+ All Categories
Home > Documents > Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Date post: 23-Oct-2015
Category:
Upload: ieremeiov-vladimir
View: 177 times
Download: 10 times
Share this document with a friend
Description:
Catalog Schneider - Power Factor Correction and harmonic filtering
82
Low Voltage offer Power Factor Correction and harmonic filtering Catalog 2009
Transcript
Page 1: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Low Voltage offerPower Factor Correction and harmonic filtering

Catalog2009

Page 2: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Contents

Chapter 1Discover Energy Efficiency p. 1

Chapter 2Reactive energy p. 2The basis p. 3Energy Effiiciency with Power Factor Correction p. 5Practical calculation of an installation p. 6Reactive energy correction in an electrical installation p. 8Power Factor Correction type: fixed or automatic p. 10

Chapter 3How to select power factor correction devices p. 15General information about harmonics p. 16Causes and effects of harmonics p. 18Choosing power factor correction devices p. 20Choosing the frequency of detuned reactors p. 22

Chapter 4Capactors p. 24

Chapter 5Detuned reactors p. 40

Chapter 6Power factor controllers p. 45

Chapter 7Power factor correction modules p. 50

Chapter 8Power factor correction solutions p. 60

Chapter 9Filtering solutions p. 78

Page 3: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

What do we call Energy Efficiency ?

P.1

>

Energy Efficiency: a common concern!As electricity is the major contributor to greenhouse gases, Energy Efficiency is now a common concern for of all actors in the market. Reduce electricity consumption and costs and improve power quality and availability are now growing demands, more particularly due to:● the commitment of many industrialised countries to reduce their collective emissions of greenhouse gases as well as the implementation of local regulations and incentive schemes● the increasing use of electronic devices leading to power quality issues and energy consumption rise

Energy Efficiency thanks to power factor correctionImplementing power factor correction and harmonic filtering solutions enable to:● reduce your electricity bill● increase available power● reduce the impacts of harmonics

Moreover, energy savings produced by power factor correction help protecting the environment by reducing CO2 emissions related to power generation.

Achieve more with a successful optimizationThere are three steps for a successful optimization of your installation: ● measure and/or gather the electrical network data● understand, establish diagnostic and decide the corrective action to be taken ● act, clean up, correct power factor, install backup networks

In any case, the most important factor is to correct and monitor over time the effectiveness of the solution.

Reduction of energy consumption

CO2 emissions savings

Improvement of power quality

1

Page 4: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Reactive energy

The basis p. 3

Energy Effiiciency with Power Factor Correction p. 5

Practical calculation of an installation p. 6

Reactive energy correction in an electrical installation p. 8

Power Factor Correction type: fixed or automatic p. 10

Page 5: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Q (kVAr)

PM

V

I

PM

V

I

P

P

SQ

P

cos ϕ = P / S

S = P + Q

(kVA)

P (kW)

M M A

ϕ

Fig. 2a: power flow in an installation where cosine φ = 0.78

Fig. 2b: power flow in an installation where cosine φ = 0.98

P.3

Q (kVAr)

PM

V

I

PM

V

I

P

P

SQ

P

cos ϕ = P / S

S = P + Q

(kVA)

P (kW)

M M A

ϕ

Fig. 1: reactive energy is consumed between the inductive loads and the source

Fig. 3: cosine φ as a representation of the electrical efficiency of an installation

The basis

The nature of energy

● Active energy All electrical devices powered by AC current convert the electrical energy supplied into mechanical work and heat. This energy is measured in kWh and is called active energy. The loads absorbing only this type of energy are called resistive loads.

● Reactive energy Some loads require magnetic fields to operate (motors, transformers, etc.) and consume another type of energy called reactive energy. This can be explained as follows: these loads (called inductive loads) absorb energy from the network when the magnetic fields required to operate them are generated and they discharge it when these fields are destroyed. This transfer of energy between the loads and the source (fig. 1) causes voltage losses and drops in conductors and therefore consumption of extra energy that cannot be directly used by loads.

Power flow in an installation

The available power output of an installation increases indirectly as cosine φ increases. The instantaneous power of an installation consists of two components: the oscillating power whose frequency is twice the fundamental frequency and the average power (Pm = VI cos φ), which represents the output or active power of the installation and which is constant. Fig. 2 shows that the more the cos φ of an installation increases (and the closer it is to 1), the greater the average power of the installation.

Power factor (Cosine φ)

The presence of inductive loads in an installation causes a phase shift between the current wave and the voltage. The angle φ represents this phase shift and gives the ratio between the reactive current (inductive) of an installation and its active current. The same ratio exists between the active and reactive energies or powers.The cosine φ therefore indicates the ratio between the active and apparent power of the installation (the maximum number of kVA that it can use). That is why cosine φ indicates the «electrical efficiency» of an installation (fig. 3).

S

Q

P

cos j = P/S

j

2

Q (kVAr)

S = √P² + √Q²

(kVA)

P (kW)

M M A

Page 6: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

The basis (continued)

Practical calculation of reactive power

Calculations in the three-phase example were as follows: ○ Pn = power supplied to the rotary axis = 51 kW ○ P = active consumed power = Pn/µ = 56 kW ○ S = apparent power = P/cos φ = P/0.86 = 65 kVA hence:

Q = (√S2 + P2) = (√652 +562)6 = 33 kVAr

The average power factor values for various loads are given below.

Power factor of the most common loads

P. 4

Type of circuit Apparent power S (kVA) Active power P (kW) Reactive power Q (kVAr)

Single-phase (Ph + N)Single-phase (Ph + Ph)

S = V x IS = U x I

P = V x I x cos φP = U x I x cos φ

P = V x I x sin φP = U x I x sin φ

Example: 5 kW load Cos φ= 0.5

10 kVA 5 kW 8,7 kVAr

Three-phase (3 Ph or 3 Ph + N)

S = √3 x U x I P = √3 U I cos φ Q = √3 U I sin φ

Device Load Cos φ Tan φ

Ordinary asynchronous motor 0 % 0.17 5.8

25 % 0.55 1.52

50 % 0.73 0.94

75 % 0.8 0.75

100 % 0.85 0.62

Incandescent lamps 1 0

Fluorescent lamps 0.5 1.73

Discharge lamps 0.4 à 0.6 2.29 à 1.33

Resistance furnaces 1 0

Induction furnaces 0.85 0.62

Dielectric heating furnaces 0.85 0.62

Resistance welding machine 0.8 à 0.9 0.75 à 0.48

Single-phase static arc-welding centres 0.5 1.73

Rotary arc-welding sets 0.7 à 0.9 1.02

Arc-welding transformers/rectifiers 0.7 à 0.9 1.02 à 0.75

Arc furnaces 0.8 0.75

Fig. 4: cos φ of the most commonly-used devices

2

Page 7: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Increased available power

A high power factor optimises the components of an electrical installation by increasing their electrical efficiency. Installing capacitors reduces reactive energy consumption between the source and the loads. The capacitors supply reactive energy by discharging into the installation from their upstream connection point. The power available at the secondary of an MV/LV transformer can therefore be increased by fitting a power factor correction device in the low voltage part. The table in figure 5 shows the increased active power (kW) that can be supplied by a transformer by correcting the power factor up to cos φ = 1.

P.5

Fig.5: increase in the power available at a transformer secondary according to the cos φ of the load

Fig. 6: multiplying factor for the conductor cross-section according to the cos φ of the installation

Fig. 7: loss reduction due to the Joule effect.

Initial cos φ Increased available power

1 0 %

0.98 + 2.0 %

0.95 + 5.2 %

0.90 + 11.1 %

0.85 + 17.6 %

0.80 + 25 %

0.70 + 42.8 %

0.65 + 53.8 %

0.50 + 100 %

Initial cos φ Cable cross-section multiplying factor

1 1

0.80 1.25

0.60 1.67

0.40 2.50

Smaller conductor cross-section

Installing a power factor correction device in an installation allows the cross-section of the conductors to be reduced, as less current is output from the compensated installation for the same active power. The table in figure 6 shows the multiplying factor for the cross-section of the conductor according to the cos φ of the installation.

Reduced losses

● Reduced Joule effect lossesInstalling capacitors allows the Joule effect losses to be reduced (temperature rise) in the conductors and transformers. The meter records these losses as consumed energy (kWh). The losses are proportional to the square of the current. The following formula can be used to determine the loss reduction according to the cos φ of the installation:

Final losses = (initial cos φ)² Initial losses final cos φ

● Example: Loss reduction in a 630 kVA transformer, Pcu = 6,500 W with an initial cos φ of 0.7. When by power factor correction, we obtain final cos φ = 0.98, the new losses become: 3.316 W.

Reduced voltage drops

Installing capacitors allows the voltage drops to be reduced upstream of the point where the power factor correction device is connected.

0 %

–10 %

–20 %

–30 %

–40 %

–50 %

–60 %

–70 %

–80 %

0,5 0,55 0,6 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1

REDUCTION DES PERTES QUAND COS φ = 1

RED

UC

TIO

N D

ES P

ERTE

S (%

)

COS ϕ INITIAL

2Energy efficiency with Power Factor Correction

LOSSES REDUCTON WhEN COS φ = 1

LOS

SE

S R

ED

UC

TON

Wh

EN

CO

S φ

= 1

Page 8: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.6

Calculation for an electrical installation

General method From the data supplied by the manufacturers of the various loads, such as the active power, load factor, cos φ, etc. and if the simultaneity factor of each load in the installation is known, the levels of the active and reactive power consumed throughout the installation can be determined.

Simplified method A simplified method of calculating the power factor correction requirements of an installation can be used provided that the following data is known: ○ the initial average cos φ, ○ the cos φ required, ○ the average active power of the installation.

This data can be obtained: ○ by calculation, as indicated for the general method ○ by estimation, according to the installed power They are used to perform the calculation with the help of the table.

Calculation using the table

● Example: Calculation of the reactive power required to compensate the following installation: ○ P = 500 kW, ○ initial cos φ = 0.75, ○ cos φ required = 0.98. From the table on the next page, we obtain a factor = 0.679. Multiplying this factor by the active power of the installation (500 kW) gives the reactive power to be installed: Q = 500 x 0.679 = 340 kVAr

Fig. 8: graphical representation of the calculation table (next page)

From measurements

Take several measurements downstream of the main circuit breaker with the installation under normal load conditions. Measure the following data: ○ active power (kW), ○ inductive power (kVAr), ○ cos φ. From this data, choose the average cos φ of the installation and check this value in the most unfavourable situation.

Cos φ cos φ to be obtained

0,9 0,92 0,94 0,96 0,98 1

0,4 1,805 1,861 1,924 1,998 2,085 2,288

0,45 1,681 1,784 1,988

0,5 1,248 1,529 1,732

0,55 1,035 1,316 1,519

0,6 0,849 1,131 1,334

0,65 0,685 0,966 1,169

0,7 0,536 0,811 1,020

0,75 0,398 0,453 0,519 0,591 0,679 0,882

0,8 0,266 0,321 0,387 0,459 0,541 0,750

0,85 0,02 0,191 0,257 0,329 0,417 0,620

0,9 0,058 0,121 0,192 0,281 0,484

Q = P × factor Q = P × 0,679

2

Page 9: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Calculation for an electrical installation (continued) From the power in kW and the cos φ of the installation

The table gives a coefficient, according to the cos φ of the installation before and after power factor correction. Multiplying this figure by the active power gives the reactive power to be installed.

P.7

Avant la Puissance du condensateur en kVAr à installer pa kW de charge, pour élever le facteur de puissancecompensation (cos φ ou tg φ ) à une valeur donnée

tg φ cos φ tg φ 0,75 0,59 0,48 0,45 0,42 0,39 0,36 0,32 0,29 0,25 0,14 0,00cos φ 0,8 0,86 0,9 0,91 0,92 0,93 0,94 0,95 0,96 0,97 0,99 1

