+ All Categories
Home > Documents > Session 27 Mathias Lidberg

Session 27 Mathias Lidberg

Date post: 13-Jan-2017
Category:
Upload: mortezavehdyn
View: 266 times
Download: 0 times
Share this document with a friend
25
Heavy Vehicle Dynamics Model & Path Control Algorithms Morteza Hassanzadeh, Mathias Lidberg Vehicle Dynamics Group Chalmers University of Technology
Transcript
Page 1: Session 27 Mathias Lidberg

Heavy Vehicle Dynamics Model &Path Control Algorithms

Morteza Hassanzadeh, Mathias Lidberg

Vehicle Dynamics GroupChalmers University of Technology

Page 2: Session 27 Mathias Lidberg

22023-05-01 Transportforum 2013

Outline

• Introduction• Use cases suitable for path control• Heavy vehicle system dynamics in planar motion• Path control algorithms• Simulation results; rear-end collision avoidance• Model verification; comparison with test data• Summary

Page 3: Session 27 Mathias Lidberg

32023-05-01 Transportforum 2013

IntroductioninteractIVe project overview

• Website: www.interactIVe-ip.eu

• Budget: EUR 30 Million • EC funding: EUR 17 Million

• Duration: 42 months (January 2010 – June 2013)

• Coordinator: Aria Etemad, Ford Research & Advanced Engineering

Europe• 10 Countries: Czech Republic, Finland, France, Germany,

Greece, Italy, Spain, Sweden, The Netherlands, The UK

Page 4: Session 27 Mathias Lidberg

42023-05-01 Transportforum 2013

IntroductionPartners and project structure

Page 5: Session 27 Mathias Lidberg

52023-05-01 Transportforum 2013

IntroductionSP5: INCA

• Development of integrated collision avoidance and vehicle path control for passenger cars and commercial vehicles.

• “Vehicle path control” module dynamically evaluates a collision free trajectory in rapidly changing driving scenarios.

• 3 demonstrator vehicles: • Ford Focus • Volvo S60• Volvo FH13

• INCA coordinator:

• INCA cooperators:

Page 6: Session 27 Mathias Lidberg

62023-05-01 Transportforum 2013

IntroductionCurrent presentation

• Development of integrated collision avoidance and vehicle path control for commercial vehicles.

• 3 use cases are prioritized and the problem is narrowed down to path planning, actuators configuration, and control algorithm design.

• A robust path and speed controller should be developed to fulfil the requirements of all use cases.

• A simulation tool, that includes a heavy vehicle model, is needed to investigate performance and robustness of various actuator configurations, and the control algorithms.

Page 7: Session 27 Mathias Lidberg

72023-05-01 Transportforum 2013

Use cases suitable for path control Definition and prioritization

• Use case: a description of specific sequence of interactions between the driver and truck to achieve a specific goal.

• Use cases are defined by name, accident type, and descriptive narrative.• Use case prioritization is based on:

• Accident statistics• Use case complexity

• Prioritized use cases are:• Rear-end collision avoidance (RECA)

• Two lane road, single lane change• Run-off road prevention (RORP)

• On a straight road• In a curve

Page 8: Session 27 Mathias Lidberg

82023-05-01 Transportforum 2013

Use cases suitable for path control Rear-end collision avoidance (RECA)

• Use case name: Rear-end collision avoidance (RECA)• Use case ID: UC_01_504_v2

• Use case description:Prevents rear-end collisions by informing or warning the driver or by intervening by automatic braking and/or steering.

• Reference• Level 1

TS_SP5_1 [Accident in queue (rear end)]• Level 2

TS_SP5_1.1 [Rear end collision due to slowing vehicle in front]

Page 9: Session 27 Mathias Lidberg

9

Use cases suitable for path control Run-off-road prevention on a straight road (RORP)

• Use case name: Run-off-road prevention on a straight road (RORP)• Use case ID: UC_06_510_v2

• Use case description: Informs/warns the driver of an impending lane departure and, if needed, steers automatically to avoid road departure.

• Reference:• Level 1

TS_SP5_2 [Single truck accident (run-off road)]• Level 2

TS_SP5_2.1 [Running-off on a straight road]

Transportforum 20132023-05-01

Page 10: Session 27 Mathias Lidberg

10

Use cases suitable for path control Run-off-road prevention in a curve (RORP)

• Use case name: Run-off-road prevention in a curve (RORP) • Use case ID: UC_06_509_v2

• Use case description: Informs/warns the driver of animpending lane departure and,if needed, steers automaticallyto avoid road departure.

