+ All Categories
Home > Documents > Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating...

Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating...

Date post: 19-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
103
Simulating models of polymer collapse Thomas Prellberg School of Mathematical Sciences Queen Mary, University of London SCS Seminar, Florida State University April 27, 2006 Thomas Prellberg Simulating models of polymer collapse
Transcript
Page 1: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Simulating models of polymer collapse

Thomas Prellberg

School of Mathematical SciencesQueen Mary, University of London

SCS Seminar, Florida State UniversityApril 27, 2006

Thomas Prellberg Simulating models of polymer collapse

Page 2: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Outline

Polymers in solution:

Equilibrium statistical mechanics, lattice models, exponents

Algorithm:

Stochastic growth & flat histogram (PERM/flatPERM)

Simulations and results:

Canonical model: interacting self-avoiding walks (ISAW)Site-weighted random walks (SWRW): a tale of surprises

Thomas Prellberg Simulating models of polymer collapse

Page 3: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Outline

Polymers in solution:

Equilibrium statistical mechanics, lattice models, exponents

Algorithm:

Stochastic growth & flat histogram (PERM/flatPERM)

Simulations and results:

Canonical model: interacting self-avoiding walks (ISAW)Site-weighted random walks (SWRW): a tale of surprises

Other applications:Bulk vs surface phenomena:

confined polymers, force-induced desorption,interplay of collapse and adsorption

Polymer collapse in high dimension:

pseudo-first-order transition(talk at FSU in 2003)

Thomas Prellberg Simulating models of polymer collapse

Page 4: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Polymers in Solution

Thomas Prellberg Simulating models of polymer collapse

Page 5: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Modelling of Polymers in Solution

Polymers:long chains of monomers

“Coarse-Graining”:beads on a chain

“Excluded Volume”:minimal distance between beads

Contact with solvent:effective short-range interaction

Good/bad solvent:repelling/attracting interaction

Thomas Prellberg Simulating models of polymer collapse

Page 6: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Modelling of Polymers in Solution

Polymers:long chains of monomers

“Coarse-Graining”:beads on a chain

“Excluded Volume”:minimal distance between beads

Contact with solvent:effective short-range interaction

Good/bad solvent:repelling/attracting interaction

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Thomas Prellberg Simulating models of polymer collapse

Page 7: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Polymer Collapse, Coil-Globule Transition, Θ-Point

length N , spatial extension R ∼ Nν

R

T > Tc : good solventswollen phase (coil)

T = Tc :Θ-polymer

T < Tc : bad solventcollapsed phase (globule)

Thomas Prellberg Simulating models of polymer collapse

Page 8: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Critical Exponents

Length scale exponent ν: RN ∼ Nν

d Coil Θ Globule

2 3/4 4/7 1/2

3 0.587 . . . 1/2(log) 1/3

4 1/2(log) 1/2 1/4

Thomas Prellberg Simulating models of polymer collapse

Page 9: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Critical Exponents

Length scale exponent ν: RN ∼ Nν

d Coil Θ Globule

2 3/4 4/7 1/2

3 0.587 . . . 1/2(log) 1/3

4 1/2(log) 1/2 1/4

Entropic exponent γ: ZN ∼ µNNγ−1

d Coil Θ Globule

2 43/32 8/7 different scaling form3 1.15 . . . 1(log) ZN ∼ µNµs

NσNγ−1

4 1(log) 1 σ = (d − 1)/d (surface)

Thomas Prellberg Simulating models of polymer collapse

Page 10: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Crossover Scaling at the Θ-Point

Crossover exponent φ

RN ∼ NνR(Nφ∆T ) ZN ∼ µNNγ−1Z(Nφ∆T )

Specific heat of ZN at T = Tc : CN ∼ Nαφ

2− α = 1/φ tri-critical scaling relation

Thomas Prellberg Simulating models of polymer collapse

Page 11: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Crossover Scaling at the Θ-Point

Crossover exponent φ

RN ∼ NνR(Nφ∆T ) ZN ∼ µNNγ−1Z(Nφ∆T )

Specific heat of ZN at T = Tc : CN ∼ Nαφ

2− α = 1/φ tri-critical scaling relation

Poor man’s mean field theory of the Θ-Point for d ≥ 3

Balance between “excluded volume” and attractive interaction⇒ polymer behaves like random walk: ν = 1/2, γ = 1⇒ weak thermodynamic phase transition α = 0, i.e. φ = 1/2

