopy-soil reflectance

, *

,

,

,, *

,

,

exp 21

1 exp 21

b c s

b c b ai

b c s

b c sb c s

b c b ai

b c s

k L

k L

Diffuse radiation extinction coefficient for black leaves. 2

0

ln

2 exp sin cos

d

d

ai

d b ai

kL

k L d

Diffuse radiation extinction coefficient *

d dk k

Diffuse radiation canopy-soil reflectance

, *

,

,

,, *

,

,

exp 21

1 exp 21

b c s

b c d ai

b c s

b c sb c s

b c d ai

b c s

k L

k L

Absorbed long-wave radiation:

1abs soil can iL f L (0.17)

abs snl can snl iL f f L (0.18)

1abs shl can snl iL f f L (0.19)

where iL is the incoming long-wave radiation from the atmosphere. The total (PAR, NIR and long-wave)

absorbed radiation by soil, sunlit and shaded leaves can now be estimated as: PAR NIR

abs soil abs soil abs soil abs soilR I I L (0.20)

PAR NIR

abs snl abs snl abs snl abs snlR I I L (0.21)

PAR NIR

abs shl abs shl abs shl abs shlR I I L (0.22)

92

Page 93: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The absorbed net radiation for the soil is estimated as: 44

4 3

1 1

1 1 4

n soil abs soil o soil abs soil can s s abs soil can s a s a

Eq R

abs soil can s a can s a s a abs soil soil s a

R R L R f T R f T T T

R f T f T T T R G T T

(0.23)

where is Stefan-Boltzmann constant (5.67 10-8

W m-2

K-1

), 41Eq

abs soil abs soil can s aR R f T is

absorbed equilibrium net radiation for the soil [W m-2

] and 31 4R

soil can s aG f T is soil radiative

conductance [W m-2

K-1

]. Correspondingly, the absorbed net radiation for sunlit and shaded leaves can be

written as: Eq R

n snl abs snl snl snl aR R G T T (0.24)

Eq R

n shl abs shl shl shl aR R G T T (0.25)

where 4Eq

abs snl abs snl can snl s aR R f f T and 41Eq

abs shl abs shl can shl s aR R f f T is absorbed

equilibrium net radiation for the sunlit and shaded leaves, respectively, and 34R

snl can snl s aG f f T and

31 4R

shl can snl s aG f f T is soil radiative conductance for sunlit and shaded leaves, respectively.

Sensible heat fluxes

The sensible heat fluxes (atmH ,

soil cH ,snl cH , and

shl cH ) are estimation of as:

H

atm p a a c a atm c aH c g T T G T T (0.26)

H H

soil c p a soil c s c soil c s cH c g T T G T T (0.27)

H H

snl c p a snl c snl c snl c snl cH c g T T G T T (0.28)

H H

shl c p a shl c shl c shl c shl cH c g T T G T T (0.29)

where pc is the specific heat of air (1005 J kg-1

K-1

), a

is the density of air [kg m-3

], ag ,

H

soil cg ,H

snl cg ,

andH

shl cg are conductances corresponding to the fluxes [m s-1

] , cT , snlT , and shlT is canopy air temperature,

and temperature of sunlit and shaded leaves, respectively. The estimation of the conductances are given in

sections below.

Latent heat fluxes

The latent heat fluxes (atmE ,

snl cE , and shl cE ) are estimation of as:

p a a w

atm c a atm c a

c gE e e G e e (0.30)

* *

w

p a snl c w

snl c snl c snl c snl c

c gE e T e G e T e (0.31)

* *

w

p a shl c w

shl c shl c shl c shl c

c gE e T e G e T e (0.32)

where is psychrometer constant,w

ag ,w

snl cg , andw

shl cg are conductances corresponding to the fluxes [m s-

1] ,

cT ,snlT , and

shlT is canopy air temperature, and temperature of sunlit and shaded leaves, respectively.

*e T is saturation vapour pressure at the temperature T .The estimation of the conductances are given in

sections below.

93

Page 94: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Introducing the Penman approximation eq. (1.31) and eq. (1.32) can be rewritten:*w

snl c snl c a snl a cE G e T s T T e (0.33)

*w

shl c shl c a shl a cE G e T s T T e (0.34)

where s is slope of the saturation vapour pressure curve vs. temperature. The estimation of the conductances

are given in sections below.

Conservation of energy Considering the tree components, soil, sunlit and shaded leaves, separately yield tree conservation of energy

equations, viz. eq. (1.5), eq. (1.6), and eq. (1.7). These equations may now be rewritten. Introducing eq.

(1.23), eq. (1.8), and eq. (1.27), in eq. (1.5) yields:

1

1

Eq R Hhabs soil soil s a S z soil c s c soil c

kR G T T T T G T T E

z (0.35)

Similarly, introducing eq. (1.24), eq. (1.28), and eq. (1.33), in eq. (1.6) yields;*Eq R H w

abs snl snl snl a snl c snl c snl c a snl a cR G T T G T T G e T s T T e (0.36)

And introducing eq. (1.25), eq. (1.29), and eq. (1.34), in eq. (1.7) yields:*Eq R H w

abs shl shl shl a shl c shl c shl c a shl a cR G T T G T T G e T s T T e (0.37)

Introducing eq. (1.26), eq. (1.27), eq. (1.28), and eq. (1.29), in eq. (1.1) yields:H H H H

atm c a soil c s c snl c snl c shl c shl cG T T G T T G T T G T T (0.38)

And introducing eq. (1.30), eq. (1.33), and eq. (1.34), in eq. (1.2) yields:* *w w w

atm c a snl c a snl a c shl c a shl a c soil cG e e G e T s T T e G e T s T T e E

(0.39)

Determination of state variables and fluxes

Assuming that the state variables sT , cT , snlT , shlT , and ce are the only unknown variables then they can be

found by solving eq. (1.35) through (1.39). When sT , cT , snlT , shlT , and ce are known then the system is

determined and the appropriate sensible heat, latent heat, and raditive fluxes can be calculated. However,

several of the conductances depend on the unknown state variables. Hence, the equations must be solved in

an iterative manner.

Aerodynamic ResistanceDisplacement height (d [m]) and roughness length for momentum (z0 [m]) is according to Shuttleworth and

Gurney (1990) estimated as:

41.1 ln 1veg d aid h c L (0.40)

0

0

0.3 0.0 0.2

0.3 0.2 1.5

veg p ai p ai

veg p ai

z h c L c Lz

h d c L (0.41)

where vegh is vegetation height [m], aiL is leaf area index, pc is an effective drag coefficient 0.07pc ,

and 0z is roughness length for momentum for bare soil.

The roughness length for heat is

0 0 7hz z (0.42)

94

Page 95: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The aerodynamic stability indicator ( ) is according to Choudhury (1986) estimated as:

0

2

5 r a

a z

z d g T T

T u (0.43)

where rz screen-height [m], g is acceleration due to gravity (9.82 m s

-2),

aT and zu are air temperature (K)

and wind speed (m s-1

) at screen-height, and 0T is surface temperature (K). 0 corresponds to a stable

atmosphere while 0 corresponds to an unstable atmosphere.

Aerodynamic resistance, ra [s m-1

] between canopy source height (canopy point) and reference (screen)

height above the canopy is estimated by:

* *2

0 0

0 0

3 42

1ln ln for 0

ln ln

for 01

r r

z h

ar r

h

z

z d z d

u z z

r z d z d

z z

u

(0.44)

where:

2

2

0

*

0 0

4 1 ln

2 1

ln 2 ln

ra a

r ra

h

z d

z

z d z d

z z (0.45)

When * 5 , then * is set to -5 (Choudhury, 1986) .

Aerodynamic conductance ag is estimate as:

1a

a

gr

(0.46)

The aerodynamic conductance depends on the following state variables: vegetation heightvegh , leaf area

index aiL , wind speed zu , air temperature aT , and surface temperature 0T .