2,29 0,40 1,541 1,698 1,807 1,836 1,865 1,896 1,928 1,963 2,000 2,041 2,149 2,2912,22 0,40 1,475 1,631 1,740 1,769 1,799 1,829 1,862 1,896 1,933 1,974 2,082 2,2252,16 0,42 1,41 1 1,567 1,676 1,705 1735 1,766 1,798 1,832 1,869 1,910 2,018 2,1612,10 0,43 1,350 1,506 1,615 1,644 1,674 1,704 1,737 1,771 1,808 1,849 1,957 2,1002,04 0,44 1,291 1,448 1,557 1,585 1,615 1,646 1,678 1,712 1,749 1,790 1,898 2,0411,98 0,45 1,235 1,391 1,500 1,529 1,559 1,589 1,622 1,656 1,693 1,734 1,842 1,9851,93 0,46 1,180 1,337 1,446 1,475 1,504 1,535 1,567 1,602 1,639 1,680 1,788 1,9301,88 0,47 1,128 1,285 1,394 1,422 1,452 1,483 1,515 1,549 1,586 1,627 1,736 1,8781,83 0,48 1,078 1,234 1,343 1,372 1,402 1,432 1,465 1,499 1,536 1,577 1,685 1,8281,78 0,49 1,029 1,186 1,295 1,323 1,353 1,384 1,416 1,450 1,487 1,528 1,637 1,7791,73 0,5 0,982 1,139 1,248 1,276 1,306 1,337 1,369 1,403 1,440 1,481 1,590 1,7321,69 0,51 0,937 1,093 1,202 1,231 1,261 1,291 1,324 1,358 1,395 1,436 1,544 1,6871,64 0,52 0,893 1,049 1,158 1,187 1,217 1,247 1,280 1,314 1,351 1,392 1,500 1,6431,60 0,53 0,850 1,007 1,116 1,144 1,174 1,205 1,237 1,271 1,308 1,349 1,458 1,6001,56 0,54 0,809 0,965 1,074 1,103 1,133 1,163 1,196 1,230 1,267 1,308 1,416 1,5591,52 0,55 0,768 0,925 1,034 1,063 1,092 1,123 1,156 1,190 1,227 1,268 1,376 1,5181,48 0,56 0,729 0,886 0,995 1,024 1,053 1,084 1,116 1,151 1,188 1,229 1,337 1,4791,44 0,57 0,691 0,848 0,957 0,986 1,015 1,046 1,079 1,113 1,150 1,191 1,299 1,4411,40 0,58 0,655 0,81 1 0,920 0,949 0,969 1,009 1,042 1,076 1,113 1,154 1,262 1,4051,37 0,59 0,618 0,775 0,884 0,913 0,942 0,973 1,006 1,040 1,077 1,118 1,226 1,3681,33 0,6 0,583 0,740 0,849 0,878 0,907 0,938 0,970 1,005 1,042 1,083 1,191 1,3331,30 0,61 0,549 0,706 0,815 0,843 0,873 0,904 0,936 0,970 1,007 1,048 1,157 1,2991,27 0,62 0,515 0,672 0,781 0,810 0,839 0,870 0,903 0,937 0,974 1,015 1,123 1,2651,23 0,63 0,483 0,639 0,748 0,777 0,807 0,837 0,873 0,904 0,941 1,982 1,090 1,2331,20 0,64 0,451 0,607 0,716 0,745 0,775 0,805 0,838 0,872 0,909 0,950 1,058 1,2011,17 0,65 0,419 0,672 0,685 0,714 0,743 0,774 0,806 0,840 0,877 0,919 1,027 1,1691,14 0,66 0,388 0,639 0,654 0,683 0,712 0,743 0,775 0,810 0,847 0,888 0,996 1,1381,11 0,67 0,358 0,607 0,624 0,652 0,682 0,713 0,745 0,779 0,816 0,857 0,996 1,1081,08 0,68 0,328 0,576 0,594 0,623 0,652 0,683 0,715 0,750 0,878 0,828 0,936 1,0781,05 0,69 0,299 0,545 0,565 0,593 0,623 0,654 0,686 0,720 0,757 0,798 0,907 1,0491,02 0,7 0,270 0,515 0,536 0,565 0,594 0,625 0,657 0,692 0,729 0,770 0,878 1,0200,99 0,71 0,242 0,485 0,508 0,536 0,566 0,597 0,629 0,663 0,700 0,741 0,849 0,9920,96 0,72 0,214 0,456 0,480 0,508 0,538 0,569 0,601 0,665 0,672 0,713 0,821 0,9640,94 0,73 0,186 0,427 0,452 0,481 0,510 0,541 0,573 0,608 0,645 0,686 0,733 0,794 0,9360,91 0,74 0,159 0,398 0,425 0,453 0,483 0,514 0,546 0,580 0,617 0,658 0,706 0,766 0,9090,88 0,75 0,739 0,8820,86 0,76 0,105 0,343 0,371 0,400 0,429 0,460 0,492 0,526 0,563 0,605 0,652 0,713 0,8550,83 0,77 0,079 0,316 0,344 0,373 0,403 0,433 0,466 0,500 0,537 0,578 0,626 0,686 0,8290,80 0,78 0,052 0,289 0,318 0,347 0,376 0,407 0,439 0,574 0,51 1 0,552 0,559 0,660 0,8020,78 0,79 0,026 0,262 0,292 0,320 0,350 0,381 0,413 0,447 0,484 0,525 0,573 0,634 0,7760,75 0,8 0,235 0,266 0,294 0,324 0,355 0,387 0,421 0,458 0,449 0,547 0,608 0,7500,72 0,81 0,209 0,240 0,268 0,298 0,329 0,361 0,395 0,432 0,473 0,521 0,581 0,7240,70 0,82 0,183 0,214 0,242 0,272 0,303 0,335 0,369 0,406 0,447 0,495 0,556 0,6980,67 0,83 0,157 0,188 0,216 0,246 0,277 0,309 0,343 0,380 0,421 0,469 0,530 0,6720,65 0,84 0,131 0,162 0,190 0,220 0,251 0,283 0,317 0,354 0,395 0,443 0,503 0,6460,62 0,85 0,105 0,135 0,164 0,194 0,225 0,257 0,291 0,328 0,369 0,417 0,477 0,6200,59 0,86 0,079 0,109 0,138 0,167 0,198 0,230 0,265 0,302 0,343 0,390 0,451 0,5930,56 0,87 0,053 0,082 0, 111 0,141 0,172 0,204 0,238 0,275 0,316 0,364 0,424 0,5670,53 0,88 0,029 0,055 0,084 0,114 0,145 0,177 0,21 1 0,248 0,289 0,337 0,397 0,5400,51 0,89 0,028 0,057 0,086 0,117 0,149 0,184 0,221 0,262 0,309 0,370 0,5120,48 0,90 0,029 0,058 0,089 0,121 0,156 0,193 0,234 0,281 0,342 0,484

0,132 0,370 0,398 0,426 0,456 0,487 0,519 0,553 0,590 0,631 0,679

0,200,982,0882,0221,9581,8971,8381,7811,7271,6751,6251,5761,5291,4841,4401,3971,3561,3151,2761,2381,2011,1651,1301,0961,0621,0300,9980,9660,9350,9050,8750,8460,8170,7890,761

2

Page 10: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.8

Reactive energy correction in an electrical installation

Where should the capacitors be installed?

The location of the capacitors in an electrical network is determined according to: ○ the required objective: eliminate penalties, discharge lines and transformers, increase end-of-line voltage, ○ the method of electrical power distribution, ○ the load rating, ○ the estimated effect of the capacitors on the network, ○ the cost of the installation.

The reactive energy compensation can be: ○ a high-voltage capacitor bank on the high-voltage distribution network (1), ○ a medium-voltage capacitor bank, regulated or fixed for the medium-voltage subscriber (2), ○ a low-voltage capacitor bank, regulated or fixed for the low-voltage subscriber (3), ○ fixed power factor correction for a medium-voltage motor (4), ○ fixed power factor correction for a low-voltage motor (5).

Example: Customers can choose the location of the power factor correction devices according to the characteristics of their installation and the objectives they require it to meet. Type 2 equipment can, for example, be used to compensate the consumption of the lift station on a wind turbine farm; another example is to compensate a motor control centre, for which automatic equipment is recommended. Type 1 equipment can be used to compensate the power transport line of an electrical company.

2

Compensated network

Page 11: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

● On the LV outputs (MGDB) Position no. 1 Global power factor correction Advantages: ○ eliminates penalties for the excessive use of reactive energy ○ adapts the apparent power (S) in kVA to the actual needs of the installation ○ discharges the transformation centre (available power in kW) Comments: ○ the reactive current (Ir) is present in the installation from level 1 to the loads ○ there is no reduction in the Joule effect losses in the

P.9

● At the input to each workshop Position no. 2 Partial power factor correction Advantages: ○ eliminates penalties for the excessive use of reactive energy ○ optimises part of the installation, the reactive current is not carried between levels 1 and 2 ○ discharges the transformation centre (available power in kW) Comments: ○ the reactive current (Ir) is present in the installation from level 2 to the loads ○ Joule effect losses are reduced in the cables.

● At the terminals of each inductive-type load Position no. 3 Individual power factor correction Advantages: ○ eliminates penalties for the excessive use of reactive energy ○ optimises the entire electrical installation: the reactive current Ir is supplied at the very place where it is consumed ○ discharges the transformation centre (available power in kW) Comments: ○ there is no reactive current in the cables in the installation ○ the Joule effect losses are completely eliminated from the cables

Reactive energy correction in an electrical installation (continued)

The capacitors can be installed at three different levels:

2

Fig. 11: individual power factor correction

Fig. 9: global power factor correction Fig. 10: local power factor correction

Page 12: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

When should fixed power factor correction be used?

Fixed transformer power factor correction

A transformer consumes a reactive power that can be determined approximately by adding:○ a fixed part that depends on the magnetising off-load current lo:

Qo = I0 x Un x √3

○ a part that is proportional to the square of the apparent power that it conveys: Q = Usc S²/Sn

Usc: short-circuit voltage of the transformer in p.u.S: apparent power conveyed by the transformerSn: apparent nominal power of the transformerUn: nominal phase-to-phase voltage

The total reactive power consumed by the transformer is: Qt = Qo + Q.

If this correction is of the individual type, it can be performed at the actual terminals of the transformer.

If this correction is performed globally with load correction on the busbar of the main switchboard, it can be of the fixed type provided that total power does not exceed15% of transformer nominal power(otherwise use banks with automatic regulation).

The individual correction values specific to the transformer, depending on transformer nominal power, are listed in the table below.

Fig. 12: power flow in an installation with an uncompensated transformer

Fig. 13: power flow in an installation where the transformer is compensated by a fixed power factor correction device

P.10

2

Transformer Oil bath Dry

S (kVA) Usc (%) No-load Load No-load Load

100 4 2.5 5.9 2.5 8.2

160 4 3.7 9.6 3.7 12.9

250 4 5.3 14.7 5.0 19.5

315 4 6.3 18.3 5.7 24

400 4 7.6 22.9 6.0 29.4

500 4 9.5 28.7 7.5 36.8

630 4 11.3 35.7 8.2 45.2

800 4 20.0 66.8 10.4 57.5

1000 6 24.0 82.6 12 71

1250 5.5 27.5 100.8 15 88.8

1600 6 32 126 19.2 113.9

2000 7 38 155.3 22 140.6

2500 7 45 191.5 30 178.2

Page 13: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

● Case of parallel-mounting of capacitors with separate operating mechanismTo avoid dangerous overvoltages due to self-excitation or in cases in which the motor starts by means of special switchgear (resistors, reactors,autotransformers), the capacitors will only be switched after starting. Likewise, the capacitors must be disconnected before the motor is de-energised. In this case, motor reactive power can be fully corrected on full load. Caution: if several banks of this type are connected in the same network, inrush current limiting reactors should be fitted.

2

P.11

When should fixed power factor correction be used? (continued)

Correction of asynchronous motors

The cos φ of motors is normally very poor off-load and when slightly loaded, and poor in normal operating conditions. Installationof capacitors is therefore recommended for this type of load.The table opposite gives, by way of an example, the values for capacitor bank power in kvar to be installed according to motor power.

Rated power

Number of revolutions per minute

Reactive power in kVAr

kW hP 3000 1500 1000 750

11 15 2.5 2.5 2.5 5

18 25 5 5 7.5 7.5

30 40 7.5 10 11 12.5

45 60 11 13 14 17

55 75 13 17 18 21

75 100 17 22 25 28

90 125 20 25 27 30

110 150 24 29 33 37

132 180 31 36 38 43

160 218 35 41 44 52

200 274 43 47 53 61

250 340 52 57 63 71

280 380 57 63 70 79

355 485 67 76 86 98

400 544 78 82 97 106

450 610 87 93 107 117

When a motor drives a high inertia load, it may, after breaking of supply voltage, continue to rotate using its kinetic energy and be self-excited by a capacitor bank mounted at its terminals.The capacitors supply the reactive energy required for it to operate in asynchronous generator mode. Such self-excitation results in voltage holding and sometimes in high overvoltages.

Correction requirements of asynchronous motors● Case of mounting capacitors at the motor terminals To avoid dangerous overvoltages caused by the self-excitation pheno-menon, you must ensure that capacitor bank power verifies the following equation:

Qc ≤ 0,9 √3 Un I0

○ Io : motor off-load currentI o can be estimated by the following expres-sion: l0 = 2 In (l - cos φn)○ ln: value of motor nominal current○ Cos φ n: cos φ of the motor at nominal power○ Un: nominal phase-to-phase voltage

Parallel-mounting of capacitors with seperate opera-ting mechanism

Mounting capacitors at motor terminals

Page 14: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Automatic power factor correction

Automatic power factor correction equipment

● Internal components An automatic power factor correction device must be adapt to the variations in reactive power of the installation in order to maintain the target cos φ of the installation.

An automatic power factor correction device consists of three main components: ○ The controller: Its function is to measure the cos φ of the installation and send orders to the contactors to ensure that the power factor is as close as possible to the target cos φ by linking the various reactive power steps. Besides this function, Schneider Electric’s Varlogic controllers incorporate additional functions to assist with maintenance and installation.

○ Capacitors: Capacitors are the components that supply reactive energy to the installation. Capacitors are normally connected internally in a delta configuration.

● External components An automatic power factor correction device cannot work unless the installation data is collected; the external components ensure that the device operates correctly:

○ Current measurement: A current transformer that can measure the consumption of the entire installation must be connected.

○ Voltage measurement: Normally, this device is built into the capacitor bank itself so that this value is generated by the power connection of the capacitor bank. This information about the installation (voltage and current) allows the controller to calculate the cos of the installation at any time and to take the decision to activate or deactivate the power steps.

○ The 230 V supply is also required for the capacitor bank control circuit.

Note: except for the Varset models, which are fitted with a transformer.

P.12

REGULATEUR

Calcul du cos φ del’installation

CONTACTEURLC1-D-K-

Limitation

Connexion pôles principaux

TI

V

2

Page 15: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

2 Automatic power factor correction (continued)

What is control used for?

The Varlogic controllers continually measure the reactive power of the installation and switch the capacitor steps ON and OFF to obtain the required power factor. Their ten step combinations allow them to control capacitors of different powers.