Thomas Prellberg Simulating models of polymer collapse

Page 12: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Crossover Scaling at the Θ-Point

Crossover exponent φ

RN ∼ NνR(Nφ∆T ) ZN ∼ µNNγ−1Z(Nφ∆T )

Specific heat of ZN at T = Tc : CN ∼ Nαφ

2− α = 1/φ tri-critical scaling relation

Poor man’s mean field theory of the Θ-Point for d ≥ 3

Balance between “excluded volume” and attractive interaction⇒ polymer behaves like random walk: ν = 1/2, γ = 1⇒ weak thermodynamic phase transition α = 0, i.e. φ = 1/2

d 2 3 4

φ 3/7 1/2(log) 1/2

Thomas Prellberg Simulating models of polymer collapse

Page 13: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

Physical space → simple cubic lattice Z3

Polymer → self-avoiding random walk (SAW)

Quality of solvent → short-range interaction ε

Thomas Prellberg Simulating models of polymer collapse

Page 14: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

Physical space → simple cubic lattice Z3

Polymer → self-avoiding random walk (SAW)

Quality of solvent → short-range interaction ε

Partition function:

ZN(ω) =∑

m

CN,mωm

CN,m is the number of SAWswith N steps and m interactions

Thomas Prellberg Simulating models of polymer collapse

Page 15: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

The Canonical Lattice Model

Interacting Self-Avoiding Walk (ISAW)

Physical space → simple cubic lattice Z3

Polymer → self-avoiding random walk (SAW)

Quality of solvent → short-range interaction ε

Partition function:

ZN(ω) =∑

m

CN,mωm

CN,m is the number of SAWswith N steps and m interactions

Thermodynamic Limit for a dilute solution:

V =∞ and N →∞Thomas Prellberg Simulating models of polymer collapse

Page 16: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Theory and Models

Theoretical results from e.g.

d = 2: Coulomb gas methods, conformal invariance, SLE, . . .d ≥ 3: self-consistent mean field theoryfield theory: φ4 − φ6 O(n)-model for n → 0

Thomas Prellberg Simulating models of polymer collapse

Page 17: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Theory and Models

Theoretical results from e.g.

d = 2: Coulomb gas methods, conformal invariance, SLE, . . .d ≥ 3: self-consistent mean field theoryfield theory: φ4 − φ6 O(n)-model for n → 0

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Thomas Prellberg Simulating models of polymer collapse

Page 18: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Theory and Models

Theoretical results from e.g.

d = 2: Coulomb gas methods, conformal invariance, SLE, . . .d ≥ 3: self-consistent mean field theoryfield theory: φ4 − φ6 O(n)-model for n → 0

A Model of a Polymer in Solution

Random Walk + Excluded Volume + Short Range Attraction

Canonical model: interacting self-avoiding walks (ISAW)

Alternative model: interacting self-avoiding trails (ISAT)

vertex avoidance (walks) ⇔ edge avoidance (trails)

zzz� �� ���nearest-neighbour interaction ⇔ contact interaction

Thomas Prellberg Simulating models of polymer collapse

Page 19: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

ISAW

zzz� �� ���ISAT

Thomas Prellberg Simulating models of polymer collapse

Page 20: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

ISAW

zzz� �� ���ISAT

simulations of ISAW confirm the theoretical predictions

simulations of ISAT confound the theoretical predictions

Thomas Prellberg Simulating models of polymer collapse

Page 21: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

ISAW

zzz� �� ���ISAT

simulations of ISAW confirm the theoretical predictions

simulations of ISAT confound the theoretical predictions

Length scale exponent ν for Z2:

Model Coil Θ Globule

ISAW 3/4 4/7 1/2

ISAT 3/4 1/2(log) 1/2

Entropic exponent γ for Z2: Crossover exponent φ for Z2:

Model Coil Θ

ISAW 43/32 8/7

ISAT 43/32 1(log)

Model

ISAW 3/7

ISAT 0.84(3)

Thomas Prellberg Simulating models of polymer collapse

Page 22: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Simulations of ISAT

At critical Tc , ISAT can be modelled as kinetic growth;simulations up to N = 106