• Reference:• Level 1 TS_SP5_2 [Single truck accident (run-off road)]• Level 2 TS_SP5_2.2 [Running-off in a curve]

Transportforum 20132023-05-01

Page 11: Session 27 Mathias Lidberg

112023-05-01 Transportforum 2013

Heavy vehicle system dynamics in planar motionThe model

• A 4 DOF two-track model:• Longitudinal ( ) • Lateral ( ) • Yaw ( ) • Roll ( )

• A nonlinear tyre model (Magic Tyre Formula):

• Transient force build-up (relaxation length is considered)

• Drop in adhesion coefficient for increased vertical load

XY

Page 12: Session 27 Mathias Lidberg

122023-05-01 Transportforum 2013

Path control algorithmsOverview

• Path planning block initiates the reference path that satisfies some criteria.• Feedforward input is calculated based on the reference path.• Feedback controller provides corrections to compensate for errors due to

simplifications and uncertainties.• General overview of the whole process:

+Use case Feedforward controller

Heavy vehicle model

Feedback controller

Path planning

Page 13: Session 27 Mathias Lidberg

132023-05-01

0 20 40 60

-1

0

1

2

3

X [m]

Y [m

]

Vehicle path with no interventionIntervention pointRejected pathCritical path

Required longitudinaldistance, d (for RORP)

Required longitudinal distance, d (for RECA)

Path control algorithmsCritical path

• Critical path: the shortest feasible escape path, that can be determined by iterative procedure:

• Start with initial guess.• Checking criteria.• Increasing longitudinal

distance if needed.• Increasing longitudinal

distance of the critical path is equivalent to adding safety margin to the manoeuvre.

Transportforum 2013

5

0

)(i

iiXcXY

+Use case Feedforward controller

Heavy vehicle model

Feedback controller

Path planning

Page 14: Session 27 Mathias Lidberg

142023-05-01 Transportforum 2013

Path control algorithmsFeedforward control

• Feedforward control: steady state bicycle model is used to calculate steering inputs:

where:ga

Krl y

use

FF

)1(2

f

re C

Cl

ll

+Use case Feedforward controller

Heavy vehicle model

Feedback controller

Path planning

Page 15: Session 27 Mathias Lidberg

152023-05-01 Transportforum 2013

Path control algorithmsFeedback control

• Lateral position (Y) PID control:

• Yaw angle PD control:

)()( refdrefpFB KK

)(tan 1

dXdYref

ref 21 Y

YVdXdVref

)()()( YYKdYYKYYK refdrefirefpFB

+Use case Feedforward controller

Heavy vehicle model

Feedback controller

Path planning

Page 16: Session 27 Mathias Lidberg

16

Simulation resultsRear-end collision avoidance (RECA)

Parameters Values Friction, µ 0.65 Lateral distance 3 m HV Initial Velocity, v 80 km/h LV Initial Velocity, vl 0 km/h Longitudinal distance 56 m

Transportforum 20132023-05-01

Rear-end collision avoidance by steering: a single lane change manoeuvre.

Parameter settings:

Page 17: Session 27 Mathias Lidberg

17

Simulation resultsRear-end collision avoidance (RECA)

Transportforum 20132023-05-01

0 10 20 30 40 50 60 70 80 90 100-2

0

2

4

X [m]

Y [m

]Heavy vehicle position

ObstacleIn

terv

entio

n

0 10 20 30 40 50 60 70 80 90 100-5

0

5

10

Inte

rven

tion

X [m]

[d

eg]

Heading angle

0 10 20 30 40 50 60 70 80 90 100-20

0

20

Inte

rven

tion

X [m]

d

/dt [

deg/

s]

Heading angle rate

ReferenceLateral position controlYaw control

ReferenceLateral position controlYaw control

ReferenceLateral position controlYaw control

Page 18: Session 27 Mathias Lidberg

18

Simulation resultsRear-end collision avoidance (RECA)

Transportforum 20132023-05-01

0 20 40 60 80 100-100

-50

0

50

100

150

200

X [m]

[d

eg]

Steering wheel angle

0 20 40 60 80 100

-500

0

500

1000

1500

X [m]

d/d

t [de

g/s]