● Step combination :1.1.1.1.1.1 1.2.3.3.3.31.1.2.2.2.2 1.2.3.4.4.41.1.2.3.3.3 1.2.3.6.6.61.1.2.4.4.4 1.2.4.4.4.41.2.2.2.2.2 1.2.4.8.8.8These combinations ensure accurate control, by reducing: ○ the number of power factor correction modules ○ labour Optimising control in this way generates considerable financial savings.

● Explanations: Q1: power of the first step Q2: power of the second step Q3: power of the third step Q4: power of the fourth step Qn: power of the nth step (maximum 12)

● Examples: 1.1.1.1.1.1 : Q2 = Q1, Q3 = Q1,..., Qn = Q11.1.2.2.2.2 : Q2 = Q1, Q3 = 2Q1,..., Qn = 2Q11.2.3.4.4.4 : Q2 = 2Q1, Q3 = 3Q1, Q4 = 4Q1,...., Qn = 4Q11.2.4.8.8.8 : Q2 = 2Q1, Q3 = 4Q1, Q4 = 8Q1,..., Qn = 8Q1

● Calculation of the number of electrical steps: The number of electrical steps (e.g. 13) depends on: ○ the number of controller outputs used (e.g. 7) ○ the chosen combination, according to the power of the various steps (e.g. 1.2.2.2).

P.13

Combinations Number of controller outputs used

1 2 3 4 5 6 7 8 9 10 11 12

1.1.1.1.1.1... 1 2 3 4 5 6 7 8 9 10 11 12

1.1.2.2.2.2... 1 2 4 6 8 10 12 14 16 18 20 22

1.2.2.2.2.2... 1 3 5 7 9 11 13 15 17 19 21 23

1.1.2.3.3.3... 1 2 4 7 10 13 16 19 22 25 28 31

1.2.3.3.3.3... 1 3 6 9 12 15 18 21 24 27 30 33

1.1.2.4.4.4... 1 2 4 8 12 16 20 24 28 32 36 40

1.2.3.4.4.4... 1 3 6 10 14 18 22 26 30 34 38 42

1.2.4.4.4.4... 1 3 7 11 15 19 23 27 31 35 39 43

1.2.3.6.6.6... 1 3 6 12 18 24 30 36 42 48 54 60

1.2.4.8.8.8... 1 3 7 15 23 31 39 47 55 63 71 79

Page 16: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Automatic power factor correction (continued)

● Example: 150 kVAr 400 V 50 hz

Solution 1: physical control 10 x 15 kVAr 15 + 15 + 15 +15 +15 + 15 + 15 + 15 + 15 +15, combination: 1.1.1.1.1.1 ○ 10 physical steps ○ 10 contactors ○ 12-step controllers Labour, high cost: non-optimised solution

Solution 2: electrical control 10 x 15 kVAr 15 + 30 + 45 + 60 = 10 x 15 electrical kVAr, combination 1.2.3.4 ○ 4 physical steps allowing for 10 different powers ○ 4 contactors ○ 6-step controllers

Power factor correction cubicle optimisation

Possible powers (kVAr) Physical steps Physical steps

15 30 45 60

15 x

30 x

45 x x (x)

60 x x (x)

75 (x) x x (x)

90 x x (x) x (x)

105 x x (x) x (x)

135 x x x

150 x x x x

(x) Other possible combinations.

● Other solutions: 10 x 15 electrical kVAr Combination: 1.1.2.2.2: 15 + 15 + 30 + 30 + 30 kVAr Combination: 1.1.2.3.3: 15 + 15 + 30 + 45 + 45 kVAr

P.14

2

Page 17: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

How to select power factor correction devices?

General information about harmonics p.16

Causes and effects of harmonics p.18

Choosing power factor correction devices p.20

Choosing the frequency of detuned reactors p.22

Page 18: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

General information about harmonics

Introduction

In electrical systems, the voltage or current waves, whose frequency is an integral multiple of the fundamental frequency of the network (50 hz), are called harmonics. The waves of different orders that make up a harmonic spectrum and result in distorted waves are generally found simultaneously. Fig. 25 shows the breakdown of a distorted wave into a sinusoidal wave at the fundamental frequency (50 hz) and a wave at another frequency. harmonics are usually defined by two main characteristics: ○ their amplitude: value of the harmonic voltage or current ○ their order: value of their frequency with respect to the fundamental frequency (50 hz). Under such conditions, the frequency of a 5th order harmonic is five times greater than the fundamental frequency, i.e. 5 x 50 hz = 250 hz.

The root mean square value

The rms value of a distorted wave is obtained by calculating the quadratic sum of the different values of the wave for all the harmonic orders that exist for this wave: Rms value of I: I(A) = √ I1 2 + I2 2 + … + In 2 The rms value of all the harmonic components is deduced from this calculation: Ih (A) = √ I2 2 + … + In 2 This calculation shows one of the main effects of harmonics, i.e. the increased rms current passing through an installation, due to the harmonic components with which a distorted wave is associated. Usually, the switchgear and cables or the busbar trunking of the installation is defined from the rated current at the fundamental frequency; all these installation components are not designed to withstand excessive harmonic current.

Detecting the problem in the installation

Instruments that measure the true root mean square value (TRMS) must be used to detect any harmonic problems that may exist in the installations, since instruments that measure the average value (AVG) only give the correct values when the waves are perfectly sinusoidal. When the wave is distorted, the measurements can be as much as 40% below the true rms value.

Fig. 14 : decomposition of a distorted wave

Fig.15 : Typical graph of the frequency spectrum

The frequency spectrum, also known as the spectral analysis, indicates the types of harmonic generator present on the network

P.16

+1 2 3 4 5 6 7 8 9 10 11

0

10

20

30

40

50

60

70

80

90

100

3

Page 19: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Fig.17 : Harmonic spectrum for variable speed drives for asynchronous motors or direct current motors.

General information about harmonics (continued)

harmonic measurement: distortion

The presence of varying amounts of harmonics on a network is called distortion. It is measured by the harmonic distortion rates: ○ Th: individual distortion rate It indicates, as a %, the magnitude of each harmonic with respect to the value of the fundamental frequency: Th (%) = Ah / A1where Ah = the value of the voltage or current of the h-order harmonic. A1 = the value of the voltage or current at the fundamental frequency (50 hz).

○ ThD: Total harmonic Distortion It indicates, as a %, the magnitude of the total distortion with respect to the fundamental frequency or with respect to the total value of the wave.

The operating values used to find the true situation of the installations with respect to the degree of harmonic contamination are: ○ The total harmonic voltage distortion [ThD(U)] indicating the voltage wave distortion and the ratio of the sum of the harmonic voltages to the fundamental frequency voltage, all expressed as a %.

○ The total harmonic current distortion [ThD(I)] determining the current wave distortion and the ratio of the sum of the harmonic currents to the fundamental frequency current, expressed as a %.

○ The frequency spectrum (TFT) is a diagram that gives the magnitude of each harmonic according to its order. By studying it, we can determine which harmonics are present and their respective magnitude.

Interharmonics

Interharmonics are sinusoidal components with frequencies that are not integral multiples of the fundamental frequency (and therefore situated between the harmonics). They are the result of periodic or random variations of the power absorbed by different loads such as arc furnaces, welding machines and frequency converters (variable speed drives, cycloconvertors).

Example :

Fig.16 : Harmonic spectrum for industrial devices: arc furnaces, induction furnaces, welding machines, rectifiers, etc.

P.17

2

30

8 8

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

%

n

100

2

30

8 8

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10 11

%

n

4

0

20

40

60

80

100

1 2 3 4 5 6 7 8 11 10 13

%

4

100

52

34

4

0

20

40

60

80

100

1 2 3 4 5 6 7 8 11 10 13

%

n

4

3

Page 20: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Causes and effects of harmonics

harmonic generators

harmonics are generally produced by non-linear loads which, although powered by a sinusoidal voltage, absorb a non-sinusoidal current. In short, non-linear loads are considered to behave as current sources that inject harmonics into the network. The most common non-linear harmonic loads are those found in devices fed by power electronics, such as variable speed drives, rectifiers, converters, etc. Loads such as saturable reactors, welding equipment, arc furnaces etc. also inject harmonics. Other loads have a linear behaviour and do not generate harmonics: inductors, resistors and capacitors.

Main harmonic sources

We differentiate between these loads, according to whether they are used for industrial or residential applications: ● Industrial loads: ○ power electronics devices: variable speed drives, rectifiers, UPS, etc. ○ loads using an electric arc: arc furnaces, welding machines, lighting (fluorescent lamps, etc.); harmonics (temporary) are also generated when motors are started with an electronic starter and when power transformers come into service.

Residential loads: TVs, microwave ovens, induction plates, computers, printers, fluorescent lamps, etc.

Type of load harmonics generated Comments

Transformer Even and odd order DC component

Asynchronous motors Odd order Interharmonics and subharmonics

Discharge lamp 3.° + odd Can reach 30% of l1

Arc welding 3.°

AC arc furnaces Unstable variable spectrum Non linear – asymmetric

Inductive filter rectifier h = K x P ± 1lh = l1/h

UPS - variable speed drives V

Capacitive filter rectifier h = K x P ± 1lh = l1/h

Electronic device power supply

Cycloconvertor Variables Variable speed drives V

PWM controllers Variables UPS - DC - AC converter

The following table is a guide to the various loads with information on the injected harmonic current spectrum.

Fig.18 : linear loads such as inductors, capacitors and resistors do not generate harmonics

Fig. 19 : non-linear loads are those that generate harmonics

P.18

3

Page 21: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

3

Effects of the harmonics Causes Consequences

On the conductors ○ the harmonic currents cause the Irms to increase ○ the skin effect reduces the effective cross-section of the conductors as the frequency increases

○ unwanted tripping of the protection devices ○ overheated conductors

On the neutral conductor ○ a balanced three-phase + neutral load generates 3rd order multiple odd harmonics

○ closure of homopolar harmonics on the neutral, causing overheating and overcurrents

On the transformers ○ increased IRMS ○ Foucault losses are proportional to the frequency

○ increased overheating due to the Joule effect in the windings ○ increased losses in iron

On the motors ○ similar to those for the transformers and generation of a field added to the main one

○ analogues à celles des transformateurs plus pertes de rendement

Causes and effects of harmonics (continued)

The effects of harmonics on loads

The following two types of effects appear in the main equipment: immediate or short-term effects and long-term effects.

Immediate or short-term effects: ● Unwanted tripping of protection devices, ● Induced interference from LV current systems (remote control, telecommunications), ● Abnormal vibrations and noise,● Damage due to capacitor thermal overload, ● Faulty operation of non-linear loads.

Long-term effects associated with current overload that causes overheating and premature deterioration of the equipment.

Affected devices and effects: ● Power capacitors: ○ additional losses and overheating, ○ fewer possibilities of use at full load, ○ vibrations and mechanical wear, ○ acoustic disComfort.

● Motors: ○ additional losses and overheating, ○ fewer possibilities of use at full load, ○ vibrations and mechanical wear, ○ acoustic disComfort.

● Transformers: ○ additional losses and overheating, ○ mechanical vibrations, ○ acoustic disComfort. ○ automatic switch: ○ unwanted tripping due to the peak current being exceeded.

● Cables: ○ additional dielectric and chemical losses, especially on the neutral, when 3rd order harmonics are present, ○ overheating.

● Computers: ○ functional disruptions causing data losses or faulty operation of control equipment.

● Power electronics: ○ waveform interference: switching, synchronisation, etc.

Fig. 20: summary table of effects, causes and consequences of harmonics

P.19

Page 22: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Choosing power factor correction devices

Impact of harmonics on capacitors

Some loads (variable speed motors, static converters, welding machines, arc furnaces, fluorescent lamps, etc.) pollute the electrical network by reinjecting harmonics.

To take account of the effects of the harmonics on the capacitors, the type of compensation equipment must be correctly determined:

Gh / Sn < 15% 15% < x < 25 % 25% < x ≤ 50%

range Classic Comfort harmony

Choosing equipment according to the harmonic pollution level

Equipment can be chosen: ● Either theoretically from the Gh/Sn ratio if the data is available. Gh: apparent power of harmonic-generating loads (variable speed motors, static converters, power electronics, etc). Sn: apparent power of the transformer. The Gh/Sn rule is valid for a ThD(I) of all the harmonic generators < 30% and for a pre-existing ThD(U) < 2%. If these values are exceeded, a harmonic analysis of the network or measurements are required.

Example 1: U = 400 V, P = 300 kW, Sn = 800 kVA, Gh = 150 kVA Gh/Sn = 18.75 % φ Comfort equipment

Example 2: U = 400 V, P = 100 kW, Sn = 800 kVA, Gh = 300 kVA Gh/Sn = 37.5 % φ harmony equipment

● Or from the total harmonic current distortion ThD(I) measured at the transformer secondary, at full load and without capacitors:

ThD(I) % Classic Comfort harmony Filters

≤ 5 %

5 % < ... ≤ 4%

10 % < ... ≤ 20%

> 20 %

● Or from the total harmonic voltage distortion ThD(U) measured at the transformer secondary, at full load and without capacitors:

ThD(U) % Classic Comfort harmony Filters

≤ 3 %

3 % < ... ≤ 4%

4 % < ... ≤ 7 %

> 7 %

● If both ThD(I) and ThD(U) are measured and do not result in the same type of power factor correction, the most rigorous solution must be chosen.

For example, a measurement gives: ○ ThD(I) = 15 % harmony solution ○ ThD(U) = 3.5 % Comfort solution The harmony solution must be chosen.

P.20

3

Page 23: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

3 Choosing power factor correction devices (continued)

Operating limits

The rules described below are for information only. Please contact us in case of doubt or if the values are higher than those indicated below.