Boundary layer conductance of sunlit and shaded leaves

Diffusivity of heat, hD [m s

-1], water vapor,

wD [m s-1

], and CO2, CD [m s-1

]:

1.81

5 2 -1101300 Pa1.869 10 m s

273.16 K

ah

surf

TD

P (0.47)

1.81

5 2 -1101300 Pa2.178 10 m s

273.16 K

aw

surf

TD

P (0.48)

1.81

5 2 -1101300 Pa1.38110 m s

273.16 K

aC

surf

TD

P (0.49)

where surfP is air pressure at the surface (101300 Pa unless otherwise specified) and aT is air temperature

(at screen-height) [K]).

95

Page 96: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Leaf boundary layer conductance for heat, eq. (1.50), water vapor, eq. (1.51), and CO2, eq. (1.52), due to

free convection (Houborg, 2006):

3 2 14l l a aH

lbf h

l

gw T T Tg D

w (0.50)

0.5 hypostomotous leaves

amphistomatous leaves

H

lbf w hw

lbf H

lbf w h

g D Dg

g D D (0.51)

2CO H

lbf lbf C hg g D D (0.52)

where g is acceleration due to gravity (9.82 m s-2

), lw is leaf width (0.05 m unless otherwise specified),

is molecular viscosity (1.815 2 -11.327 10 101300 Pa 273.16 K m ssurf aP T ), and

lT is leaf

temperature [K] (sunlit or shaded leaves).

Leaf boundary layer conductance for heat, eq.(1.53), water vapor, eq.(1.54), and CO2, eq.(1.55), due to

forced convection (Houborg, 2006):

exp0.006

z u aiH

lbu

l

u k Lg

w (0.53)

0.5 hypostomotous leaves

amphistomatous leaves

H

lbu w hw

lbu H

lbu w h

g D Dg

g D D (0.54)

2CO H

lbu lbu C hg g D D (0.55)

where zu is wind speed (m s-1

) at screen-height, uk parameter describing the vertical variation of wind speed

within the canopy ( 0.5uk , Houborg (2006)), and aiL is leaf area index.

Applying the “big leaf” approach, leaf boundary layer conductance is up-scaled to canopy level according to

Wang and Leuning (1998). The total boundary conductance at canopy level for heat for sunlit leaves, eq.

(1.56) , and shaded leaves, eq. (1.57), due to the combined effect of free and forced convection is:

1 exp 0.5

0.5

u b aiH snl H H

b snl ai lbf snl lbu

u b

k k Lg L g g

k k (0.56)

1 exp 0.51 exp 0.5

0.5 0.5

u b aiu aiH shl H H

b shl ai lbf shl lbu

u u b

k k Lk Lg L g g

k k k (0.57)

where snl

aiL and shl

aiL are the leaf area index of sunlit and shaded leaves, respectively; H

lbf snlg and H

lbf shlg are

leaf boundary layer conductance for heat of sunlit and shaded leaves, respectively (eq. (1.50), lT leaf

temperature of corresponding sunlit and shaded leaves); and bk is extinction coefficient for black leaves in

direct-beam irradiance.

w

b snlg and w

b shlg are estimated by eq. (1.56) and eq. (1.57), respectively by substituting the appropriate leaf

boundary layer conductances. Similarly, 2CO

b snlg and 2CO

b shlg are estimated.

96

Page 97: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The boundary layer conductances depend on the following state variables: total leaf area index, aiL , sunlit

leaf area index,snl

aiL , shaded leaf area index,shl

aiL , wind speed zu , air temperature aT , and leaf

temperature of sunlit snlT and shaded leaves shlT .

The conductance for sensible heat from sunlit and leaf surface into the canopy air is given by eq. (1.58) and

eq. (1.59), repectively:H H

snl c b snlg g (0.58)

H H

shl c b shlg g (0.59)

And the conductance for latent heat from the stomata of sunlit and leaf surface into the canopy air is given

by eq. (1.60) and eq. (1.61), repectively:w w

w b snl s snlsnl c w w

b snl s snl

g gg

g g (0.60)

w ww b shl s shlshl c w w

b shl s shl

g gg

g g (0.61)

where w

s snlg and w

s shlg is the bulk stomata conductance for sunlit and shaded leaves, respectively [m s-1

].

Soil aerodynamic conductance

The conductance for transport of heat between the soil surface and a height of the canopy point (H

soil cg , [m

s-1

]) can according to Norman et al. (1995) be estimated as:

0.004 0.012H

snl c sg u (0.62)

where su is a wind speed characterizing the conditions in the canopy air space just above the soil surface [m

s-1

]. su is estimatet as:

2 3 1 3 1 3

0.05exp 1

0.28

s c

veg

ai veg m

u u ah

a L h l

(0.63)

where cu is a wind speed at the top of the canopy [m s

-1],

aiL is leaf area index, vegh is vegetation height [m],

and ml is mean leaf size [m] given by four times the leaf area divided by the perimeter. If we assume

elliptical leaves and that the major axis equals the leaf width lw [m] and the minor axis equals ½ lw then we

get 1.26m ll w .

The stability is characterized by the Monin-Obukhov length (moL [m]):

3

*a amo

s a

r u TL

g T T (0.64)

where ar is aerodynamic resistance [s m

-1],

*u is friction velocity [m s-1

], aT is air temperature (at screen-

height) [K], is von Karman’s constant ( 0.41), g is acceleration due to gravity (9.82 m s-2

), and sT is

surface temperature (K). moL is positive in stable conditions and negative in unstable conditions.

97

Page 98: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The friction velocity is:

*

0ln

z

r

uu

z d z (0.65)

where zu is wind speed (m s

-1) at screen-height,

rz screen-height [m], d is displacement height [m], and z0 is

roughness length for momentum [m].

The wind speed at the top of the canopy cu [m s-1

] is estimated as:

0

0

0

0

2 2

0.25

lnfor 0

ln 4.7

lnfor 0

ln

1 1ln 2arctan

2 2 2

1 16

veg

z mo

r r mo

c

veg

z mo

r

r

mo

h d zu L

z d z z d L

uh d z

u Lz d z

y yy

z dy

L

(0.66)

where vegh is vegetation height [m].

The soil aerodynamic conductance depends on the following state variables: vegetation heightvegh , leaf

area index aiL , wind speed zu , air temperature aT , and soil surface temperature sT .

Canopy physiological conductance for CO2 transferThe Ball-Berry-Leuning model (molar conductance [mol m

-2 s

-1]) is described in the Annex on “The

stomata-photosynthesis model and the sunlit-shadow radiation model in DAISY”. The model has been

modified in order to take into account the effects of ABA. The modified Ball-Berry-Leuning model (molar

conductance [mol m-2

s-1

]) for leaf layer i is:

2'

, 0 1expCO n

s i ABA

s s

Ag g m c

c h (0.67)

where 0g is a stomatal intercept factor, m is an empirical vegetation constant,

nA is the net leaf

photosynthesis rate [mol m-2

s-1

], sc is the leaf surface CO2 concentration [mol m

-3], the CO2

compensation point [mol m-3

],sh is the relative humidity at the leaf surface,

1is an empirical constant and

ABAc is the ABA concentration in the xylem sap.

The physiological conductance can be converted to [m/s] by:

2 2'

, ,

CO CO

s i s i

RTg g

P (0.68)

98

Page 99: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Up-scaling from leaf to canopy yields the stomata conductance for water vapor:

2

2

,

,

2 hypostomotous leaves

amphistomatous leaves

LAI

LAI

nCO

w C ai s i

iw

s nCO

w C ai s i

i

D D L g

g

D D L g

(0.69)

where LAIn is the number of leaf layers and aiL is the size of the leaf layer.

ReferencesChoudhury, BJ, Reginato, RJ, and Idso, SB (1986). An analysis of infrared temperature observations over

wheat and calculation of latent heat flux. Agricultural and Forest Meteorology, 37, 75-88.

Houborg, R (2006) Inferences of key environmental an vegetation biophysical controls for use in regional-

scale SVAT modeling using Terra and Agua MODIS and weather prediction data. PhD

dissertation, Institute of Geography, University of Copenhagen,

Norman, JM, Kustas, WP, and Humes, KS (1995) Source approach for estimating soil and vegetation energy

fluxes in observations of directional radiometric surface temperature. Agricultural and Forest

Meteorology, 77, 263-293.