AL Owczarek and T Prellberg, J. Stat. Phys. 79 (1995) 951-967

Pruned Enriched Rosenbluth Method enables simulations forT 6= Tc ; new simulations up to N = 2 · 106

AL Owczarek and T Prellberg, submitted to Physica A

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

-100.0 -50.0 0.0 50.0 100.0 150.0

CN

N-0

.67

(ω-ωc)N0.83

Thomas Prellberg Simulating models of polymer collapse

Page 23: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

On the square lattice,SAW = SAT butISAW 6= ISAT

Thomas Prellberg Simulating models of polymer collapse

Page 24: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

On the square lattice,SAW = SAT butISAW 6= ISAT

On the diamond lattice,ISAT shows a bimodaldistribution characteristicof a first-order transition,and at Tc (left peak) onefinds purely Gaussianbehaviour

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

Thomas Prellberg Simulating models of polymer collapse

Page 25: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW versus ISAT

On the square lattice,SAW = SAT butISAW 6= ISAT

On the diamond lattice,ISAT shows a bimodaldistribution characteristicof a first-order transition,and at Tc (left peak) onefinds purely Gaussianbehaviour

T Prellberg and AL Owczarek, Phys. Rev. E 51 (1995) 2142-214

(figure from) P Grassberger and R Hegger, J. Phys. A 29 (1996) 279-288

10 years later, this is still not understood!

Thomas Prellberg Simulating models of polymer collapse

Page 26: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

A Proposal of a New Model

ISAW/ISAT contain on-site and nearest-neighbour interactions

The field-theory is formulated with purely local interactions

Field theory is equivalent to Edwards model:

Brownian motion + suppression of self-intersections +attractive interactionsfield theory is φ4 − φ6 O(n)-model for n → 0

Thomas Prellberg Simulating models of polymer collapse

Page 27: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

A Proposal of a New Model

ISAW/ISAT contain on-site and nearest-neighbour interactions

The field-theory is formulated with purely local interactions

Field theory is equivalent to Edwards model:

Brownian motion + suppression of self-intersections +attractive interactionsfield theory is φ4 − φ6 O(n)-model for n → 0

Formulate a lattice model with purely local interactions

Thomas Prellberg Simulating models of polymer collapse

Page 28: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

A Proposal of a New Model

ISAW/ISAT contain on-site and nearest-neighbour interactions

The field-theory is formulated with purely local interactions

Field theory is equivalent to Edwards model:

Brownian motion + suppression of self-intersections +attractive interactionsfield theory is φ4 − φ6 O(n)-model for n → 0

Formulate a lattice model with purely local interactions

Site-weighted random walk:

lattice random walk weighted by multiple visits of sitesfew visits to same site are favoured (attractive interaction)too many visits are disfavoured (excluded volume)

Thomas Prellberg Simulating models of polymer collapse

Page 29: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

A Proposal of a New Model

ISAW/ISAT contain on-site and nearest-neighbour interactions

The field-theory is formulated with purely local interactions

Field theory is equivalent to Edwards model:

Brownian motion + suppression of self-intersections +attractive interactionsfield theory is φ4 − φ6 O(n)-model for n → 0

Formulate a lattice model with purely local interactions

Site-weighted random walk:

lattice random walk weighted by multiple visits of sitesfew visits to same site are favoured (attractive interaction)too many visits are disfavoured (excluded volume)

(technically, this is an extension of a Domb-Joyce model)

Thomas Prellberg Simulating models of polymer collapse

Page 30: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk

An N-step random walk ξ = (~ξ0, ~ξ1, . . . , ~ξN) induces adensity-field φξ on the lattice sites ~x via

φξ(~x) =N∑

i=0

δ~ξi ,~x

Thomas Prellberg Simulating models of polymer collapse

Page 31: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk

An N-step random walk ξ = (~ξ0, ~ξ1, . . . , ~ξN) induces adensity-field φξ on the lattice sites ~x via

φξ(~x) =N∑

i=0

δ~ξi ,~x

Define the energy as a functional of the field φ = φξ

E (ξ) =∑

~x

f (φ(~x))

Thomas Prellberg Simulating models of polymer collapse

Page 32: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk

An N-step random walk ξ = (~ξ0, ~ξ1, . . . , ~ξN) induces adensity-field φξ on the lattice sites ~x via

φξ(~x) =N∑

i=0

δ~ξi ,~x

Define the energy as a functional of the field φ = φξ

E (ξ) =∑

~x

f (φ(~x))

Incorporate self-avoidance and attraction via choice of f (t).For example, f (0) = f (1) = 0,

f (2) = ε1 , f (3) = ε2 ,

and f (t ≥ 4) =∞.