Steering wheel angle rate

0 20 40 60 80 100-3

-2

-1

0

1

2

3

X [m]

a y [m/s

2 ]Lateral acceleration

0 20 40 60 80 100-10

-5

0

5

10

15

20

X [m]

i [m

/s3 ]

Lateral jerk

ReferenceLateral position controlYaw control

ReferenceLateral position controlYaw control

ReferenceLateral position controlYaw control

ReferenceLateral position controlYaw control

Page 19: Session 27 Mathias Lidberg

19

Simulation resultsRear-end collision avoidance (RECA)

Transportforum 20132023-05-01

0 10 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

X [m]

[ % ]

Percentage of utilized adhesion; solid line style corresponds to lateral position control, and dashed line style corresponds to yaw control.

First axle, LeftFirst axle, RightSecond axle, LeftSecond axle, RightThird axle, LeftThird axle, Right

0 20 40 60 80 100-10

-5

0

5

10

15

X [m]

T [N

m]

Torque on the steering actuator

0 20 40 60 80 100

-50

0

50

100

150

200

X [m]

dT/d

x [N

m/s

]

Torque rate on the steering actuator

Lateral position controlYaw control

Lateral position controlYaw control

Page 20: Session 27 Mathias Lidberg

20

Simulation resultsRear-end collision avoidance (RECA)

Transportforum 20132023-05-01

10 20 30 40 50 60 70 80 90 100-0.5

0

0.5

X [m]

eY [m

]Path error

X = d

10 20 30 40 50 60 70 80 90 100-2

0

2

X [m]

e

[deg

]

Yaw angle error

X = d

10 20 30 40 50 60 70 80 90 100-10

-5

0

5

X [m]

ed

/dt [

deg/

s]

Yaw rate error

X = d

Lateral position controlYaw control

Lateral position controlYaw control

Lateral position controlYaw control

Page 21: Session 27 Mathias Lidberg

21

Simulation resultsRear-end collision avoidance (RECA)

Transportforum 20132023-05-01

10 20 30 40 50 60 70 80 90 100-0.2

0

0.2

X [m]

eY [m

]Path error

X = d

10 20 30 40 50 60 70 80 90 100-4

-2

0

2

X [m]

e

[deg

]

Yaw angle error

X = d

10 20 30 40 50 60 70 80 90 100-10

0

10

X [m]

ed

/dt [

deg/

s]

Yaw rate error

X = d

Continuous dataDiscrete data

Continuous dataDiscrete data

Continuous dataDiscrete data

It is also tested with discrete input with update rate of 10 Hz; the controller demands new steering wheel angle every 0.1 second.

Page 22: Session 27 Mathias Lidberg

222023-05-01 Transportforum 2013

Model verificationComparison with test data

• A series of tests were performed in the handling area of the Hällered Proving Ground.

• The steering input from test data is also used as input to the simulation in order to validate the simulation model.

• The results presented here also show a sample performance of the controller.

Page 23: Session 27 Mathias Lidberg

232023-05-01 Transportforum 2013

Model verificationComparison with test data

Parameters Values Lateral distance 3 m HV Initial Velocity, v 80 km/h LV Initial Velocity, vl 0 km/h Longitudinal distance 73.5 m

Parameter settings:

A single lane change manoeuvre was performed with 50% safety margin for longitudinal distance.

0 1 2 3 4 5 6 7-60

-40

-20

0

20

40

60

t [s]

[

deg]

Actuator's steering angle demand

FeedforwardFeedbackTotal controller demandActuator response

Page 24: Session 27 Mathias Lidberg

242023-05-01 Transportforum 2013

Model verificationComparison with test data

0 1 2 3 4 5 6 7-8

-6

-4

-2

0

2

4

6

8

t [s]

d

/dt

[deg

/s]

Yaw rate

ReferenceSimulationTest data

0 1 2 3 4 5 6 7-3

-2

-1

0

1

2

3

t [s]

ay [

m/s

2 ]

Lateral acceleration

ReferenceSimulationTest data

0 20 40 60 80 100 120 140-1

0

1

2

3

4

5

X [m]

Y [

m]

Truck position

5th order polynomial; reference5th order polynomial; targetSimulationTest data

Page 25: Session 27 Mathias Lidberg

25

Thank you.


Recommended