All the components and applications recommended in this catalogue are only valid if the operating limits given below are met, in order to prevent the detuned reactors and capacitors from being overloaded.

The ThD(U) must be measured at the transformer secondary with the capacitor banks. The lmp current must be measured in the capacitors.

Operating limits ThD (U) max. %

Order voltage measurement lmp/l1 max.

U3 U5 U7 U11 U13

Classic power factor correction 5 % 1.3

Comfort power factor correction 7 % 3 % 8 % 7 % 3.5 % 3 % 1.12

harmony power factor correc-tion (tuning order 2.7)

8 % 0.5 % 6 % 7 % 3.5 % 3 % 1.19

P.21

Page 24: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Choosing the detuned reactor tuning frequency

General:

The purpose of the detuned reactors (DR) is to prevent the harmonics present on the network from being amplified and to protect the capacitors (this corresponds to our harmony range). They must be connected in series with the capacitors. Caution: as the detuned reactors generate an overvoltage at the capacitor terminals, capacitors of at least 480 V must be used for a 400 V network.

Technical data:

● Choice of tuning The tuning frequency fr corresponds to the resonance frequency of the L-C assembly. fr = 1/ (2�√LC) We also speak of tuning order n. For a 50 hz network, we have: n = fr / 50 hz

● The tuning order chosen must ensure that the harmonic current spectrum range is outside the resonance frequency. ● It is also important to ensure that no remote-control frequencies are disturbed. The most common tuning orders are 3, 8 or 4.3 (2.7 is used for 3rd order harmonics).

DR, 400 V, 50 hz tuning frequency selection table

harmonic generators (Gh) Remote control frequency

None 165 < Ft ≤ 250 hz 250 < Ft ≤ 350 hz Ft > 350 hz

Three-phase Tuning frequency

Variable speed drives, rectifiers, UPS, starters 135 hz 135 hz (1) 190 hz 215 hz

Single-phase Gh > 10% Sn Tuning frequency

Discharge lamps, electronic ballast lamp, fluorescent lamps, UPS, variable speed drives, welding machines

135 hz 135 hz 135 hz 135 hz

Single-phase Gh: power of single-phase harmonic generators in kVA. (1): a tuning frequency of 215 hz can be used in France with a remote control frequency of 175 hz

Concordance between tuning frequency and relative impedance (50 hz network)

Tuning frequency (lr) Tuning order (n = fr/f) Relative impedance (P = 1/n2) as a %

135 hz 2.7 13.7 %

190 hz 3.8 6.92 %

P.22

3

Page 25: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

3 Typical solutions depending on applications

Customer requirements

The table below shows the solutions most frequently used in different types of applications.

Very frequently

Usually

Occasionally

In all cases, it is strongly recommended that measurements be carried out on site in order to validate the solution.

Classic type Comfort type harmony type

Industry

Food and drink

Textiles

Wood

Paper

Printing

Chemicals - pharmaceuticals

Plastics

Glass - ceramics

Steel production

Metallurgy

Automotive

Cement works

Mining

Refineries

Microelectronics

Tertiary

Banks - insurance

Supermarkets

hospitals

Stadiums

Amusement parks

hotels - offices

Energy and infrastructure

Substations

Water distribution

Internet

Railway transport

Airports

Underground train systems

Bridges

Tunnels

Wind turbines

P.23

Page 26: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.28

Varplus2 presentation p. 25

Our products according to network p. 27

Varplus2 p. 28

Dimensions p. 38

Capacitors

Page 27: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2 presentation

What are the advantages of Varplus²?

● Easy installation: ○ extensive choice of installation positions ○ no assembly limitations ○ no earth connection needed ○ mounting holes allow capacitors to be fixed easily and securely with two M6 screws ○ connection on top of the capacitor: very easy to access ○ several capacitors can be assembled quickly and easily ○ 360° cable connection on top of the capacitor.

● high flexibility: ○ the total modularity of Varplus2 provides greater stock management flexibility ○ covers all the electrical steps that may be required, according to the voltage and frequency and the level of harmonic pollution present in the network○ the total modularity of the capacitor provides greater stock management flexibility.

● A unique technology: ○ the discharge resistors are already mounted in the capacitors. They reduce the voltage to less than 50 V in one minute and can be used in an automatic power factor correction cubicle without an additional discharge system. ○ high fire resistance ○ high quality protection system. Varplus² are the only capacitors using this technology that can prevent 100% of all possible faults thanks to the disconnection system with its suppressor and hBC fuses

They can be installed in several positions

P.25

Recommended installation

Acceptable

Recommended installationRecommended installation

Wrong Wrong

4

Air flow Air flow

Air flow Air flow

Air flow

Page 28: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2 presentation (continued)

Technical data

● hQ protection system built into each single phase element :○ high current fault protection by hRC cartridge fuse○ low current fault protection by combination of single phase internal overpressure device with the hRC fuse

● A fully modular offer with only one size for installation and connection

● Maximum power per unit: 20 kvar for 400V-50 hz network.

● Possibility of wiring connection at 360°.

● Three phase connection

● With internally fitted discharge resistors: residual voltage less than 50 V in 1 minute.

● Total losses (discharge resistor included) : ≤ 0,5 W/kvar

● Capacitance value tolerance : -5 %, +10 %.

● Voltage test : 2,15 Un (rated voltage) for 10 s.

● Maximum permissible overloads at service voltage network as per IEC 60831 1/2:○ current: 30 % permanently○ voltage: 10 % (8 hours over 24 hours).

● Temperature class D (+55°C):○ Maximum temperature: 55°C○ Average temperature over 24 h: 45°C○ Average temperature over a year: 35°C○ Minimum temperature: - 25°C.

● Colour :○ elements: RAL 9005○ base and cover: RAL 7030.

● Execution: indoor.

● Protection :○ IP00 without cover (option)○ IP20 or 42 see accossories.

● Standards : IEC 60831 1/2, CSA 22-2 No190, UL810

P.26

Installation

All positions are convenient except vertical one with connecting terminals upside down. Fixing holes for M6 screwsavec des vis M6.

Accessories pour Varplus² References

1 set of three phase copper bars for connection and assembly of 2 and 3 capacitors

51459

1 set of protective cover (IP20) and cable glands (IP42) for 1,2 and 3 capacitors

51461

1 protective cover (IP20) 51299

Accessories

Varplus²

Varplus² accesso-

4

Page 29: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4

P.27

Our products according to network

Find the page corresponding to your network thanks to the table below.

50 hz network

230 V network voltage p.28

400/415 V network voltage p.29 et p.30

525 V network voltage p.31

690 V network voltage p.32

60 hz network

230/240 V network voltage p.33

400/415 V network voltage p.34

440 V network voltage p.35

480 V network voltage p.36

600 V network voltage p.37

Page 30: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2

230 V - 50 hz network

● Classic & Comfort range

Useful power (kvar) References

2,5 51301

5 51303

6,5 51305

7,5 51307

10 51309

Advised assembly

15 2 x 51307

20 2 x 51309

30 3 x 51309

40 4 x 51309

Maximum mechanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus² user manual.

● Harmony rangeSame capacitors can be used with detuned reactors.

P.28

4

Page 31: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4 Varplus2

400/415 V - 50 hz network

● Classic range

Useful power (kvar) References

400 V 415 V

5 5,5 51311

6,25 6,5 51313

7,5 7,75 51315

10 10,75 51317

12,5 13,5 51319

15 15,5 51321

20 21,5 51323

Advised assembly

25 27 2 x 51319

30 31 2 x 51321

40 43 2 x 51323

50 53,5 2 x 51321 + 51323

55 58,5 2 x 51323 + 51321

60 64,5 3 x 51323

65 3 x 51323 + 51311

Maximum mechanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus² user manual.

● Comfort range

Capacitors rated voltage: 480 V.

Useful power References

400 V (kvar) 415 V (kvar)

5 5,5 51325

6,25 6,5 51327

7,5 8 51329

10 11 51331

12,5 13,5 51333

15 16,5 51335

Advised assembly

20 23 2 x 51331

25 25 2 x 51333

30 34 2 x 51335

45 51 3 x 51335

60 68 4 x 51335

Maximum mechanical assembly: 4 capacitors and 60/68 kVAr for 400/415V - 50 hz network.Assembly > 60 kvar : see conditions to respect in Varplus² user manual.

P.29

Page 32: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2

400/415 V - 50 hz network

● Harmony range

This range corresponds to the association of 480 V rated capacitors with detuned reactors.

Tuning order Useful power (kvar) References

400 V (kvar) 415 V (kvar)

2,7 (135 hz - 13,7 % ) 6,5 7 51337

12,5 13,5 51331

Advised assembly

25 27 2 x 51331

50 54 2 x 51335 + 51333

Maximum mechanical assembly: 4 capacitors and 50/54 kVAr 400/415 V.Assembly > 50 kvar : see conditions to respect in Varplus² user manual.

3,8 (190 hz - 6,92 % ) ou

4,3 (215 hz - 5,4 % )

6,5 7 51327

7,75 8,25 51329

10 11 51345

12,5 13,5 51333

16,5 17,75 51335

Advised assembly

25 27 2 x 51333

30 31,25 51333 + 51335

50 53,25 3 x 51335

Maximum mechanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus² user manual.

P.30

4

Page 33: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4

Example of Varplus² IP00 assembly

Varplus2

525 V - 50 hz network

● Classic range

Useful power (kvar) References

11 51351

13 51353

17 51357

Advised assembly

22 2 x 51351

26 2 x 51353

34 2 x 51357

51 3 x 51357

62 3 x 51357 + 1 x 51351

68 4 x 51357

Maximum mechanical assembly: 4 capacitors and 68 kVAr.Assembly > 68 kvar : see conditions to respect in Varplus² user manual.

● Comfort range

Capacitor rated voltage: 690V

Useful power (kvar) References

6 51359

8 51361

10 51363

Advised assembly

20 2 x 51363

30 3 x 51363

40 4 x 51363

Maximum mechanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus² user manual.

● harmony range

Capacitors rated 690 V will be used with detuned reactors 190/215 hz, 135 hz on request.

P.31

Page 34: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2

690 V - 50 hz network

● Classic range

Useful power (kvar) References

11 51359

15 51361

17 51363

Advised assembly

22 2 x 51359

34 2 x 51363

45 3 x 51361

60 4 x 51361

68 4 x 51363

Maximum mechanical assembly: 4 capacitors and 68 kVAr.Assembly > 68 kvar : see conditions to respect in Varplus² user manual.

● Comfort & Harmony range

On request

P.32

4

Page 35: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4 Varplus2

230/240 V - 60 hz network

● Classic & Comfort range

Useful power (kvar) References

230 V (kvar) 240 V (kvar)

3 3 51301

6 6,5 51303

8 8,5 51305

9 10 51307

12 13 51309

Advised assembly

18 20 2 x 51307

24 26 2 x 51309

36 39 3 x 51309

Maximum mechanical assembly: 4 capacitors and 40 kVAr.Assembly > 40 kvar : see conditions to respect in Varplus² user manual.

● Harmony range

Same capacitors can be used with detuned reactors.

P.33

Page 36: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varplus2

400/415 V - 60 hz network

● Classic range

Useful power (kvar) References

400 V (kvar) 415 V (kvar)

6 6,25 51311

7,5 8 51313

9 9 51315

12 13 51317

15 16 51319

18 19 51321

Advised assembly

24 26 2 x 51317

30 32 2 x 51319

36 38 2 x 51321

45 48 3 x 51319

54 57 3 x 51321

60 64 4 x 51319

Maximum mechanical assembly: 4 capacitors and 65 kVAr.Assembly > 65 kvar : see conditions to respect in Varplus² user manual.

● Comfort rangeCapacitors rated 480 V are necessary.

Useful power (kvar) References

400 V (kvar) 415 V ( kvar)

6 6,25 51325

7,5 8 51327

9 9 51329

12,75 13,5 51331

14 15 51333

18,5 51335

Advised assembly

25,5 27 2 x 51331

32,5 51333 + 51335

37 2 x 51335

42 45 3 x 51333

51 2 x 51335 + 51333

55 3 x 51335

61 3 x 51335 + 51325

Maximum mechanical assembly: 4 capacitors and 61 kVAr.Assembly > 61 kvar : see conditions to respect in Varplus² user manual.

P.34

4

Page 37: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4

P.35

Varplus2

400/415 V - 60 hz network (continued)

● Harmony range

Capacitors rated 480 V will be used with detuned reactors.

Tuning order Useful power (kvar) References

400 V (kvar) 415 V (kvar)

2,7 (135 hz - 13,7 % ) 7,75 8,25 51337

15 16,25 51331

Maximum mechanical assembly: 4 capacitors and 60/65 kVAr 400/415 V.Assembly > 60 kvar : see conditions to respect in Varplus² user manual.

Tuning order Useful power (kvar) References

400 V (kvar) 415 V (kvar)

3,8 (190 hz - 6,92 % ) ou

4,3 (215 hz - 5,4 % )

7,75 8,3 51327

9,25 10 51329

12 13 51345

15 16 51333

20 51335

Maximum mechanical assembly: 4 capacitors and 60/65 kVAr 400/415 V.Assembly > 60 kvar : see conditions to respect in Varplus² user manual.

Page 38: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.36

4 Varplus2

440 V - 60 hz network

● Classic range

Useful power (kvar) References

7.5 51325

9 51327

11 51329

15 51331

17 51333

22 51335

Advised assembly

30 2 x 51331

44 2 x 51335

51 3 x 51333

59 2 x 51335 + 51331

66 3 x 51335

75 3 x 51335 + 51327

Maximum mechanical assembly: 4 capacitors and 76 kVAr.Assembly > 76 kvar : see conditions to respect in Varplus² user manual.