Thomas Prellberg Simulating models of polymer collapse

Page 33: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk (ctd)

1

2

3

5

6 7 89 10

11

12

40

Thomas Prellberg Simulating models of polymer collapse

Page 34: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk (ctd)

1

2

3

5

6 7 89 10

11

12

40

Partition function

ZN(β) =∑

m1,m2

CN,m1,m2e−β(m1ε1+m2ε2)

with density of states CN,m1,m2

Thomas Prellberg Simulating models of polymer collapse

Page 35: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Site-Weighted Random Walk (ctd)

1

2

3

5

6 7 89 10

11

12

40

Partition function

ZN(β) =∑

m1,m2

CN,m1,m2e−β(m1ε1+m2ε2)

with density of states CN,m1,m2

Simulate two variants of the model on the square and simplecubic lattice

random walks with immediate reversal allowed (RA2, RA3)random walks with immediate reversal forbidden (RF2, RF3)

Thomas Prellberg Simulating models of polymer collapse

Page 36: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

The Algorithm

Thomas Prellberg Simulating models of polymer collapse

Page 37: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

PERM: “Go With The Winners”

PERM = Pruned and Enriched Rosenbluth MethodGrassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

1/2 1 trapped1/3

Thomas Prellberg Simulating models of polymer collapse

Page 38: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

PERM: “Go With The Winners”

PERM = Pruned and Enriched Rosenbluth MethodGrassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

1/2 1 trapped1/3

Enrichment: weight too large → make copies of configuration

Pruning: weight too small → remove configurationoccasionally

Thomas Prellberg Simulating models of polymer collapse

Page 39: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

PERM: “Go With The Winners”

PERM = Pruned and Enriched Rosenbluth MethodGrassberger, Phys Rev E 56 (1997) 3682

Rosenbluth Method: kinetic growth

1/2 1 trapped1/3

Enrichment: weight too large → make copies of configuration

Pruning: weight too small → remove configurationoccasionally

Current work: flatPERM = flat histogram PERMT Prellberg and J Krawczyk, PRL 92 (2004) 120602

flatPERM samples a generalised multicanonical ensemble

Determines the whole density of states in one simulation!

Thomas Prellberg Simulating models of polymer collapse

Page 40: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Thomas Prellberg Simulating models of polymer collapse

Page 41: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Exact enumeration: choose all a continuations with equalweight

Kinetic growth: chose one continuation with a-fold weight

Thomas Prellberg Simulating models of polymer collapse

Page 42: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Exact enumeration: choose all a continuations with equalweight

Kinetic growth: chose one continuation with a-fold weight

An N step configuration gets assigned a weight

W =N−1∏

k=0

ak

Thomas Prellberg Simulating models of polymer collapse

Page 43: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Exact enumeration: choose all a continuations with equalweight

Kinetic growth: chose one continuation with a-fold weight

An N step configuration gets assigned a weight

W =N−1∏

k=0

ak

S growth chains with weights W(i)N give an estimate of the

total number of configurations, C estN = 〈W 〉N = 1

S

∑i W

(i)N

Thomas Prellberg Simulating models of polymer collapse

Page 44: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Exact enumeration: choose all a continuations with equalweight

Kinetic growth: chose one continuation with a-fold weight

An N step configuration gets assigned a weight

W =N−1∏

k=0

ak

S growth chains with weights W(i)N give an estimate of the

total number of configurations, C estN = 〈W 〉N = 1

S

∑i W

(i)N

Add pruning/enrichment with respect to ratio

r = W(S+1)N /C est

N

Thomas Prellberg Simulating models of polymer collapse

Page 45: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Algorithm details

View kinetic growth as approximate enumeration

Exact enumeration: choose all a continuations with equalweight

Kinetic growth: chose one continuation with a-fold weight

An N step configuration gets assigned a weight

W =N−1∏

k=0

ak

S growth chains with weights W(i)N give an estimate of the

total number of configurations, C estN = 〈W 〉N = 1

S

∑i W

(i)N

Add pruning/enrichment with respect to ratio

r = W(S+1)N /C est

N

Number of samples generated for each N is roughly constant

We have a flat histogram algorithm in system size

Thomas Prellberg Simulating models of polymer collapse

Page 46: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

From PERM to flatPERM

Consider athermal casePERM: estimate number of configurations CN

C estN = 〈W 〉N

r = W(i)N /C est

N

Thomas Prellberg Simulating models of polymer collapse

Page 47: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

From PERM to flatPERM

Consider athermal casePERM: estimate number of configurations CN

C estN = 〈W 〉N

r = W(i)N /C est

N

Consider energy E , temperature β = 1/kB T

thermal PERM: estimate partition function ZN (β)