Shuttleworth, WJ and Gurney, RJ (1989). The theoretical relationship between foliage temperature and

canopy resistance in sparse crops. Quarterly Journal of the Royal Meteorological Society, 116,

497-519.

99

Page 100: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.7 Detailed description of the processes in the SALTMED The first version of the SALTMED model has been described in detail in Ragab (2002) with some

examples of applications. The SALTMED model includes the following key processes:

evapotranspiration, plant water uptake, water and solute transport under different irrigation

systems, nitrogen dynamics and dry matter & biomass production. A brief description of the above

mentioned processes will be given in the following sections.

1. Evapotranspiration, water uptake and Water & solute flow equations

Evapotranspiration

Evapotranspiration has been calculated using the Penman-Monteith equation according to the

modified version of FAO (1998) in the following form:

)34.01(

)(273

900)(408.0

2

2

U +

eeUT

+GR

= ET

an

o

S

(1a)

where ETo is the reference evapotranspiration, (mm day-1

), Rn is the net radiation,

(MJ m-2

day-1

), G is the soil heat flux density, (MJ m-2

day-1

), T is the mean daily air temperature at

2 m height, (oC ), is the slope of the saturated vapour pressure curve, (kPa

oC

-1), is the

psychrometric constant, 66 Pa oC

-1, es is the saturated vapour pressure at air temperature (kPa), ea is

the prevailing vapour pressure (kPa), and U2 is the wind speed at 2 m height (m s-1

) . The calculated

ETo here is for short well-watered green grass. In this formula, a hypothetical reference crop with an

assumed height of 0.12 m, a fixed surface resistance of 70 s m-1

and an albedo of 0.23 were

considered.

In presence of stomata / canopy surface resistance data, one could use the widely used equation

Penman-Monteith (1965) in the following form:

(1b)

where rs and ra are the bulk surface and aerodynamic resistances ( s m-1 ).

The rs can be measured or calculated from environmental and meteorological parameter or from the

Leaf water potential and Absicic Acid, ABA.

In the absence of meteorological data (temperature, radiation, wind speed etc.) and if Class A pan

evaporation data are available, the SALTMED model can use these data to calculate ETo according

to the FAO (1998) procedure. The model can also calculate the net radiation from solar radiation

according to the FAO (1998) procedure if net radiation data is not available.

r

)r + (1 +

r

e) - e(C + R

= E

a

s

a

spn

p

100

Page 101: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The crop evapotranspiration ETc is calculated as:

)( ecboc KKETET (2)

where Kcb is the crop transpiration coefficient (known also as basal crop coefficient) and Ke is the

soil evaporation coefficient. The values of Kcb and Kc, (the crop coefficient) for each growth stage

and the duration of each growth stage for different crops are available in the model’s database.

These data can be used in the absence of measured values. Ke is calculated according to FAO

(1998). Kcb and Kc are adjusted according to FAO (1998) for wind speed and relative humidity

different from 2 m s-1

and 45% respectively. The SALTMED model runs with a daily time step and

uses Kcb and Ke. The latter are not universal and their values differ according to climatic conditions

and other factors.

Plant Water Uptake in the Presence of Saline Water

The Actual Water Uptake Rate

The formula adopted in the SALTMED model is that suggested by Cardon and Letey (1992),

which determines the water uptake S (d-1

) as:

S z tS t

a t h

t

z t( , )( )

( )

( )

( , )max

150

3 (3)

where

(4)

= 25/12L * (1 - z/L) for 0.2L < z (4a)

= 0.0 for z > L (4b)

where Smax(t) is the maximum potential root water uptake at the time t; z is the vertical depth taken

positive downwards, (z,t) is the depth-and time-dependent fraction of total root mass, L is the

maximum rooting depth, h is the matric pressure head, is the osmotic pressure head; 50 (t) is

the time-dependent value of the osmotic pressure at which Smax(t) is reduced by 50%, and a(t) is a

weighing coefficient that accounts for the differential response of a crop to matric and solute

pressure. The coefficient a(t) equals 50(t)/h50(t) where h50(t) is the matric pressure at which

Smax(t) is reduced by 50%.

The Maximum Water Uptake Smax (t). Smax (t)is calculated as:

Smax(t) = ETo (t)* Kcb (t) (5)

The values of h50 50 can be obtained from experiments or from literature such as FAO (1992).

101

Page 102: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The Rooting Depth

The rooting depth was assumed to follow the same course as the crop coefficient Kc. Therefore, it

has been described by the following equation:

Root depth (t) = [Root depthmin + ( Root depthmax - Root depthmin )] * Kc (t) (6)

The maximum root depth is available either from direct measurements or from the literature.

The Rooting Width

Compared with rooting depth, there is a very little information in the literature on lateral extent of

the rooting systems of field crops over time. Therefore, a simple equation has been suggested as

follows:

Root width (t) = [Root width / Root depth] ratio * root depth (t) (7)

The [Root width/Root depth] ratio is dependant on the crop and soil type and other factors. It can

be obtained either from experimental data or from the literature. During the growth, new roots enter

new grid cells.

The model then calculates the water uptake only from those cells with roots. The model grid cells

are identified by 0, 1 or 2 . The value of 0 is associated with cells with no roots and 1 for cells fully

occupied with roots and 2 for cells with partial root presence. The model produces a data file

showing the two – dimensional root distribution for every day of the simulation.

Relative and Actual Crop Yield

The Relative Crop Yield, RY

Due to the unique and strong relationship between water uptake and biomass production, and

hence the final yield, the relative crop yield RY is estimated as the sum of the actual water uptake

over the season divided by the sum of the maximum water uptake (under no water and salinity

stress conditions) as:

),,(

),,(

max tzxS

tzxSRY (8)

where x, z are the horizontal and vertical coordinates of each grid cell that contain roots,

respectively.

The Actual Yield, AY

The actual yield, AY is simply obtainable by:

max*YRYAY (9)

where Ymax is the maximum yield obtainable in a given region under optimum and stress-free

condition. The other option to obtain the actual yield is by calculating the daily biomass

production and obtaining the actual yield from the harvest index times the total dry matter (see the

relevant section on crop growth and dry matter).

102

Page 103: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Water and Solute Flow

The water flow in soils was described mathematically by the well-known Richard's equation. It is a

partial non-linear differential equation, partial in time and space. It is based on two soil physical

principles: Darcy's law and mass continuity. Darcy's law reads:

Where q is the water flux, K(h) is the hydraulic conductivity as a function of soil water pressure head,

Z is the vertical coordinate directed downwards with its origin at soil surface, and H is the hydraulic

Z+=H (11)

The vertical transient-state flow water in a stable and uniform segment of the root zone can be

described by a Richard's type equation as:

t zK

z

zSw( ) (12)

where is volume wetness; t is the time; z is the depth; K ( ) is the hydraulic conductivity (a

function of wetness); is the matrix suction head; and Sw is the sink term representing extraction

by plant roots. The movement of solute in the soil system, its rate and direction, depends greatly

on the path of water movement, but it is also determined by diffusion and hydrodynamic

dispersion. If the latter effects are negligible, solute flow by convection can be formulated (Hillel,

1977) as:

J qc v cc (13)

where Jc is the solute flux density; q is the water flux density of the water; c the concentration of

solute in the flowing water and v is the average velocity of the flow. The rate of a diffusion of a

solute (Jd) in bulk water at rest is related (by Fick’s law) to the concentration gradient as:

J D c xd o (14)

where D0 is the diffusion coefficient. In soil the diffusion coefficient, Ds , is decreased due to the

fact that the liquid phase occupies only a fraction of soil volume, and also due to the tortuous

nature of the path. It can therefore be expressed according to the following equation:

D Ds 0 (15)

7/3s

2 (16)

where is the tortuosity, an empirical factor smaller than unity, which can be expected to decrease

with decreasing convection flux

generally causes hydrodynamic dispersion too, an effect that depends on the microscopic non-

uniformity of flow velocity in the various pores. Thus a sharp boundary between two miscible

q = K(h)H

Z (10)

103

Page 104: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

solutions becomes increasingly diffuse about the mean position of the front. For such a case, the

diffusion coefficient has been found by Bresler (1975) to depend linearly on the average flow

velocity v , as follows:

D vh (17)

where is an empirical coefficient. By the combination of the diffusion, the dispersion and the

convection the overall flux of solute can be obtained as:

J D D c x v ch s (18)

If one takes the continuity equation into consideration, one-dimensional transient movement of a

non-interacting solute in soil can be expressed as:

c

t zD

c

z

qc

zSa s (19)

in which c is the concentration of the solute in the soil solution, q is the convective flux of the

solution, Da is a combined diffusion and dispersion coefficient, and Ss is a sink term for the solute

representing root adsorption/uptake.