● Comfort range

Capacitors rated 550V are necessary.

Useful power (kvar) References

9 51351

11 51353

12.5 51383

14 51357

Advised assembly

28 2 x 51357

42 3 x 51357

56 4 x 51357

● Harmony range

Capacitors rated 550 V will be used with detuned reactors.

Page 39: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

4 Varplus2

480 V - 60 hz network

● Classic range

Useful power (kvar) References

9 51325

11 51327

13 51329

18 51331

20 51333

Advised assembly

36 2 x 51331

54 3 x 51331

72 4 x 51331

Maximum mechanical assembly: 4 capacitors and 72 kVAr.Assembly > 72 kvar : see conditions to respect in Varplus² user manual.

● Comfort range

Capacitor rated 550V are necessary

Useful power (kvar) References

10 51351

12.5 51353

15 51383

17 51357

Advised assembly

20 2 x 51351

25 2 x 51353

34 2 x 51357

44 2 x 51353 + 1 x 51351

51 3 x 51357

68 4 x 51357

Maximum mechanical assembly: 4 capacitors and 68 kVAr.Assembly > 68kvar : see conditions to respect in Varplus² user manual.

● Harmony range

Capacitors rated 550 V will be used with detuned reactors.

P.37

Page 40: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.38

4 Varplus2

600 V - 60 hz network

● Classic & Comfort range

Useful power (kvar) References

600 V (kvar)

10 51359

13,5 51361

15 51363

Advised assembly

20 2 x 51359

30 2 x 51363

45 3 x 51363

60 4 x 51363

Maximum mechanical assembly: 4 capacitors and 60 kVAr.Assembly > 60 kvar : see conditions to respect in Varplus² user manual.

● Harmony range

On request for association with detuned reactors

Page 41: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Dimensions

from 5 to 15 kvar 20 kvar 50 kvar 60 kvar

Weight 219 219 219 219

Width 220 220 220 220

Length 114,7 114,7 308,7 308,7

Three conditions are to be respected for assembly:● adapted busbar section is expected to connect capacitors assembly● minimum space of 25mm is expected between 2 groups of capacitors● specific precautions must be taken in order not to exceed temperature category of -25°C/D inside the cubicle.

P.39

4

Page 42: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Detuned reactors

Presentation p. 41

Our range p. 42

Dimensions p. 43

Detuned reactor / capacitor / contactor combination tables p. 44

Page 43: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Presentation

General information

Detuned reactors (DR) are designed to protect capacitors and prevent amplification of harmonics existing on the network.

Technical data

● Three phase, dry, magnetic circuit, impregnated● Cooling: natural● Degree of protection: IP00● Inslation class : h● Standards : IEC 60289, EN 60289● Rated voltage: 400/415 V, triphasé 50 hz● Tuning order (relative impedance) : 4,3 (5,4 %), 3,8 (6,9 %), 2,7 (13,7 %)● Inductance tolerance per phase : -5, +5 %● harmonic current spectrum:

As a % of the current of the fundamental (l1)

4,3 tuning order 3,8 tuning order 2,7 tuning order

Courant l3 2 % 3 % 6 %

Courant l5 69 % 44 % 17 %

Courant l7 19 % 13 % 6 %

Courant l11 6 % 5 % 2 %

● Insulation level: 1.1 kV● Thermal withstand Isc: 25 x le, 2 x 0,5 second● Dynamic withstand: 2,2 lcc (peak value)● Dielectric test 50 hz between windings and windings/earth: 3,3 kV, 1 mn● Thermal protection restored on terminal block 250 V AC, 2 A.

Operating conditions

● Use: indoor● Storage temperature: - 40°C, + 60°C● Relative humidity in operation: 20 à 80 %● Saline mist withstand: 250 hours ●Operating temperature / Altitude:

Altitude Minimun Maximun highest average over any period of

m °C °C 1 year 24 hours

1000 0 55 40 50

> 1000, ≤ 2000 0 50 35 45

Installation

● Forced ventilation required ● Vertical detuned reactor winding for better heat dissipation● Electrical connection:

○ to a screw terminal block for 6.25 and 12.5 kvar detuned reactors○ to a drilled pad for 25, 50 and 100 kvar detuned reactors

● 480 V capacitors must be used with the detuned reactors in case of a 400/415 V - 50 hz network.

As the detuned reactor is fitted with thermal protection, the normally closed dry contact must be used to disconnect the step in the event of overheating.

5

P.41

Page 44: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.42

5 Our range

Tuning order: 4,3 (215 hz)

Power restored by the DR/capacitor assembly Power losses References

L (mh) l1 (A) (W)

6,25 kvar/400 V - 50 hz 4,71 9 100 51573

12,5 kvar/400 V - 50 hz 2,37 17,9 150 52404

25 kvar/400 V - 50 hz 1,18 35,8 200 52405

50 kvar/400 V - 50 hz 0,592 71,7 320 52406

100 kvar/400 V - 50 hz 0,296 143,3 480 52407

Tuning order: 3,8 (180 hz)

Power restored by the DR/capacitor assembly Power losses References

L (mh) l1 (A) (W)

6,25 kvar/400 V - 50 hz 6,03 9,1 100 51568

12,5 kvar/400 V - 50 hz 3 18,2 150 52352

25 kvar/400 V - 50 hz 1,5 36,4 200 52353

50 kvar/400 V - 50 hz 0,75 72,8 300 52354

100 kvar/400 V - 50 hz 0,37 145,5 450 51569

Tuning order: 2,7 (135 hz)

Power restored by the DR/capacitor assembly Power losses References

L (mh) l1 (A) (W)

6,25 kvar/400 V - 50 hz 12,56 9,3 100 51563

12,5 kvar/400 V - 50 hz 6,63 17,6 150 51564

25 kvar/400 V - 50 hz 3,14 37,2 200 51565

50 kvar/400 V - 50 hz 1,57 74,5 400 51566

100 kvar/400 V - 50 hz 0,78 149 600 51567

For other voltages and/or frequancy, please contact us.

Page 45: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

5 Dimensions

Tuning order: 4,3 (215 hz)

Power restored by the DR / capacitors assembly

Fixing centre distance (mm)

Maximum dimensions (mm) Weight (kg)

h W D

6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 8,6

12,5 kvar/400 V - 50 hz 205 x 110 230 245 140 12

25 kvar/400 V - 50 hz 205 x 110 230 240 140 18,5

50 kvar/400 V - 50 hz 205 x 120ou

205 x 130

270 260 160 25

100 kvar/400 V - 50 hz 205 x 120 330 380 220 42

Tuning order: 3,8 (190 hz)

Power restored by the DR / capacitors assembly

Fixing centre distance (mm)

Maximum dimensions (mm) Weight (kg)

h W D

6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 8,5

12,5 kvar/400 V - 50 hz 205 x 110 230 245 140 10

25 kvar/400 V - 50 hz 205 x 110 230 240 140 18

50 kvar/400 V - 50 hz 205 x 120or

205 x 130

270 260 160 27

100 kvar/400 V - 50 hz 205 x 120 330 380 220 42

Tuning order: 2,7 (135 hz)

Power restored by the DR / capacitors assembly

Fixing centre distance (mm)

Maximum dimensions (mm) Weight (kg)

h W D

6,25 kvar/400 V - 50 hz 110 x 87 230 200 140 9

12,5 kvar/400 V - 50 hz 205 x 110 230 245 145 13

25 kvar/400 V - 50 hz 205 x 110 230 240 140 22

50 kvar/400 V - 50 hz205 x 120

or205 x 130

270 260 160 32

100 kvar/400 V - 50 hz 205 x 120 330 380 220 57

P.43

Page 46: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

5 Detuned reactors / capacitor / contactor combination tables

Maximum temperature 40°C et maximum altitude 2000 m, for 400 V - 50 hz network

480 V capacitors fr =135 hz

Qc = 400 V Qc = 480 V

Capacitor reference

DR reference Specific contactors

Standard contactor

6,25 kvar 8 kvar 51337 x 1 51563 x 1 LC1-DFK11M7 x1 LC1D12 x1

12,5 kvar 15,5 kvar 51331 x1 51564 x 1 LC1-DFK11M7 x 1 LC1D25 x 1

25 kvar 31 kvar 51331 x 2 51565 x 1 LC1-DMK11M7 x 7 LC1D38 x 1

50 kvar 62 kvar 51335 x 2 + 51333 51566 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

100 kvar 124 kvar 51335 x 4 + 51333 x 2 51567 x 1 LC1D115 x 1

480 V capacitors fr =215hz fr = 190 hz

Qc = 400 V

Qc = 480 V

Capacitor reference

DR reference

DR reference

Specific contactors

Standard contactor

6,25 kvar 9 kvar 51327 x 1 51573 x 1 51568 x 1 LC1-DFK11M7 x1 LC1D12 x1

12,5 kvar 17 kvar 5133 x 1 52404 x 1 52352 x 1 LC1-DFK11M7 x 1 LC1D25 x 1

25 kvar 34 kvar 51333 x 2 52405 x 1 52353 x 1 LC1-DMK11M7 x 7 LC1D38 x 1

50 kvar 68 kvar 51335 x 3 52406 x 1 52354 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

100 kvar 136 kvar 51335 x 6 52407 x 1 51569 x 1 LC1D115 x 1

Maximum temperature 50°C et maximum altitude 1000 m, for 400 V - 50 hz network

550 V capacitors fr =135 hz

Qc = 400 V Qc = 550 V Capacitor reference

DR reference Specific contactors

Standard contactor

6,25 kvar 10,5 kvar 51363 x 1 51563 x 1 LC1-DFK11M7 x1 LC1D12 x1

12,5 kvar 21 kvar 51363 x 2 51564 x 1 LC1-DGK11M7 x 1 LC1D25 x 1

25 kvar 40,5 kvar 51353 x 3 51565 x 1 LC1-DPK11M7 x 7 LC1D40x 1

50 kvar 81 kvar 51357 x 3 + 51353 x 2 51566 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

100 kvar 162 kvar 51357 x 9 51567 x 1 LC1F185 x 1

550 V capacitors fr =215hz fr = 190 hz

Qc = 400 V Qc = 550 V Capacitor reference

DR reference

DR reference

Specific contactors

Standard contactor

6,25 kvar 11,5 kvar 51351 x 1 51573 x 1 51568 x 1 LC1-DFK11M7 x1 LC1D12 x1

12,5 kvar 23 kvar 51351 x 2 52404 x 1 52352 x 1 LC1-DGK11M7 x 1 LC1D25 x 1

25 kvar 46 kvar 51357 x 1 + 51353 x 2 52405 x 1 52353 x 1 LC1-DPK11M7 x 7 LC1D40 x 1

50 kvar 90 kvar 51357 x 5 52406 x 1 52354 x 1 LC1-DWK12M7 x 1 LC1D95 x 1

100 kvar 180 kvar 51357 x 10 52407 x 1 51569 x 1 LC1F185 x 1

P.44

Page 47: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varlogic power factor

Presentation p. 46

Our range p. 48

Dimensions p. 49

Page 48: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.46

6 Presentation

General information

Varlogic N power factor controller:● analyses and provides information on network characteristics● controls the reactive power required to obtain the target power factor● monitors and provides information on equipment status● communicates on the Modbus network (Varlogic NRC12 only)

Varlogic NR6 and NR12

● User-friendly interfaceThe backlignted display allows:○ direct viewing of installation electrical information and capacitor stage condition○ direct reading of set-up configuration○ intuitive browsing in the various menus (indication, commisioning, configuration)○ alarm indication

● Performance○ access to a wealth of network and capacitor bank data○ new control algorithm designed to reduce the number of switching operations and quickly attain the required power factor

● Simplified installation and set-up○ quick and simple mounting and wiring○ insensitive to current transformer polarity and phase rotation polarity○ a special menu allows controller self-configuration

Varlogic NRC12

● An even greater level of information and controlIn addition to the functions of Varlogic NR6/NR12, the Varlogic NRC12 provides the following features:○ measurement of total current harmonic distortion○ spectral analysis of network harmonic currents and voltages○ immediate display of network’s main parameters○ possibility of a dual target power factor ○ possible configuration with fixed step○ step condition monitoring (capacitance loss)

Page 49: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Presentation

Technical data

General data ● Operating temperature: 0...60° C● Storage temperature : - 20°C...60°C● Colour: RAL 7016● Standards:○ EMC : IEC 61326○ electrical: IEC/EN 61010-1● Panel mounting● Mounting on 35 mm DIN rail (EN 50022)● Protection class in panel mounting: ○ Front face: IP41○ rear face: IP20● Display :○ NR6, NR12: backlighted screen 65 x 21 mm○ NRC12: backlighted graphic screen 55 x 28 mm○ langues : allemand, anglais, espagnol, français et portugais● Alarm contact● Temperature internal probe● Seperate contact to control fan inside the power factor correction bank● Access to history of alarms

Inputs● Phase to phase or neutral to phase connection● Insensitive to CT polarity● Insensitive to phase rotation polarity● Current input:○ NR6, NR12: CT...X/5 A○ NRC12: CT...X/5 A and X/1 A

Outputs● Potential free output contacts:○ AC : 1 A/400 V, 2 A/250 V, 5 A/120 V○ DC : 0,3 A/110 V, 0,6 A/60 V, 2 A/24 V