Z estN (β) = 〈W exp(−βE )〉N

r = W(i)N exp(−βE (i))/Z est

N (β)

Thomas Prellberg Simulating models of polymer collapse

Page 48: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

From PERM to flatPERM

Consider athermal casePERM: estimate number of configurations CN

C estN = 〈W 〉N

r = W(i)N /C est

N

Consider energy E , temperature β = 1/kB T

thermal PERM: estimate partition function ZN (β)

Z estN (β) = 〈W exp(−βE )〉N

r = W(i)N exp(−βE (i))/Z est

N (β)

Consider parametrisation ~m of configuration spaceflatPERM: estimate density of states CN,~m

C estN,~m = 〈W 〉N,~m

r = W(i)N,~m/C est

N,~m

Thomas Prellberg Simulating models of polymer collapse

Page 49: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Simulations and Results

Thomas Prellberg Simulating models of polymer collapse

Page 50: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

To stabilise algorithm (avoid initial overflow/underflow):Delay growth of large configurationsHere: after t tours growth up to length 10t

Thomas Prellberg Simulating models of polymer collapse

Page 51: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 1, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 52: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 10, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 53: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 20, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 54: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 30, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 55: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 40, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 56: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 50, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 57: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 60, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 58: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 70, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 59: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 80, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 60: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 90, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 61: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 100, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 62: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 110, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 63: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 120, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 64: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 130, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 65: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 140, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 66: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 150, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 67: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 160, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 68: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 170, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 69: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 180, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 70: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 190, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 71: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 200, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 72: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 210, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 73: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 220, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 74: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 230, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 75: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 240, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 76: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 250, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 77: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 260, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 78: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 270, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 79: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 280, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 80: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 290, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 81: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

2d ISAW simulation up to N = 1024

Total sample size: 300, 000, 000

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

050

100150200250300350400450

log10(Cnm)

00.2

0.40.6

0.81

m/n 0

200400

600

8001000

n

1

10

100

1000

10000

Snm

Thomas Prellberg Simulating models of polymer collapse

Page 82: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

ISAW simulations

00.2

0.40.6

0.81 0

200400

600

8001000

050

100150200250300350400450

log10(Cnm)

m/n

n

00.2

0.40.6

0.81 0

200400

600

8001000

10000

100000

1e+06

Snm

m/n

n

� � �� � �� � �� � �� � �� � �� � �� � �� �

� � � � � � � � � � � � � � � � � � � �

� ���� ���

2d ISAW up to n = 1024

One simulation suffices

400 orders of magnitude

(only 2d shown, 3d similar)

Thomas Prellberg Simulating models of polymer collapse

Page 83: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW simulations

1

2

3

5

6 7 89 10

11

12

40

Four simulations: reversal allowed/forbidden, 2d/3d

Thomas Prellberg Simulating models of polymer collapse

Page 84: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW simulations

1

2

3

5

6 7 89 10

11

12

40

Four simulations: reversal allowed/forbidden, 2d/3d

Density of states CN,m1,m2 accessible up to N = 256

Thomas Prellberg Simulating models of polymer collapse

Page 85: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW simulations

1

2

3

5

6 7 89 10

11

12

40

Four simulations: reversal allowed/forbidden, 2d/3d

Density of states CN,m1,m2 accessible up to N = 256

Perform partial summation, e.g. over m2

C̄N,m1(β2) =∑

m2

CN,m1,m2eβ2m2

Thomas Prellberg Simulating models of polymer collapse

Page 86: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW simulations

1

2

3

5

6 7 89 10

11

12

40

Four simulations: reversal allowed/forbidden, 2d/3d

Density of states CN,m1,m2 accessible up to N = 256

Perform partial summation, e.g. over m2

C̄N,m1(β2) =∑

m2

CN,m1,m2eβ2m2

Density of states C̄N,m1 (β2) accessible up to N = 1024(for β2 fixed)