Under irrigation from a trickle line source, the water and solute transport can be viewed as two-

dimensional flow and can be simulated by one of the following:

1) a “plane flow” model involving the Cartesian co-ordinates x and z. Plane flow takes place if one

considers a set of trickle sources at equal distance and close enough to each other so that their

wetting fronts overlap after a short time from the start of the irrigation.

2) a “cylindrical flow” model described by the cylindrical co-ordinates r and z.

Cylindrical flow takes place if one considers the case of a single trickle nozzle or a number of

nozzles spaced far enough apart so that overlap of the wetting fronts of the adjacent sources does

not take place. For a stable, isotropic and homogeneous porous medium, the two-dimensional flow

of water in the soil can be described according to Bresler (1975) as:

z

zK

zxK

xt

)( (20)

where x is the horizontal co-ordinate; z is the vertical-ordinate (considered to be positive

downward); K ( ) is the hydraulic conductivity of the soil. Considering isotropic and homogeneous

porous media with principal axes of dispersion oriented parallel and perpendicular to the mean

direction of flow, the hydrodynamic dispersion coefficient Dij can be defined as follows:

)(||/ sjiTLijTij DVVVVD (21)

where L is the longitudinal dispersivity of the medium; T is the transversal dispersivity of the

medium; ij is Kronecker delta (i.e., ij =1 if i = j and ij = 0 if i i and Vj are the ith and jth

components of the average interstitial flow velocity V respectively, V = (V2

x + V2

z )1/2

and Ds ( ) is

the soil diffusion coefficient as defined in Equation 15.

104

Page 105: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

If one considers only two dimensions and substituting Dij , the salt flow equation becomes:

C

t xD

C

xD

C

zq C

zD

C

zD

C

xq Cxx xz x zz zx z (22)

In the model, sprinkler, flood and basin irrigation are described by one-dimensional flow equations

(e.g. Eqs 12 & 19). Furrow and trickle line source are described by 2-dimensional equations (e.g.

Eqs 20 & 22). Trickle point source is described by cylindrical flow equations obtained by replacing

x by the radius “ r” and rearranging Equations 20 and 22 as given by Bresler (1975) and Fletcher

Armstrong and Wilson (1983). The water and solute flow equations were solved numerically using

a finite difference explicit scheme (Ragab et al., 1984).

Soil Hydraulic Parameters

Solving the water and solute transport equations require two soil water relations, namely the soil

water content - water potential relation and the soil water potential - hydraulic conductivity

relation. They were taken according to van Genuchten (1980).

Drainage

The model has two options for drainage. Two options are available, either free drainage or an

impermeable layer at the bottom of the soil profile.

Example of the flow domain under drip irrigation

Bresler, E., 1975. Two-dimensional transport of solute during non-steady infiltration for a trickle

source. Soil Sci. Soc. Amer. Proc. 39, 604-613.

References

Cardon, E.G., Letey, J., 1992. Plant water uptake terms evaluated for soil water and

solute movement models. Soil Sci. Soc. Am. J. 56, 1876-1880.

105

Page 106: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

FAO, 1998. Crop evapotranspiration, Irrigation and Drainage Paper No 56. Rome,

Italy.

FAO, 1992. The use of saline waters for crop production. Irrigation and Drainage Paper No 48.

Rome, Italy.

Fletcher Armstrong, C., Wilson, T.V., 1983. Computer model for moisture distribution in stratified

soils under tickle source. Transactions of ASAE, 26: 1704-1709.

Hillel. D., 1977. Computer simulation of soil-water dynamics; a compendium of recent work. IDRC,

Otawa, Canada, 214pp.

Ragab, R., 2002. A holistic generic integrated approach for irrigation, crop and field management:

the SALTMED model. Environmental Modelling and Software, 17, 345-361.

Ragab, R., Feyen, J., Hillel, D., 1984. Simulating two-dimensional infiltration into sand from a

trickle line source using the matric flux potential concept. Soil Sci. 137, 120-127.

-dimensional transport model for variably saturated porous

media with major chemistry. Water Resources Research, 30, 1115-1133.

Van Genuchten, M. Th., 1980. A closed - form equation for predicting the hydraulic conductivity

of unsaturated soils. Soil Sci. Soc. of Am. J. 44, 892-898.

The approach used is very much based on the work of Eckersten and Jansson, 1991.

2. Crop Growth and Biomass production

1- 2/day = Net Assimilation “NA”

Net Assimilation “NA” = Assimilation ” A ” – Respiration losses ” R”

2- Assimilation rate,”A”per unit of area = E* I* f(Temp)* f(T)*f(Leaf-N)

g/m2/day

where

E = is the photosynthetic Efficiency, g dry matter / MJ (=~2.0)

I is the radiation input: = Rs (1- e–k*LAI

)

Rs is global Radiation, MJ/m2/day, k is extinction coefficient (~=0.6) and

LAI is the leaf area Index (m2/m

2).

Rs is given in climate data, LAI is interpolated in SALTMED

Assimilation rate,”A”per unit of area = E* I* (stress factors related to Temperature, Transpiration

and Leaf Nitrogen content)

Eckersten, H and Jansson, P,.- E. 1991. Modelling water flow, nitrogen uptake and production for

wheat. Fertilizer Research 27: 313-329.

References:

106

Page 107: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The modelling approach is based on Tardieu et al. (1993).

3. Calculating the Stomata Conductance from the Absecic Acid, ABA

gs = gs minimum l ))

gs = Stomata conductance, mole/m2/sec

gs minimum = mimimum Stomata conductance (default 0.05 mole/m2/sec)

ABA = Absecic Acid concentration, daily values

(default 0.5 mmole/m3)

l = Leaf water potential in M pa, daily values,

(default -1.3 Mpa)

0.184 -2.69 -0.183

l are given as daily values.

Tardieu, F, Zhang, J. and Gowing, D. J. G. 1993. Stomatal control by both [ABA] in the xylem sap

and leaf water status: a test of a model for droughted or ABA-fed field-grown maize. Plant, Cell

and environment .16:413-420.

References

The modelling approach for stomatal conductance is based on the multiplicative model described

by Jarvis 1976 and modified by Korner et al. (1995).

4. Calculating the stomata Conductance from regression Equation:

Based on Jarvis (1967) and Korner (1994)

gs = gsmax * f(VPD) * f(T) * F(SW)*f(PAR)

gsmax = Maximum Stomata conductance

f (VPD) is the relative effect of the VPD on stomata conductance

f(T) is the relative effect of the Temperature on stomata conductance

f (SW) is the relative effect of the soil water content on stomata conductance

f(PAR) is the relative effect of the radiation on stomata conductance

The sum of

f(VPD) = 1- [(VPD min – VPD) / (VPD min- VPD max) ]

107

Page 108: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

VPD is calculated on daily basis from Temperature and RH data given as daily values in the input

file of the climate data .

VPD min and VPD max are either User input values or can be calculated first from the model code

as the first thing before a dynamic run.

F (T) = 1- [(T – Tminimum) /(Toptimum – T minimum)]2

T is daily average Temperature given as input in climate data file

Tminimum and Toptimum are user input, C

WP

- WP fc - WP WP FC

FC SAT

e obtained as average values of the fully rooted

squares.

WP, FC, SAT are Soil water content at wilting point, at Field Capacity and at saturation (or

Porosity) given as input in the soil data base.