Settings and parameters● Target cos φ: 0,85 ind...0,9 cap● Possibility of dual target cos φ (NRC12)● Manual or automatic parameter setting of power factor controller● Choice of different stepping programs:○ linear○ normal○ circular○ optimal● Main step sequences:○ 1.1.1.1.1○ 1.2.2.2.2○ 1.2.3.4.4○ 1.1.2.2.2○ 1.2.3.3.3○ 1.2.4.4.4○ 1.1.2.3.3○ 1.2.4.8.8● Customized sequences for NRC12 type● Delay between 2 successive switch on of a same step:○ NR6, NR12 : 10...600 s○ NRC12 : 10...900 s● Step configuration programming (fixed/automatic/disconnected) (NRC12)● 4 quadrant operation for generator application (NRC12)● Manual control for operating test

P.47

6

Page 50: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.48

6 Our range

Type Number of step output contacts

Supply voltage (V) network 50-60 hz

Measuring voltage (V) References

NR6 6 110-220/240-380/415 110/220/240-380/415 52448

NR12 12 110-220/240-380/415 110-220/240-380/415 52449

NRC12 12 110-220/240-380/415 110-220/240-380/415-690 52450

Varlogic NRC12 accessories

Communication RS485 Modbus set for NRC12 52451

Temperature external probe for NRC12 type. In addition to internal probe, allows measurement at the lowest point inside the capacitor bank. Better tuning of alarm and/or disconnection level. 52452

Information supplied NR6/NR12 NRC12

Cos φ X X

Connected steps X X

Switching cycles and connecting time counter X X

Step configuration (fixed step, automatic, disconnected) X

Step output contacts X

Network technical data: load and reactive currents, voltages, powers (S, P, Q) X X

Ambiant temperature inside the cubicle X X

Total voltage harmonic distortion ThD (U) X X

Total current harmonic distortion ThD (I) X

Capacitor current overload Irms/I1 X

Voltage and curretn harmonic spectrum (orders 3, 5, 7, 11, 13) X

history of alarms X X

Alarms Threshold Actions NR6/NR12 NRC12

Low power factor message and alarm contact X X

hunting (unstable regu-lation)

message and alarm contact disconnection (2) X X

Abnormal cos φ < 0,5 ind. or 0,8 cap. message and alarm contact X X

Overcompensation message and alarm contact X X

Overcurrent > 115 % I1 message and alarm contact X X

Low voltage < 80 % U0 within 1 s message and alarm contact disconnection (2) X X

Overvoltage > 110 % U0 message and alarm contact disconnection (2) X X

Overtemperature θ ≥ θo (θo = 50°C max) (1) message and alarm contactdisconnection (2)

X X

θ ≥ θo- 15°C contact ventilateurdisconnection (2) X X

Total harmonic distorsion > 7 % (1) message and alarm contactdisconnection (2)

X X

Capacitor current overload (Irms/I1)

> 1,5 (1) message and alarm contact disconnection (2)

X

Capacitor capacitance loss - 25 % message and alarm contactdisconnection (2)

X

Low current < 25 % message X X

Page 51: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Dimensions

Varlogic N height (h) Width (W) Depth 1 (P1) Depth 2 (P2)

Varlogic NR6/NR12 150 150 70 60

Varlogic NRC12 150 150 80 70

6

P.48

Page 52: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Power factor correction modules

Varpact presentation p. 51

Our range according to the network p. 53

Varpact p. 54

Accessories for Varpact power factor correction modules p. 58

Page 53: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varpact presentation

General information

Varpact power factor correction modules form a prewired automatic compensation subassembly designed for fixing in stand-alone cubicles or inside Main Low Voltage Switchboard.

What are the advantages of Varpact?

● Time saving thanks to a simple installation: ○ Connection points are reduced○ Busbar option → easier installation○ Only 1 product to order instead of many (capacitors, contactors, wires, protection...)○ Fastening crosspieces to install Varpact in the cubicle

Technical data

● Available voltage and frequency:○ 50 hz : 400 V, 415 V○ Other networks on request

● Capacitance value tolerance : - 5, +10 %

● Insulation level: ○ 0,69 kV ○ withstand 50 hz, 1 min : 2,5 kV.

● Maximum permissible overloads:○ current : Varpact Classic range: 30 % max. (400 V) Varpact Comfort range: 50 % max. (400 V) Varpact harmony range: - accord 2,7 : 12 % max. (400 V) - accord 3,8 : 19 % max. (400 V) - accord 4,3 : 30 % max. (400 V).○ voltage : 10 %

● Ambient temperature around the capacitor bank (electrical room):○ Maximum temperature: 40°C○ Average temperature over 24 hours: 35°C○ Average annual temperature: 25°C○ Minimum temperature: -5°C.

● Losses :○ Varpact Classic : - with cable connection: < 1,9 W / kvar - with busbar connection: < 2 W / kvar○ Varpact Comfort : - with cable connection: < 2,3 W / kvar - with busbar connection: < 2,4 W / kvar○ Varpact harmony : < 8 W / kvar

● Protection degree: accidentals front face direct contact protection device

● Busbar withstand Isc: 35 kA.

● Colour : RAL 7016

● Standards : ○ IEC 60439-1○ EN 60439-1○ IEC 61921

P.51

7

Page 54: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.52

7 Varpact presentation (continued)

Installation

● Varpact modules can be installed in the following type of cubicles:○ Prisma, Prisma plus○ Universal

● horizontal fixing in functional and universal cubicles, 400 and 500 mm deep:○ in cubicle W = 650, 700, 800 using fastening crosspieces ans extension pieces○ en cubicles de largeur L = 600 mm using fastening crosspieces

● Vertical fastening every 300 mm (maximum 5 modules) directly to cubicle uprights using sliding crosspieces or to intermediate upright support

● Control circuit power supply: 230 V 50 hz.

Accessories

Accessories for Varpact Maximum reactive power References

Connection module with fixing kit (600, 650, 700, 800 wide cubicle)

52800

Fastening crosspieces*: set of 2 cross-pieces

51670

Extension pieces* :○ for Prisma Plus cubicle W = 650 mm○ for universal cubicle W = 700 mm○ for universal cubicle W = 800 mm

516355163751639

Circuit breaker (CB) protection* :○ Additional CB 60/63 A protection kit○ Additional CB 100 A protection kit○ Additional CB 160 A protection kit○ Additional CB 250 A protection kit

until 30 kvarfrom 31 to 50 kvarfrom 51 to 80 kvarfrom 81 to 120 kvar

51626516275162851629

Page 55: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Our range according to the network

Classic range Comfort range harmony range

50 hz network

400/415 V network p.49 p.51 p.52

Find the page corresponding to your network thanks to the table below.

Other voltages / frequency: on request.

7

P.53

Page 56: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.54

7 Varpact

400 V - 50 hz network

● Varpact Classic with cable connection

Power (kvar) Step References

12,5 single 51775

25 single 51776

30 single 51777

40 single 51778

45 single 51779

50 single 51780

60 single 51781

80 single 51719

90 single 51782

100 single 51783

120 single 51784

6,25 + 12,5 double 51785

12,5 + 12,5 double 51786

10 + 20 double 51787

15 + 15 double 51788

20 + 20 double 51789

15 + 30 double 51790

30 + 30 double 51791

20 + 40 double 51792

25 + 50 double 51793

30 + 60 double 51794

40 + 40 double 51795

45 + 45 double 51729

50 + 50 double 51796

40 + 80 double 51797

60 + 60 double 51798

Varpact Classic ”with cable connection”

Page 57: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varpact Classic ‘‘with busbar connection’’

Varpact (continued)

400 V - 50 hz network

● Varpact Classic with busbar connection

Power (kvar) Step References

12,5 single 51950

25 single 51951

30 single 51952

40 single 51953

45 single 51954

50 single 51977

60 single 51978

80 single 51967

90 single 51979

100 single 51980

120 single 51981

6,25 + 12,5 double 51982

12,5 + 12,5 double 51983

10 + 20 double 51984

15 + 15 double 51985

20 + 20 double 51986

15 + 30 double 51987

30 + 30 double 51988

20 + 40 double 51989

25 + 50 double 51990

30 + 60 double 51991

40 + 40 double 51992

45 + 45 double 51970

50 + 50 double 51993

40 + 80 double 51994

60 + 60 double 51995

7

P.55

Page 58: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.56

7 Varpact (continued)

400 V - 50 hz network

● Varpact Comfort with cable connection

Power (kvar) Step References

15 single 51801

20 single 51803

25 single 51805

30 single 51807

35 single 51809

45 single 51811

60 single 51813

70 single 51816

90 single 51817

15 + 15 double 51818

15 + 30 double 51819

15 + 45 double 51820

30 + 30 double 51821

30 + 60 double 51822

45 + 45 double 51823

● Varpact Comfort with busbar connection

Power (kvar) Step References

15 single 51740

20 single 51741

25 single 51742

30 single 51743

35 single 51744

45 single 51745

60 single 51746

70 single 51747

90 single 51748

15 + 15 double 51749

15 + 30 double 51750

15 + 45 double 51751

30 + 30 double 51752

30 + 60 double 51753

45 + 45 double 51754

Varpact Comfort ”with cable connection”

Varpact Comfort ”with busbar connection”

Page 59: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varpact (continued)

400 V - 50 hz network

● Varpact Harmony with cable connection

Rang d’accord Power (kvar) Step References

2,7 (135 hz) 6,25 + 6,25 double 51916

6,25 + 12,5 double 51917

12,5 + 12,5 double 51918

12,5 single 51919

25 single 51920

50 single 51921

3,8 (190 hz) 6,25 + 6,25 double 51925

6,25 + 12,5 double 51926

12,5 + 12,5 double 51927

12,5 single 51928

25 single 51929

50 single 51930

4,3 (215 hz) 6,25 + 6,25 double 51934

6,25 + 12,5 double 51935

12,5 + 12,5 double 51936

12,5 single 51937

25 single 51938

50 single 51939

● Varpact Harmony with busbar connection

Rang d’accord Power (kvar) Step References

2,7 (135 hz) 6,25 + 6,25 double 51757

6,25 + 12,5 double 51759

12,5 + 12,5 double 51761

12,5 single 51763

25 single 51765

50 single 51767

3,8 (190 hz) 6,25 + 6,25 double 51653

6,25 + 12,5 double 51654

12,5 + 12,5 double 51655

12,5 single 51656

25 single 51657

50 single 51658

4,3 (215 hz) 6,25 + 6,25 double 51501

6,25 + 12,5 double 51503

12,5 + 12,5 double 51505

12,5 single 51509

25 single 51511

50 single 51512

Varpact harmony “with cable connection”

7

P.57

Page 60: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.58

7 Accessories for Varpact modules

Connection moduleRef. 52800It is used to connect:○ the power and control cables for the power factor correction module contactors ( maximum 5 power factor correction modules)○the cubicle supply cables

a → cubicle W = 600b → cubicle W = 650 ou 700c → cubicle W = 800

O → 3 power connection bars (800 A max.) marked L1, L2, L3P → Voltage transformer supplying the contactor coils 400/230 V, 250 VAQ → Control circuit safety fusesR → Contactor control distribution terminal block S → Sliding crosspieces for mounting in cubicles 400 et 500 mm deepT → Extension pieces for mounting in cubicles 650, 700 ou 800 mm wideU → Power factor correction module connection: 5 holes Ø 10 per phaseV → Customer’s incoming cable connection: 2 x M12 bolts per phase

To make it easier to connect the supply cables, we recommended that the connection module be installed at least 20 cm from the ground.

It is supplied with:○ 4 crosspieces○ 2extension pieces

Fastening crosspieces for Varpact Classic et ComfortRef. 51670Specially designed horizontal crosspieces allow easy installation of power factor correction modules in all types of functional and universal cubicles 400 or 500 mm deep.Crosspoieces automatically ensure that the module is correctly positioned at the right depth and maintain a distance of 55 mm between modules. Crosspieces are sold in pairs and must be ordered separately.

Extension pieces for cubicles W = 700 et W = 800 with Varpact Classic and ComfortRef. 51637 and 51639They are used to extend power factor correction modules for use in cubicle of 700 and 800 mm wide.Extension pieces are supplied with the 4 screws required to attach them to the module.

Extension pieces for Prisma Plus cubicle W = 650 with Varpact Classic and ComfortRef. 51635It allows module to be attached directly to Prisma Plus cubicle uprights.Extension piece is supplied with the 4 screws required to attach it to the module.

2 fastening crosspieces (ref. 51670)

Extension pieces for cubiclesW = 650 (ref. 51635)W = 700 (ref. 51637)W =800 (ref. 51639)

Page 61: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Accessories for Varpact modules

Circuit breaker kit for Varpact Classic and Comfort

Ref. 51626, 51627, 51628, 51629It enables to ensures individual and visible circuit breaking of each capacitor step.

Retrofit kit

Ref. 51617, 51619, 51633Set of pieces using for installation and connection of Varpact in functional and universal existing cubicles. It is necessary to choose a Varpact module and to order separately associated retrofit kit

Retrofit kit References

For P400 power factor correction module 51617

For P400 DR power factor correction module 51619

For L600 power factor correction modules on request

For Rectimat 2 capacitor bank in cubicle Standard and h type 51633

Circuit breaker kitRetrofit kit

7

P.59

Page 62: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Power factor correction

Varset presentation p. 61

Our range according to the network p. 63

Varset Direct p. 64

Varset p. 68

Varset fast p. 76

Dimensions p. 77

Page 63: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varset presentation

Varset is a capacitor bank composed of Varplus² capacitors protected or not by an incoming circuit breaker. It is presented in enclosures or cubicles with different height. It is available in Classic, Comfort and harmony range.

What are the advantages of Varset?

● An easy installation: ○ complete solution ready to be connected and used on site○ no additional power supply needed

● A safe technology: ○ protection against direct contacts thanks to the protection plate○ each capacitor bank is 100% tested in the manufacturing plant (following IEC standard)

● A specific solution according to your need:○ fixed power factor correction → Varset direct○ automatic power factor correction → Varset○ fast automatic power factor correction → Varset fast

Technical data

● Capacitance value tolerance : -5, +10 %● Maximum permissible overcurrent: ○ 30 % under 400 V for Classic, Comfort and harmony 4.3 ranges○ 19 % under 400 V for harmony 3.8 range○ 12 % under 400 V for harmony 2.7 range● Maximum permissible over voltage (8 h over 24 h according to IEC 60831) : 10 %● Insulation level : ○ 0.69 kV○ withstand 50 hz 1 min : 2.5 kV● Ambient temperature around the equipment (electrical room):○ maximum temperature: 40°C○ Average temperature over 24 hours : 35°C○ Average annual temperature: 25°C○ Minimum temperature: -5°C● Degree of protection: IP31 (except on outlet fan: IP21D)● Protection against direct contacts (opened door)● Load shedding (main-standby)● Transformer 400/230 V included● Colour : RAL 9001● Standards : IEC 60439-1, EN 60439-1, IEC 61921

P.61

8

Page 64: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.62

8 Varset presentation (continued)

Installation

● Enclosure: wall mounting or by free standing plinth (accessory) with top connection of power cables● Cubicle: free standing cubicle with bottom connection of power cables to the busbar pads● The CT (not supplied) has to be placed upstream from the capacitor bank and loads● It is not necessary to provide a 230 V - 50hz power supply to supply the contactor coils.

Options

● Top connection● Extension● Fixed base compensation (for automatic capacitor banks)● Please consult us for other options

Accessoires pour Varset Références

Socle pour fixation au sol des enclosures C1 et C2 65980

Page 65: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Fixed power factor correction Automatic power factor correction Fast power factor correc-

tion

Varset Direct Classic

Varset Direct Comfort

Varset Direct harmony

Varset Classic Varset Com-fort

Varset harmony

Varset Fast

Réseau 50 hz

230 V network p.59

400/415 V network p.60 p.61 p.62 p.63 p.65 p.67 p.71

Our products according to the network

Find the page corresponding to your network thanks to the table below.

8

P.63

Page 66: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.64

8 Varset Direct

230 V - 50 hz network, fixed compensation

● Varset Direct Classic without incoming circuit breaker

Power (kvar) Type References

10 enclosure C1 65884

15 enclosure C1 65886

20 enclosure C1 65888

25 enclosure C1 65890

30 enclosure C1 65892

40 enclosure C1 65894

50 enclosure C2 65896

60 enclosure C2 65898

● Varset Direct Classic with incoming circuit breaker

Power (kvar) Type Circuit breaker References

10 enclosure C1 NS100 65885

15 enclosure C1 NS100 65887

20 enclosure C1 NS100 65889

25 enclosure C1 NS100 65891

30 enclosure C1 NS160 65893

40 enclosure C1 NS160 65895

50 enclosure C2 NS250 65897

60 enclosure C2 NS250 65899

Page 67: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varset Direct (continued)

400/415 V - 50 hz network, fixed compensation

● Varset Direct Classic without incoming circuit breaker

Power (kvar) Type References

5 enclosure C1 65666

7,5 enclosure C1 65668

10 enclosure C1 65670

15 enclosure C1 65672

20 enclosure C1 65674

25 enclosure C1 65676

30 enclosure C1 65678

40 enclosure C1 65680

50 enclosure C1 65682

60 enclosure C1 65684

80 enclosure C1 65686

100 enclosure C2 65688

120 enclosure C2 65690

140 enclosure C2 65692

160 enclosure C2 65694

● Varset Direct Classic with incoming circuit breaker

Power (kvar) Type Circuit breaker References

5 enclosure C1 NS100 65667

7,5 enclosure C1 NS100 65669

10 enclosure C1 NS100 65671

15 enclosure C1 NS100 65673

20 enclosure C1 NS100 65675

25 enclosure C1 NS100 65677

30 enclosure C1 NS100 65679

40 enclosure C1 NS100 65681

50 enclosure C1 NS100 65683

60 enclosure C1 NS160 65685

80 enclosure C1 NS160 65687

100 enclosure C2 NS250 65689

120 enclosure C2 NS250 65691

140 enclosure A1 NS400 65693

160 enclosure A1 NS400 65695

8

P.65

Page 68: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.66

8 Varset Direct (continued)

400/415 V - 50 hz network, fixed compensation

● Varset Direct Comfort without incoming circuit breaker

Power (kvar) Type References

10 enclosure C1 65766

15 enclosure C1 65768

20 enclosure C1 65770

25 enclosure C1 65772

30 enclosure C1 65774

40 enclosure C1 65776

50 enclosure C2 65778

60 enclosure C2 65780

75 enclosure C2 65782

90 enclosure C2 65784

105 enclosure C2 65786

120 enclosure C2 65788

● Varset Direct Comfort with incoming circuit breaker

Power (kvar) Type Circuit breaker References

10 enclosure C1 NS100 65767

15 enclosure C1 NS100 65769

20 enclosure C1 NS100 65771

25 enclosure C1 NS100 65773

30 enclosure C1 NS100 65775

40 enclosure C1 NS100 65777

50 enclosure C2 NS160 65779

60 enclosure C2 NS160 65781

75 enclosure C2 NS250 65783

90 enclosure C2 NS250 65785

105 enclosure C2 NS250 65787

120 enclosure C2 NS250 65789

Page 69: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varset Direct (continued)

400/415 V - 50 hz network, fixed compensation

● Varset Direct harmony without incoming circuit breaker

Power (kvar) Type References

6,25 cubicle A2 65866

12,5 cubicle A2 65888

25 cubicle A2 65870

37,5 cubicle A2 65872

50 cubicle A2 65874

75 cubicle A2 65876

100 cubicle A2 65878

125 cubicle A2 65880

150 cubicle A2 65882

● Varset Diirect harmony with incoming circuit breaker

Power (kvar) Type Circuit breaker References

6,25 cubicle A2 NS100 65867

12,5 cubicle A2 NS100 65869

25 cubicle A2 NS100 65871

37,5 cubicle A2 NS100 65873

50 cubicle A2 NS100 65875

75 cubicle A2 NS250 65877

100 cubicle A2 NS250 65879

125 cubicle A2 NS250 65881

150 cubicle A2 NS400 65883

8

P.67

Page 70: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.68

8 Varset

400/415 V - 50 hz network, automatic compensation

● Varset Classic without incoming circuit breaker

Power(kvar) Step (kvar) Type References Power(kvar) Step (kvar) Type References

7,5 2.5 enclosure C1 52831 225 15 cubicle A2 52909

10 2.5 enclosure C1 52833 240 30 cubicle A2 52911

12,5 2.5 enclosure C1 52835 40 cubicle A1 52913

15 5 enclosure C1 52837 270 15 cubicle A3 52915

17,5 2.5 enclosure C1 52839 30 cubicle A2 52917

20 5 enclosure C1 52841 280 40 cubicle A2 52919

22,5 7.5 enclosure C1 52843 300 60 cubicle A2 52921

25 5 enclosure C1 52845 30 cubicle A3 52923

27,5 2.5 enclosure C2 52847 320 40 cubicle A2 52925

30 10 enclosure C1 52849 330 30 cubicle A2 52927

5 enclosure C1 52851 360 30 cubicle A3 52929

35 5 enclosure C1 52853 40 cubicle A2 52931

40 10 enclosure C1 52855 390 30 cubicle A3 52933

5 enclosure C2 52857 400 10 cubicle A3 52935

45 15 enclosure C1 52859 420 60 cubicle A3 52937

5 enclosure C2 52861 30 cubicle A3 52939

50 10 enclosure C1 52863 450 30 cubicle A3 52941

55 5 enclosure C2 52865 480 60 cubicle A3 52943

60 10 enclosure C2 52867 40 cubicle A3 52945

5 enclosure C2 52869 510 30 cubicle A3 52947

65 5 enclosure C2 52871 520 40 cubicle A3 52949

70 10 enclosure C2 52873 540 60 cubicle A3 52951

75 15 enclosure C2 52875 570 30 cubicle A3 52953

80 20 enclosure C2 52877 600 40 cubicle A3 52955

90 15 enclosure C2 52879 60 cubicle A3 52957

10 enclosure C2 52881 660 60 cubicle A4 52959

100 20 enclosure C2 52883 720 60 cubicle A4 52961

105 15 enclosure C2 52885 780 60 cubicle A4 52963

120 15 cubicle A1 52887 840 60 cubicle A4 52965

20 enclosure C2 52889 900 60 cubicle A4 52967

135 15 cubicle A1 52891 960 120 cubicle A4 52969

140 20 cubicle A1 52893 60 cubicle A4 52971

150 15 cubicle A1 52895 1020 60 cubicle A4 52973

160 20 cubicle A1 52897 1080 60 cubicle A4 52975

165 15 cubicle A1 52899 120 cubicle A4 52977

180 20 cubicle A1 52901 1140 60 cubicle A4 52979

195 15 cubicle A2 52903 1200 60 cubicle A4 52981

200 40 cubicle A1 52905 120 cubicle A4 52983

210 15 cubicle A2 52907

Page 71: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varset (continued)

400/415 V - 50 hz network, automatic compensation

● Varset Classic with incoming circuit breaker

Power(kvar) Step (kvar) Type References Power(kvar) Step (kvar) Type References

7,5 2.5 enclosure C1 52832 225 15 cubicle A3 52910

10 2.5 enclosure C1 52834 240 30 cubicle A3 52912

12,5 2.5 enclosure C1 52836 40 cubicle A1 52914

15 5 enclosure C1 52838 270 15 cubicle A3 52916

17,5 2.5 enclosure C1 52840 30 cubicle A3 52918

20 5 enclosure C1 52842 280 40 cubicle A3 52920

22,5 7.5 enclosure C1 52844 300 60 cubicle A3 52922

25 5 enclosure C1 52846 30 cubicle A3 52924

27,5 2.5 enclosure C2 52848 320 40 cubicle A3 52926

30 10 enclosure C1 52850 330 30 cubicle A3 52928

5 enclosure C1 52852 360 30 cubicle A3 52930

35 5 enclosure C1 52854 40 cubicle A3 52932

40 10 enclosure C1 52856 390 30 cubicle A3 52934

5 enclosure C2 52858 400 10 cubicle A3 52936

45 15 enclosure C1 52860 420 60 cubicle A3 52938

5 enclosure C2 52862 30 cubicle A3 52940

50 10 enclosure C1 52864 450 30 cubicle A3 52942

55 5 enclosure C2 52866 480 60 cubicle A3 52944

60 10 enclosure C2 52868 40 cubicle A3 52946

5 enclosure C2 52870 510 30 cubicle A3 52948

65 5 enclosure C2 52872 520 40 cubicle A3 52950

70 10 enclosure C2 52874 540 60 cubicle A3 52952

75 15 enclosure C2 52876 570 30 cubicle A3 52954

80 20 enclosure C2 52878 600 40 cubicle A3 52956

90 15 enclosure C2 52880 60 cubicle A3 52958

10 enclosure C2 52882 660 60 cubicle A4 52960

100 20 enclosure C2 52884 720 60 cubicle A4 52962

105 15 enclosure C2 52886 780 60 cubicle A4 52964

120 15 cubicle A2 52888 840 60 cubicle A4 52966

20 enclosure C2 52890 900 60 cubicle A4 52968

135 15 cubicle A2 52892 960 120 cubicle A4 52970

140 20 cubicle A2 52894 60 cubicle A4 52972

150 15 cubicle A2 52896 1020 60 cubicle A4 52974

160 20 cubicle A2 52898 1080 60 cubicle A4 52976

165 15 cubicle A2 52900 120 cubicle A4 52978

180 20 cubicle A2 52902 1140 60 cubicle A4 52980

195 15 cubicle A3 52904 1200 60 cubicle A4 52982

200 40 cubicle A2 52906 120 cubicle A4 52984

8

P.69

Page 72: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.70

8 Varset (continued)

400/415 V - 50 hz network, automatic compensation

● 400/415 V network

● Varset Comfort without incoming circuit breaker

Power(kvar) Step (kvar) Type References

30 7,5 enclosure C1 65501

45 7,5 enclosure C2 65503

60 7,5 enclosure C2 65505

75 15 enclosure C2 65507

90 15 enclosure C2 65509

105 15 cubicle A1 65511

120 15 cubicle A1 65513

150 15 cubicle A1 65515

180 30 cubicle A1 65517

210 30 cubicle A2 65519

240 30 cubicle A2 65521

270 30 cubicle A2 65523

315 45 cubicle A3 65525

360 45 cubicle A3 65527

405 45 cubicle A3 65529

450 90 cubicle A3 65531

495 45 cubicle A4 65533

540 90 cubicle A4 65535

585 45 cubicle A4 65537

630 90 cubicle A4 65539

675 45 cubicle A4 65541

720 90 cubicle A4 65543

765 45 cubicle A4 65545

810 90 cubicle A4 65547

855 45 cubicle A4 65549

900 90 cubicle A4 65551

Page 73: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Varset (continued)