F (PAR) = 1 - exp ( - *PFD)

t = 0.2

PFD is Photons flux density micromole /m2/sec (range : 0-900 , average is 450)

Emberson, L.D. Ashmore, M. R., and Cambridge, H.M. 1998. Development of Methodologies for

Mapping Level II Critical Levels of Ozone. DETR Report no. EPG 1/3/82. Imperial

College of London, London.

References

Jarvis, P. G. 1976. The iterepretation of the variations in leaf water potential and stomatal

conductance found in canopies in the field. Philosophical. Transactions of the Royal

Society. B273:593-610.

Körner, C. 1994. Leaf diffusive conductance in the major vegetative types of the globe. In Schulze,

E. D., and Calwell, M.M . (Editors), Ecophysiology of Photosynthesis. Ecological Studies,

vol.100. Springer Verlaag, Berlin, pp 463-490.

Pleijel, H., Danielsson, H., Vandermeiren, K., Blum, C., Colls, J, and Ojanpera, K. 2002. Stomatal

conductance and ozone exposure in relation to potato tuber yield-results from the

European CHIP programme. European Journal of Agronomy, 17:303-317.

108

Page 109: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

The top soil layer is the most biologically active layer where most of the organic matter

decomposition and mineralization takes place. The microbial activity is affected by soil

temperature of this layer. This temperature was found to be correlated to air temperature. The

approach used here is to infer the soil temperature of the top layer (ploughing layer) from the air

temperature based on the work of Kang et al. (2000) and Zheng et al. (1993).

5. Calculating Soil temperature from Air Temperature:

For air temperature “A” and soil temperature “ T ”, the relation can be described as:

For A j > Tj-1 (z):

Tj (z) = Tj-1 (z) + [Aj - Tj-1 (z)] * Exp [- s * p))0.5

] * Exp [ -k(LAIj + litterj)]

For A j j-1 (z):

Tj (z) = Tj-1 (z) + [Aj - Tj-1 (z)] * Exp [- ( ks * p))0.5

] * Exp [ -k(litterj)]

Aj is average Air Temperature at day “ j “ in °C .

This is calculated from Tmin and Tmax given as input in climate data file.

Tj-1 (z) is Soil temperature at day “ j-1 “ previous day at depth “z “ below soil surface, °C

Tj (z) is Soil temperature at day “ j “ and depth “z “ below soil surface, °C

Exp [- s * p))0.5

] is a damping ratio

ks is the thermal diffusivity as a function of soil water, air and mineral content. m2

s-1

ks = ( thermal conductivity/(bulk density* specific heat capacity)).

P: is period of either diurnal or annual temperature variation, z is in meters

LAI: is calculated already in the model on daily basis, Litter fraction is given as user input.

Kang, S., Kim, S., Oh, S. and Lee, D. 2000. Predicting spatial and temporal patterns of soil temperature

based on topography, surface cover and air temperature. Forest Ecology and Management

136:173-184.

References

Marshall, T.J., Holmes, J. W., and Rose, C.W. (editors). 1996. Soil Physics ( 3rd

edition) , 358-376.

Cambridge University Press. Cambridge, UK.

Zheng, D., Hunt, Jr., Running, S.W. 1993. A daily soil temperature model based on air temperature and

precipitation for continental applications. Climate Research 2: 183-191.

109

Page 110: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

This is very much based on SOIL N model of Johnsson et al. 1987. The following processes were

implemented in SALTMED:

6. Soil Nitrogen dynamics and Nitrogen uptake

Mineralization

Immobilization

Nitrification

Denitrification

Leaching

Plant N Uptake

Nitrogen input included dry and wet deposition, incorporation of crop residues, manure application,

chemical fertilizer application and with irrigation water as fertigtion.

Eckersten, H and Jansson, P,.- E. 1991. Modelling water flow, nitrogen uptake References

and production for wheat. Fertilizer Research 27: 313-329.

Johnsson, H., Bergstrom, L and Jansson, P.-E.. 1987. Simulated nitrogen dynamics and losses in a

layered agricultural soil. Agriculture, Ecosystems and Environment, 18:333-356.

Wu, L., McGechan, M., B., Lewis, D. R., Hooda, P. S., and Vinten, A., J., A. 1998. Parameter

selection and testing the soil nitrogen dynamics model SOILN. Soil Use and Management,

14: 170-181

110

Page 111: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.8 SALTMED model frames (user Interface) and Examples of outputs

Main input tabs

Model input can be saved and uploaded via a text file

111

Page 112: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Climate data input

Evapotranspiration calculation options (1)

112

Page 113: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Evapotranspiration calculation options (2)

Evapotranspiration calculation options (3)

113

Page 114: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Evapotranspiration calculation options (4)

Evapotranspiration calculation options (5)

114

Page 115: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Evapotranspiration calculation options (6)

Evapotranspiration calculation options (7)

115

Page 116: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Evapotranspiration calculation options (8)

Irrigation input file (drip sub subsurface example)

116

Page 117: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Irrigation input file (drip sub subsurface PRD example)

Crop growth input parameters (1)

117

Page 118: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crop growth input parameters (2)

Crop rotation option 1 (no rotation)

118

Page 119: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crop rotation option 2 (rotation)

Soil input parameters

119

Page 120: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Soil temperature, N-Fertilizer input file, N-mineralization, N-transformation parameters initial

N condition and environmental input parameters

Soil initial condition- input parameters per soil layer

120

Page 121: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Model input parameters

Output specifications for plotting output parameters

121

Page 122: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output selection options

Output selection folder

122

Page 123: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of Dry matter

Output example of plant –N uptake

123

Page 124: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of N-Leaching

Output example of soil moisture under drip irrigation

124

Page 125: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of soil salinity under drip irrigation

125

Page 126: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of soil moisture under subsurface drip irrigation

Output example of soil moisture under PRD drip irrigation

126

Page 127: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of soil moisture under PRD subsurface drip irrigation

Output example of soil moisture profile under PRD drip irrigation

127

Page 128: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of soil nitrogen profiles

Output example of Evapotranspiration

128

Page 129: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Output example of irrigation+ rainfall

Output example of crop growth parameters

SALTMED MODEL Can be Downloaded at: http://www.safir4eu.org

The basis of SALTMED model can be found at:

Special Issu : J. Agric. Water Management,volume 98 (1-2), September, 2005, (Guest Editor, Ragab Ragab)

129

Page 130: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.9 Test of the new Daisy model

by Finn Plauborg1, Mikkel Mollerup

2, Per Abrahamsen

2, Fulai Liu

3, Bo Vangsø Iversen

1, Mathias N.

Andersen1, Christian R. Jensen

3, Søren Hansen

2

1. Department of Agroecology and Environment, Faculty of

Agricultural Sciences, University of Aarhus, Denmark

2. Dept. of Basic Sciences and Environment, Faculty of Life

Sciences, University of Copenhagen, Denmark

3. Dept. of Agriculture and Ecology, Faculty of Life Sciences,

University of Copenhagen, Denmark

New processes developed for the Daisy modelBased on several experiments in glasshouse and field conditions in Denmark new process sub-models have

been developed for implementation in Daisy. These new sub-models have been reported in scientific journal

papers, where the most important are mentioned below.

F. Liu, A. Shahnazari, M.N. Andersen, S.-E. Jacobsen, C.R. Jensen. 2006. Effects of deficit irrigation (DI)

and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato.

Scientia Horticulturae 109: 113–117.

F. Liu, A. Shahnazari, M.N. Andersen, S.-E. Jacobsen, C.R. Jensen. 2006. Physiological responses of potato

(Solanum tuberosum L.) to partial root zone drying: ABA signalling, leaf gas exchange, and water use

efficiency. Journal of Experimental Botany 57: 3727-2735.

Shahnazari, F. Liu, M.N. Andersen, S.-E. Jacobsen, C.R. Jensen. 2007. Effects of partial root-zone drying

on yield, tuber size and water use efficiency in potato under field conditions. Field Crops Research 100:

117–124.

F. Liu, R. Song, X. Zhang, A. Shahnazari, M.N. Andersen, F. Plauborg, S.-E. Jacobsen, C.R. Jensen. 2008.

Measurement and modelling of ABA signalling in potato (Solanum tuberosum L.) during partial root-zone

drying. Environmental and Experimental Botany 63, 385-391.