400/415 V - 50 hz network, automatic compensation

● Varset Comfort with incoming circuit breaker

Power(kvar) Step Type References

30 7,5 enclosure C1 65500

45 7,5 enclosure C2 65502

60 7,5 enclosure C2 65504

75 15 enclosure C2 65506

90 15 enclosure C2 65508

105 15 cubicle A2 65510

120 15 cubicle A2 65512

150 15 cubicle A2 65514

180 30 cubicle A2 65516

210 30 cubicle A3 65518

240 30 cubicle A3 65520

270 30 cubicle A3 65522

315 45 cubicle A3 65524

360 45 cubicle A3 65526

405 45 cubicle A3 65528

450 90 cubicle A3 65530

495 45 cubicle A4 65532

540 90 cubicle A4 65534

585 45 cubicle A4 65536

630 90 cubicle A4 65538

675 45 cubicle A4 65540

720 90 cubicle A4 65542

765 45 cubicle A4 65544

810 90 cubicle A4 65546

855 45 cubicle A4 65548

900 90 cubicle A4 65550

8

P.71

Page 74: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.72

8

Tuning order Power(kvar) Step (kvar) Type References2,7 (135 hz) 12 6,25 cubicle A2 65601

25 12,5 cubicle A2 65603

37 12,5 cubicle A2 65639

50 12,5 cubicle A2 65607

62 12,5 cubicle A2 65609

75 25 cubicle A2 65611

12,5 cubicle A3 65613

100 25 cubicle A2 65615

12,5 cubicle A3 65617

125 25 cubicle A2 65619

137 12,5 cubicle A3 65621

150 25 cubicle A3 65623

50 cubicle A2 65625

175 25 cubicle A3 65627

200 50 cubicle A3 65629

225 25 cubicle A3 65631

250 50 cubicle A3 65633

275 25 cubicle A3 65635

300 50 cubicle A3 65637

350 50 cubicle A4 65639

375 25 cubicle A4 65641

400 50 cubicle A4 65643

450 50 cubicle A4 65645

500 50 cubicle A4 65647

550 50 cubicle A4 65649

600 50 cubicle A4 65651

100 cubicle A4 65653

700 10 cubicle A4 + A3 65655

800 100 cubicle A4 + A3 65657

900 100 cubicle A4 + A3 65659

1000 100 cubicle A4 +A4 65661

1100 100 cubicle A4 + A4 65663

1200 100 cubicle A4 +A4 65665

3,8 (190 hz) 12 6,25 cubicle A2 65701

25 12,5 cubicle A2 65703

37 12,5 cubicle A2 65705

50 12,5 cubicle A2 65707

62 12,5 cubicle A2 65709

75 25 cubicle A2 65711

12,5 cubicle A3 65713

100 25 cubicle A2 65715

12,5 cubicle A3 65717

125 25 cubicle A2 65719

137 12,5 cubicle A3 65721

150 25 cubicle A3 65723

50 cubicle A3 65725

175 25 cubicle A3 65727

200 50 cubicle A3 65729

225 25 cubicle A3 65731

250 50 cubicle A3 65733

Varset (continued)

400/415 V - 50 hz network, automatic compensation● Varset harmony without incoming circuit breaker

Page 75: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Tuning order Power(kvar) Step Type References3,8 (190 hz) 275 25 cubicle A3 65735

300 50 cubicle A3 65737

350 50 cubicle A4 65739

375 25 cubicle A4 65741

400 50 cubicle A4 65743

450 50 cubicle A4 65745

500 50 cubicle A4 65747

550 50 cubicle A4 65749

600 50 cubicle A4 65751

100 cubicle A4 65753

700 10 cubicle A4 +A3 65755

800 100 cubicle A4 + A3 65757

900 100 cubicle A4 +A3 65759

1000 100 cubicle A4 + A4 65761

1100 100 cubicle A4 + A4 65763

1200 100 cubicle A4 +A4 65765

4,3 (215 hz) 12,5 6,25 cubicle A2 65801

25 12,5 cubicle A2 65803

37,5 12,5 cubicle A2 65805

50 12,5 cubicle A2 65807

62,5 12,5 cubicle A2 65809

75 25 cubicle A2 65811

12,5 cubicle A3 65813

100 25 cubicle A2 65815

12,5 cubicle A3 65817

125 25 cubicle A2 65819

137 12,5 cubicle A3 65821

150 25 cubicle A3 65823

50 cubicle A2 65825

175 25 cubicle A3 65827

200 50 cubicle A3 65829

225 25 cubicle A3 65831

250 25 cubicle A3 65833

275 50 cubicle A3 65835

300 50 cubicle A3 65837

350 25 cubicle A4 65839

375 50 cubicle A4 65841

400 50 cubicle A4 65843

450 50 cubicle A4 65845

500 50 cubicle A4 65847

550 50 cubicle A4 65849

600 100 cubicle A4 65851

10 cubicle A4 65853

700 100 cubicle A4 +A3 65855

800 100 cubicle A4 +A3 65857

900 100 cubicle A4 + A3 65859

1000 100 cubicle A4 +A4 65861

1100 100 cubicle A4 + A4 65863

1200 100 cubicle A4 + A4 65865

Varset (continued)

400/415 V - 50 hz network, automatic compensation

● Varset harmony without incoming circuit breaker (continued)

8

P.73

Page 76: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.74

8

Tuning order Power(kvar) Step Type References2,7 (135 hz) 12 6,25 cubicle A2 65600

25 12,5 cubicle A2 65602

37 12,5 cubicle A2 65604

50 12,5 cubicle A2 65606

62 12,5 cubicle A2 65608

75 25 cubicle A2 65610

12,5 cubicle A3B 65612

100 25 cubicleA2 65614

12,5 cubicle A3B 65616

125 25 cubicle A2 65618

137 12,5 cubicle A3B 65620

150 25 cubicle A3B 65622

50 cubicle A2 65624

175 25 cubicle A3B 65626

200 50 cubicle A3B 65628

225 25 cubicle A3B 65630

250 50 cubicle A3B 65632

275 25 cubicle A3B 65634

300 50 cubicle A3B 65636

350 50 cubicle A4B 65638

375 25 cubicle A4B 65640

400 50 cubicle A4B 65642

450 50 cubicle A4B 65644

500 50 cubicle A4B 65646

550 50 cubicle A4B 65648

600 50 cubicle A4B 65650

100 cubicle A4B 65652

700 10 cubicle A4B + A3B 65654

800 100 cubicle A4B + A3B 65656

900 100 cubicle A4B + A3B 65658

1000 100 cubicle A4B +A4B 65660

1100 100 cubicle A4B + A4B 65662

1200 100 cubicle A4B + A4B 65664

3,8 (190 hz) 12 6,25 cubicle A2 65700

25 12,5 cubicle A2 65702

37 12,5 cubicle A2 65704

50 12,5 cubicle A2 65706

62 12,5 cubicle A2 65708

75 25 cubicle A2 65710

12,5 cubicle A3B 65712

100 25 cubicle A2 65714

12,5 cubicle A3B 65716

125 25 cubicle A2 65718

137 12,5 cubicle A3B 65720

150 25 cubicle A3B 65722

50 cubicle A2 65724

175 25 cubicle A3B 65726

200 50 cubicle A3B 65728

225 25 cubicle A3B 65730

250 50 cubicle A3B 65732

Varset (continued)

400/415 V - 50 hz network, automatic compensation● Varset harmony with incoming circuit breaker

Page 77: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Tuning order Power(kvar) Step Type References3,8 (190 hz) 275 25 cubicle A3B 65734

300 50 cubicle A3B 65736

350 50 cubicle A4B 65738

375 25 cubicle A4B 65740

400 50 cubicle A4B 65742

450 50 cubicle A4B 65744

500 50 cubicle A4B 65746

550 50 cubicle A4B 65748

60050 cubicle A4B 65750

100 cubicle A4B 65752

700 10 cubicle A4B + A3B 65754

800 100 cubicle A4B + A3B 65756

900 100 cubicle A4B + A3B 65758

1000 100 cubicle A4B + A4B 65760

1100 100 cubicle A4B + A4B 65762

1200 100 cubicle A4B + A4B 65764

4,3 (215 hz) 12 6,25 cubicle A2 65800

25 12,5 cubicle A2 65802

37 12,5 cubicle A2 65804

50 12,5 cubicle A2 65806

62 12,5 cubicle A2 65808

7525 cubicle A2 65810

12,5 cubicle A3B 65812

10025 cubicle A2 65814

12,5 cubicle A3B 65816

125 25 cubicle A2 65818

137 12,5 cubicle A3B 65820

15025 cubicle A3B 65822

50 cubicle A2 65824

175 25 cubicle A3B 65826

200 50 cubicle A3B 65828

225 25 cubicle A3B 65830

250 50 cubicle A3B 65832

275 25 cubicle A3B 65834

300 50 cubicle A3B 65836

350 50 cubicle A4B 65838

375 25 cubicle A4B 65840

400 50 cubicle A4B 65842

450 50 cubicle A4B 65844

500 50 cubicle A4B 65846

550 50 cubicle A4B 65848

60050 cubicle A4B 65850

100 cubicle A4B 65852

700 10 cubicle A4B +A3B 65854

800 100 cubicle A4B + A3B 65856

900 100 cubicle A4B +A3B 65858

1000 100 cubicle A4B +A3B 65860

1100 100 cubicle A4B + A4B 65862

1200 100 cubicle A4B + A4B 65864

8

P.75

Varset (continued)

400/415 V - 50 hz network, automatic compensation● Varset harmony with incoming circuit breaker

Page 78: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

P.76

8

D

Varset Fast

General information

Varset Fast capacitor bank is designed to supply reactive power needed in less than 40 ms.

Advantages

● Improves equipment service life● Reduces electricity consumption

Characteristics● Network voltage 400 V● Frequency 50 hz● Degree of protection IP21D● Capacitor rated voltage: 480 V - 50 hz● Rang d’accord diponible : 4,3 (215 hz), 3,8 (150 hz), 2,7 (135 hz)● Load shedding (main - standby)● Insulation level : 690 V, tenue 50 hz 1 min : 2,5 kV● Protection against direct contact (opened door))

Installation

● Cubicle: free standing cubicle with bottom connection of power cables to the busbar pads● The CT (not supplied) has to be placed upstream from the capacitor bank and loads● It is not necessary to provide a 230 V - 50hz power supply to supply the contactor coils.

Our range

● 400/415 V network

Power (kvar)

Step (kvar) Type References

4,3 (215 hz) 3,8 (190 hz) 2,7 (135 hz)

100 25 cubicle A3 65941 65927 65913

125 25 cubicle A3 65942 65928 65914

150 25 cubicle A3 65943 65929 65915

150 50 cubicle A3 65944 65930 65916

175 25 cubicle A3 65945 65931 65917

200 50 cubicle A3 65946 65932 65918

250 50 cubicle A3 65947 65933 65919

300 50 cubicle A3 65948 65934 65920

350 20 cubicle A4 65949 65935 65921

400 50 cubicle A4 65950 65936 65922

450 50 cubicle A4 65951 65937 65923

500 50 cubicle A4 65952 65938 65924

550 50 cubicle A4 65953 65939 65925

600 50 cubicle A4 65954 65940 65926

Page 79: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Dimensions

Type height Width Depth

enclosure C1 450 500 275

enclosure C2 800 500 275

cubicle A1 1100 550 600

cubicle A2 1100 800 600

cubicle A3 2000 800 600

cubicle A4 2000 1600 600

cubicle A4 + A3 2000 2400 600

cubicle A4 +A4 2000 3200 600

cubicle A3B 2000 1350 600

cubicle A4B 2000 2150 600

cubicle A4B + A3B 2000 3500 600

cubicle A4B + A4B 2000 4300 600

Enclosure C1 without incoming circuit breaker

Cubicles A1 et A2 without incoming circuit Cubicle A3 without incoming circuit Cubicle A4 without incoming circuit

P.77

Enclosure C2 without incoming circuit breaker

W D DW

W W WD D

8

Page 80: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Harmonic filtering solutions

Presentation p. 79

Page 81: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

Presentation

General information

harmonic filtering equipment are presented in cubicles.harmonic filtering solutions comply with IEC 604-39 standard.

Three types of solutions are available:

● Passive filterIt is made up of detuned reactors and capacitors tuned on the harmonic frequency of the order to be suppressed. In other words, they are designed to absorb harmonic currents at a particular frequency.In case of more than one order to eliminate, several unit can be associated.A passive filter enables to:○ correct the power factor○ benefit from a high capacity of filtering

● Active filterAn active filter cancels harmonics by dynamically injecting out of phase harmonic current.It reduces current distortion that, in turn, reduces voltage distortion

● hybrid filterIt is made up of a passive filter combined with an active filter in the same cubicle.

Characteristics

● Passive filter

Network voltage 400 V three phase

harmonic order cancelled 5th to 11th

Reactive power from 100 kvar to 350 kvar

Other voltages and powers on request.

● Active filter

Network voltage from 208 to 480 V three-phase

harmonic order cancelled from 2nd to 50th

Power ratingsup to 300 A per unitExpandable capabilities : parallel up to 10 units with different ratings on one set of current transformer

● hybrid filter

Network voltage 400 V three phase

Passive filter 5th order

Active filter from 20 A

Reactive power up to 350 kvar (other power on request)

harmonic order treated 2nd to 25th

P.79

9

Page 82: Schneider - Power Factor Correction and Harmonic Filtering (B_954_503_439)

03/2009

En raison de l’évolution des normes et du matériel, les caractéristiques indiquées par les textes et les images de ce document ne nous engagent qu’après confirmation par nos services.

Ce document a été imprimé sur du papier écologique.

Conception, réalisation : Schneider ElectricImpression :

Schneider Electric Industrie SASRECTIPhASE399, rue de la GareF-74371 Pringy CedexFranceTél. : 33 (0)4 76 57 60 60www.schneider-electric.com

RCS Nanterre B 954 503 439


Recommended