Ahmadi, S.H., Andersen, M.N, Poulsen, R.T., Plauborg, F., Hansen, S. 2009. A Quantitative Approach for

Developing More Mechanistic Gas Exchange Models for Field Grown Potato: A New Insight into Chemical

and Hydraulic Signalling. Agricultural and Forest Meteorology 149, 1541-1551.

Liu, F., Andersen, M.N., Jensen, C.R. 2009. Capability of the 'Ball-Berry' model for predicting stomatal

conductance and water use efficiency of potato leaves under different irrigation regimes. Scientia

Horticulturae 122, 346-354.

These studies deals with ABA produced in the root system of potato when the crop is imposed to different

deficit regimes, e.g. Partial Root Drying (PRD). The results have been formulation of ABA production

functions which have been included into Daisy, Figs. 1 and 2.

130

Page 131: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

s (-kPa)

y = 26.625e-4.2816x

0

1000

2000

3000

4000

5000

6000

7000

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

s [MPa]

[AB

A]

[ng

/cm

3]

0gC

hmAg

s

sns

semm i

s

s

s

ns ABAc

hmAg expexp

ssn

s

s ABAhAc

mg expexpexpexp

Figure 1. ABA concentration (X-[ABA as a response to soil water potential (Liu et al., 2008).

Figure 2. ABA concentration (X-[ABA]) as a response to soil water potential Abrahamsen (pers. comm.

2009).

This response and its effect on gas exchange have lead to formulation of new single leaf models of stomatal

conductance (gs).

Gutschick and Simonneau (2002), Abrahamsen (pers. 2009)

gs = m An hs/cs exp (- [ABA]) + gs0

with m =17, = 0.095 [cm3/ng] and gs0= 0.15 [mol/m

2/s]

Liu et al. (2009)

Ahmadi et al. (2009)

131

Page 132: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

17/06/07 00:00 27/06/07 00:00 07/07/07 00:00 17/07/07 00:00 27/07/07 00:00

gs (

mo

l/m

2/s

)

Simulated, FI

Simulated, PRD

Measured, FI

Measured, PRD

0

20

40

60

80

100

120

140

20/07/2007 00:00 20/07/2007 12:00 21/07/2007 00:00

AB

A [

ng

/cm

3]

Simulated, FI

Simulated, PRD

Measured, FI

Measured, PRD

Testing the new Daisy modelThe above sub-models have been implemented into the comprehensive Daisy model (see D3_2) and testing

have been carried out for potatoes in Denmark and fresh tomatoes in Crete, Greece

Results from potatoes in Denmark

The focus of semi-field experiments at Aarhus University was to create comprehensive datasets on gas

exchange and soil water dynamics in potatoes imposed to irrigation strategies, Full Irrigation, Deficit

Irrigation and Partial Root zone Drying. The findings are fully reported in a coming special issue in

Agricultural Water Management, and hence here only some few results are shown. Figure 3 shows the Daisy

modelled stomatal conductance (gs) under predict the field measurements in the late season. Still research is

needed to understand this difference, which for the moment is thought to be an effect of nitrogen on

photosynthesis maybe not yet well included in the model.

Figure 3. Daisy simulated stomatal conductance (gs) versus measured in field grown potatoes.

Another discussed still to be further researched is if ABA production functions needs to be soil texture

dependent, and morning and afternoon ABA not pictured by the model (Fig. 4) has any relevance. The latter

as hardly any production takes place early and late during the day.

Figure 4. Simulated and measured ABA concentration in the upper leaves of potatoes around 10, 14 and 18

hours 20 July 2007.

132

Page 133: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

1

2

3

4

5

6

7

8

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

DM

(t/

ha)

Tomato DM repl1

Leaf DM repl1

Leaf DM Daisy

Tomato DM Daisy

Leaf DM repl2

LeafDM repl3

Tomato DM repl2

Tomato DM repl3

Stem DM Daisy

Stem DM repl1

Stem DM repl2

Stem DM repl3

DS

0

0.5

1

1.5

2

2.5

3

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

m2/m

2 LAI Daisy

LAI repl1

LAI repl2

LAI repl3

0

10

20

30

40

50

60

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

kg

N/h

a Leaf N Daisy

Leaf N repl1

Leaf N repl2

Leaf N repl2

Results from fresh tomatoes at Crete, Greece

Data from 2007 was used for calibration and data from 2008 for verification of the Daisy model.

2007 data

Figure 5 shows (top) a good calibration of the Daisy model as measured and simulated dry matter (DM) in

fully irrigated fresh tomato fits well although total DM in the harvested tomatoes in the last harvest was 10%

over predicted. Measured and simulated leaf area index compares well (middle), as do measured and

simulated leaf nitrogen (bottom).

Figure 5. Fully irrigated fresh tomato, measured and simulated: (top) dry matter, (middle) leaf area index,

(bottom) leaf nitrogen.

Figure 6 shows the same comparison as in figure 5, but data from the PRD irrigated treatments. The

calibration from fully irrigated treatment performs very well and nice comparisons were obtained.

133

Page 134: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

1

2

3

4

5

6

7

8

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

DM

(t/

ha)

Tomato DM repl1

Leaf DM repl1

Leaf DM Daisy

Tomato DM Daisy

Leaf DM repl2

LeafDM repl3

Tomato DM repl2

Tomato DM repl3

Stem DM Daisy

Stem DM repl1

Stem DM repl2

Stem DM repl3

DS

0

0.5

1

1.5

2

2.5

3

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

m2/m

2

LAI Daisy

LAI repl1

LAI repl2

LAI repl3

0

10

20

30

40

50

60

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

kg

N/h

a

Leaf N Daisy

Leaf N repl1

Leaf N repl2

Leaf N repl2

Figure 6. PRD irrigated fresh tomato, measured and simulated: (top) dry matter, (middle) leaf area index,

(bottom) leaf nitrogen.

Figure 7 shows measured and simulated soil water content in the centre of the tomato row in depth 0-40 cm

(top) fully irrigated, (middle) right side of the tomato in the PRD treatment, and (bottom) the left side of the

tomato plant. The hydraulic parameters were not calibrated resulting in a slight over prediction, especially in

the fully irrigated treatment. From 7 July the over prediction may be caused by a too low simulated stomatal

conductance (cf. Fig. 3) indicating that this model developed in pot experiments needs to be assessed from

the field measurements. However a clear response in both measured and simulated soil water content were

observed in the PRD treatments.

134

Page 135: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Full and DI irrigated subsurface - Mesurements only in Full irrigated

0

5

10

15

20

25

30

35

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

vo

l% H

2O

Daisy FI 0-40cm left simulated

Daisy FI 0-40cm right simulated

Left 0-40cm repl1

Left 0-40cm repl2

Right 0-40cm repl3

Right 0-40cm repl1

Right 0-40cm repl2

Left 0-40cm repl3

Daisy DI 0-40cm simulated

PRD subsurface right

0

5

10

15

20

25

30

35

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

vo

l% H

2O Right 0-40cm repl3

Right 0-40cm repl1

Right 0-40cm repl2

Daisy

PRD subsurface left

0

5

10

15

20

25

30

35

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07 15/09/07

vo

l% H

2O Left 0-40cm repl1

Left 0-40cm repl2

Left 0-40cm repl3

Daisy

Figure 7. Measured and simulated soil water content. Fully irrigated (top), right site of the tomato plant

(middle), and left side (bottom).

Figure 8 shows simulated ABA concentration in the fully, deficit and the PRD treatments. The responses are

quite acceptable as the highest concentration of ABA was obtained in the deficit and next the PRD

treatments.

135

Page 136: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

25

50

75

100

125

150

175

200

08/04/07 28/04/07 18/05/07 07/06/07 27/06/07 17/07/07 06/08/07 26/08/07

ng

/cm

3

Crop ABa Daisy SubsSurf

DeficitCrop ABA Daisy SubsSurf

PRDCrop ABa Daisy SubSurf

Full

0

100

200

300

400

500

600

Irr SubSurf Full Irr Surf &

SubSurf DI

Irr SubSurf PRD Transp. SubSurf

Full

Transp. Surf

Deficit

Transp. SubSurf

Deficit

Transp. SubSurf

PRD

mm

H2O

Figure 8. Simulated ABA concentration in the top leaves of tomato in the fully, deficit and PRD treatments.

Figure 9 shows irrigation inputs (green bars) to the fully, deficit and PRD treatments, causing a simulated

transpiration (blue bars) slightly higher in fully irrigated compared with the PRD treatment.

Figure 9. Irrigation input in the 2007 treatments with tomato (green bars). Simulated transpiration in the

different treatments (blue bars).

Figure 10 shows tomato dry matter yield in simulated (purple bars) and measured (green bars) in the 2007

tomato experiments.

The above mentioned tendency of over prediction of the tomato yield can be found in both the fully and

PRD irrigated treatments, however the trend of lower yield in the PRD treatment was consistent in both

measured and simulated data.

136

Page 137: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

1

2

3

4

5

6

7

8

DM Yield SubSurf

Full Daisy

DM Yield SubSurf

Full measured

DM Yield Surf

Deficit Daisy

DM Yield Surf

Deficit measured

DM Yield SubSurf

Deficit Daisy

DM Yield SubSurf

Deficit measured

DM Yield SubSurf

PRD Daisy

DM Yield SubSurf

PRD measured

t/h

a

0

1

2

3

4

5

6

7

8

9

10

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

DM

(t/

ha)

Tomato DM repl1

Leaf DM repl1

Leaf DM Daisy

Tomato DM Daisy

Leaf DM repl2

LeafDM repl3

Tomato DM repl2

Tomato DM repl3

Stem DM Daisy

Stem DM repl1

Stem DM repl2

Stem DM repl3

DS

0

0.5

1

1.5

2

2.5

3

3.5

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

m2/m

2 LAI Daisy

LAI repl1

LAI repl2

LAI repl3

0

10

20

30

40

50

60

70

80

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

kg

N/h

a Leaf N Daisy

Leaf N repl1

Leaf N repl2

Leaf N repl3

0

1

2

3

4

5

6

7

8

9

10

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

DM

(t/

ha)

Tomato DM repl1

Leaf DM repl1

Leaf DM Daisy

Tomato DM Daisy

Leaf DM repl2

LeafDM repl3

Tomato DM repl2

Tomato DM repl3

Stem DM Daisy

Stem DM repl1

Stem DM repl2

Stem DM repl3

DS

0

0.5

1

1.5

2

2.5

3

3.5

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

m2/m

2

LAI Daisy

LAI repl1

LAI repl2

LAI repl3

0

20

40

60

80

100

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

kg

N/h

a

Leaf N Daisy

Leaf N repl1

Leaf N repl2

Leaf N repl3

Figure 10. Measured and simulated dry matter yield in the 2007 tomato treatments.

2008 data

Figure 11 shows measured and simulated dry matter (DM) in fully irrigated fresh tomato (top left) and PRD

irrigated fresh tomato (top right). Stem and leafs compare well whereas the fruit dry matter was highly over

predicted. It seems that the model needs some refinements as the tendency of over prediction was found also

in 2007, however the big difference in 2008 may be caused mainly by the observed miss flowering and

pollination not captured by the model. Measured and simulated leaf area index compares well (middle left

and right), as do measured and simulated leaf nitrogen (bottom left and right).

Figure 11. Fully irrigated (left) and PRD irrigated (right) fresh tomato, measured and simulated: (top) dry

matter, (middle) leaf area index, (bottom) leaf nitrogen.

Figure 12 shows measured and simulated soil water content in the centre of the tomato row in depth 0-40 cm

(top) fully irrigated, (middle) right side of the tomato in the PRD treatment, and (bottom) the left side of the

tomato plant. The hydraulic parameters were not calibrated resulting in a slight over prediction, especially in

the fully irrigated treatment. From 21 June the over prediction may be caused by a too low simulated

stomatal conductance indicating that this model developed in pot experiments needs to be assessed from the

137

Page 138: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Full irrigated subsurface

0

5

10

15

20

25

30

35

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

vo

l% H

2O

Daisy FI 0-40cm left simulated

Daisy FI 0-40cm right simulated

Left 0-40cm repl1

Left 0-40cm repl2

Right 0-40cm repl3

Right 0-40cm repl1

Right 0-40cm repl2

Left 0-40cm repl3

PRD subsurface right

0

5

10

15

20

25

30

35

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

vo

l% H

2O Right 0-40cm repl3

Right 0-40cm repl1

Right 0-40cm repl2

Daisy

PRD subsurface left

0

5

10

15

20

25

30

35

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08 09/09/08

vo

l% H

2O Left 0-40cm repl1

Left 0-40cm repl2

Left 0-40cm repl3

Daisy

field measurements. However a clear response in both measured and simulated soil water content were

observed in the PRD treatments.

Figure 12. Measured and simulated soil water content. Fully irrigated (top), right site of the tomato

plant (middle), and left side (bottom).

Figure 13 shows simulated ABA concentration in the fully and the PRD treatments. The responses are quite

acceptable as the highest concentration of ABA was obtained in the PRD treatments.

138

Page 139: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

25

50

75

100

125

150

175

200

02/04/08 22/04/08 12/05/08 01/06/08 21/06/08 11/07/08 31/07/08 20/08/08

ng

/cm

3

Crop ABA Daisy PRD

Crop ABa Daisy Full

0

100

200

300

400

500

600

Irr Full Irr DI Irr PRD Transp. Full Transp. Deficit Transp. PRD

mm

H2O

0

2

4

6

8

10

DM Yield Full

Daisy

DM Yield Full

measured

DM Yield

Deficit Daisy

DM Yield

Deficit

measured

DM Yield PRD

Daisy

DM Yield PRD

measured

t/h

a

Figure 13. Simulated ABA concentration in the top leaves of tomato in the fully and PRD treatments.

Figure 14 (top) shows 2008 irrigation inputs (green bars) to the fully and PRD treatments, causing a

simulated transpiration (blue bars) quite higher in fully irrigated compared with the PRD treatment, and

hence an important water saving was achieved. This was obtained without a dramatic decrease in fruit yield.

(Fig. 14, bottom).

Figure 14. (top) Irrigation input in the 2008 treatments with tomato (green bars). Simulated transpiration in

the different treatments (blue bars). (bottom) Tomato dry matter yield in simulated (purple bars) and

measured (green bars) in the 2008 tomato experiments.

139

Page 140: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

ConclusionsIn the Danish experiments the level of ABA measured in FI and PRD irrigated potatoes differed due to the

sampling method, field or glasshouse conditions?

The pot gs model seams not fully valid in field experiments, especially in the middle and late part of the

season, however as no measurements were carried out in the Crete experiment further studies is needed to

confirm this.

The new Daisy 2D-water soil water flow and leaf gas exchange equations for photosynthesis and stomata

conductance seems well implemented in the Daisy model. Calibration of the soil hydraulic parameters may

improve the comparisons to measured soil water content.

Increased intrinsic WUE at leaf level in pot potatoes with PRD was not consistently verified at canopy level

with the new Daisy for fresh tomatoes, however important trends of water saving without too high yield loss

was observed in the PRD treatments.

Further studies are needed to explore if ABA production function and gs models are different in tomatoes

compared with potatoes.

140

Page 141: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Annex 3.10 Some selected simulation results using the SALTMED model

Yield simulation results

Tomatao yield , Italy 2006-2008

0

2

4

6

8

10

12

2006 2007 2008

Year

Yie

ld ,

DM

- t

ha

-1 PRD Observed

PRD Model

Drip Observed

Drip Model

Sprinkler Oberseved

Sprinkler Model

Italy observed and simulated tomato yield dry matter

y = 0.8068x + 1.2079

R2 = 0.9507

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Observed yield, T/ha

Sim

ula

ted

yie

ld,

T/h

a

141

Page 142: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Tomato Yield, Itlay 2006-2008

0

2

4

6

8

10

12

PRD20

06

Drip

2006

Spr

inkler

2006

PRD20

07

Drip

2007

Spr

inkler

2007

PRD20

08

Drip

2008

Spr

inkler

2008

Irrigation System

Yie

ld, t

ha

-1

0

100

200

300

400

500

600

700

Irri

ga

tio

n-

rain

fall, m

m

Yield oberved

Yield Model

irrigation, mm

Rain, mm

irri+rain, mm

Italy Potato Yield- DM, t ha-1

0

1

2

3

4

5

6

7

8

9

10

2007 2008

Year

Yie

ld -

DM

, t

ha-1 PRD observed

PRD Model

Drip observed

Drip Model

Sprinkler observed

Sprinkler Model

142

Page 143: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Simulated and Observed Potato Yield- Italy, DM t ha-1

y = 0.8259x + 1.426

R2 = 0.9599

4

5

6

7

8

9

10

11

12

4 5 6 7 8 9 10 11 12

Observed

Sim

ula

ted

Potato-Italy 2007-2008

0

2

4

6

8

10

12

PRD07

Drip

07

Spr

inkler

07

PRD20

08

Drip

08

Spr

inkler

08

Irrigation system

Yie

ld-D

M, t

ha

-1

0

100

200

300

400

Irri

ga

tio

n-r

ain

falll, m

m

Yield oberved

Yield Model

Irr mm

Rain mm

irr+rain

143

Page 144: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete Tomato

0

1

2

3

4

5

6

7

2006 2007 2008

Year

Yie

ld-D

M,

t h

a-1

Drip observed

Drip model

PRD observed

PRD model

Crete, Tomato yield, 2006-2008

0

1

2

3

4

5

6

7

Drip

2006

PRD

2006

Drip

2007

PRD

2007

Drip

2008

PRD

2008

Irrigation System

Yie

ld -

DM

, t

ha

-1

0

200

400

600

800

Irri

ga

tio

n -

Ra

infa

ll, m

m

Yield oberved

Yield Model

Irr mm

Rain mm

irr+rain

144

Page 145: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Serbia potato yield - DM in t ha-1

0

2

4

6

8

10

12

2006 2007 2008

Year

Tu

ber

yie

ld-D

M,

t h

a-1 Drip FULL Model

Drip Full observed

Drip dificit Model

Drip dificit observed

PRD Model

PRD observed

Furrow Model

Furrow observed

Serbia Potato Yield 2006-2008

0

2

4

6

8

10

12

Drip

200

6

PRD 2

006

Furrow

200

6

Drip

200

7

Drip

Defic

it 200

7

PRD 2

007

Furrow

200

7

Drip

200

8

Drip

Defic

it 200

8

PRD 2

008

Furrow

200

8

Irrigation System

Yie

ld -

DM

, t

ha

-1

0

100

200

300

400

500

600

700

Yield Observed

Yield Model

rain

irrigation

Irri+rain

0

20

40

60

80

100

120

140

160

180

5/2/2008 5/22/2008 6/11/2008 7/1/2008 7/21/2008 8/10/2008 8/30/2008

kg N

/h

Total N in Tuber DM

simulate

Serbia. Total N in tuber DM measured and simulated data obtained from fully irrigated

potato crops with sand filter water treatment during 2008 season.

145

Page 146: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

0

2

4

6

8

10

12

5/2/2008 5/22/2008 6/11/2008 7/1/2008 7/21/2008 8/10/2008 8/30/2008

kg/h

a

Tuber DM

Saltmed simulate

Serbia Tuber DM measured and simulated data obtained from fully irrigated potato crops

with sand filter water treatment during 2008 season.

Soil Moisture and soil nitrogen modelling results

Potato, Italy PRD 2007 average

0

0.1

0.2

0.3

0.4

0.5

18/05/2007 28/05/2007 07/06/2007 17/06/2007 27/06/2007 07/07/2007Date

So

il m

ois

ture

Observed

Modelled

146

Page 147: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Potato, Italy Drip 2008 average

00.05

0.10.15

0.20.25

0.30.35

0.4

02/05/2008 12/05/2008 22/05/2008 01/06/2008 11/06/2008 21/06/2008 01/07/2008Date

so

il m

ois

ture

Average obsModelled

Observed average Soil N versus Simulated Soil

0

10

20

30

40

50

60

12/0

6/200

7

14/0

6/200

7

16/0

6/200

7

18/0

6/200

7

20/0

6/200

7

22/0

6/200

7

24/0

6/200

7

26/0

6/200

7

28/0

6/200

7

30/0

6/200

7

02/0

7/200

7

04/0

7/200

7

06/0

7/200

7

08/0

7/200

7

10/0

7/200

7

12/0

7/200

7

14/0

7/200

7

16/0

7/200

7

18/0

7/200

7

20/0

7/200

7

22/0

7/200

7

24/0

7/200

7

26/0

7/200

7

Date

So

il N

- m

g l

-1

Av Observed

Model

Simulated and Observed Soil N (mg l -1) Drip irrigated Tomato, 2008 plot 4

0

5

10

15

20

25

30

35

40

45

50

03/0

7/200

8

05/0

7/200

8

07/0

7/200

8

09/0

7/200

8

11/0

7/200

8

13/0

7/200

8

15/0

7/200

8

17/0

7/200

8

19/0

7/200

8

21/0

7/200

8

23/0

7/200

8

25/0

7/200

8

27/0

7/200

8

29/0

7/200

8

31/0

7/200

8

02/0

8/200

8

04/0

8/200

8

06/0

8/200

8

08/0

8/200

8

10/0

8/200

8

12/0

8/200

8

14/0

8/200

8

16/0

8/200

8

18/0

8/200

8

20/0

8/200

8

Date

So

il N

, m

g l

-1

Plot4

model

147

Page 148: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete 2006 Drip Sub PRD, 10cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 02-Jul 07-Jul 12-Jul 17-Jul 22-Jul 27-Jul 01-Aug 06-Aug 11-Aug 16-Aug 21-Aug

Date

So

il M

ois

ture

, m

3m

-3

Crete 2006 Drip Sub PRD, 30cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 02-Jul 07-Jul 12-Jul 17-Jul 22-Jul 27-Jul 01-Aug 06-Aug 11-Aug 16-Aug 21-Aug

Date

So

il M

ois

ture

, m

3m

-3

148

Page 149: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete 2006 Drip Sub PRD, 40cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 02-Jul 07-Jul 12-Jul 17-Jul 22-Jul 27-Jul 01-Aug 06-Aug 11-Aug 16-Aug 21-Aug

Date

So

il M

ois

ture

, m

3m

-3

Crete 2006 Drip Sub Full, 10cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 07-Jul 17-Jul 27-Jul 06-Aug 16-Aug 26-Aug

Date

So

il M

ois

ture

, m

3m

-3

149

Page 150: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete 2006 Drip Sub Full, 30cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 07-Jul 17-Jul 27-Jul 06-Aug 16-Aug 26-Aug

Date

So

il M

ois

ture

, m

3m

-3

Crete 2006 Drip Sub Full, 40cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

27-Jun 02-Jul 07-Jul 12-Jul 17-Jul 22-Jul 27-Jul 01-Aug 06-Aug 11-Aug 16-Aug 21-Aug

Date

So

il M

ois

ture

, m

3m

-3

150

Page 151: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete 2007 Drip Sub Full, 40cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

28-Apr 18-May 07-Jun 27-Jun 17-Jul 06-Aug 26-Aug

Date

So

il M

ois

ture

, m

3m

-3

Crete 2007 Drip Sub PRD, 40cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

28-Apr 18-May 07-Jun 27-Jun 17-Jul 06-Aug 26-Aug

Date

So

il M

ois

ture

, m

3m

-3

151

Page 152: SAFIR - ku · SAFIR Safe and High Quality Food Production using Low Quality Waters and Improved Irrigation Systems and Management (SAFIR) Contract-No. FOOD-CT-2005-023168 A Specific

Crete 2008 Drip Sub Full, 30cm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

28-Apr 18-May 07-Jun 27-Jun 17-Jul 06-Aug 26-Aug

Date

So

il M

ois

ture

, m

3m

-3

152


Recommended