Thomas Prellberg Simulating models of polymer collapse

Page 87: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW in 3d, reversal forbidden (RF3)

2.0

1

−2.0

1

−2.0

1

−1.0

1

−1.0

1

1.0

1

1.0

1

β1

1

β2

1

2.0

1

SAW

collapsed

Phase diagram

Thomas Prellberg Simulating models of polymer collapse

Page 88: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW in 3d, reversal forbidden (RF3)

2.0

1

−2.0

1

−2.0

1

−1.0

1

−1.0

1

1.0

1

1.0

1

β1

1

β2

1

2.0

1

SAW

collapsed

Phase diagram

β2 = −1.0:

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1 1.5

σ2 (m1)

/n

β1

line β2=-1.0

128256512

1024

2nd order transition

β1 = −1.0:

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4

σ2 (m2)

/n

β2

line β1=-1.0

128256512

1024

1st order transition

Thomas Prellberg Simulating models of polymer collapse

Page 89: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW in 3d, reversal forbidden (RF3)

2.0

1

−2.0

1

−2.0

1

−1.0

1

−1.0

1

1.0

1

1.0

1

β1

1

β2

1

2.0

1

SAW

collapsed

Phase diagram

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200

p(m

2)

m2

β1=-1.0,β2=1.030β1=-1.0,β2=1.035β1=-1.0,β2=1.040

bimodal distribution

β2 = −1.0:

0

0.05

0.1

0.15

0.2

0.25

0.3

-1 -0.5 0 0.5 1 1.5

σ2 (m1)

/n

β1

line β2=-1.0

128256512

1024

2nd order transition

β1 = −1.0:

0

0.2

0.4

0.6

0.8

1

1.2

0.6 0.8 1 1.2 1.4

σ2 (m2)

/n

β2

line β1=-1.0

128256512

1024

1st order transition

Thomas Prellberg Simulating models of polymer collapse

Page 90: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW in 2d, reversal allowed (RA2)

We find a smooth crossover:

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ2 (m2)

/n

β2

line β1=-1.0

128256512

1024

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ2 (m1)

/n

β1

line β2=-1.0

128256512

1024

Both 1st order and 2nd order transitions have disappeared!

Thomas Prellberg Simulating models of polymer collapse

Page 91: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW in 2d, reversal allowed (RA2)

We find a smooth crossover:

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ2 (m2)

/n

β2

line β1=-1.0

128256512

1024

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

σ2 (m1)

/n

β1

line β2=-1.0

128256512

1024

Both 1st order and 2nd order transitions have disappeared!

RA3 and RF2

2nd order transition disappears as in RA21st order transition weakens

Thomas Prellberg Simulating models of polymer collapse

Page 92: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW summarised

Model 2d 3d

RA no transitions one transition

RF one transition two transitions

Thomas Prellberg Simulating models of polymer collapse

Page 93: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW summarised

Model 2d 3d

RA no transitions one transition

RF one transition two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes thephase transition

Thomas Prellberg Simulating models of polymer collapse

Page 94: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

SWRW summarised

Model 2d 3d

RA no transitions one transition

RF one transition two transitions

Unexpected and intriguing behaviour

Changing the dimension and/or allowing reversals removes thephase transition

Many open Questions remain . . .

Thomas Prellberg Simulating models of polymer collapse

Page 95: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Summary

Polymers in solution:

Random Walk + Excluded Volume + Attraction?

Thomas Prellberg Simulating models of polymer collapse

Page 96: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Summary

Polymers in solution:

Random Walk + Excluded Volume + Attraction?

Algorithm:

Stochastic growth & flat histogram (PERM/flatPERM)

Thomas Prellberg Simulating models of polymer collapse

Page 97: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Summary

Polymers in solution:

Random Walk + Excluded Volume + Attraction?

Algorithm:

Stochastic growth & flat histogram (PERM/flatPERM)

Simulations and results:

Canonical model: interacting self-avoiding walks (ISAW)Site-weighted random walks (SWRW)

Thomas Prellberg Simulating models of polymer collapse

Page 98: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Summary

Polymers in solution:

Random Walk + Excluded Volume + Attraction?

Algorithm:

Stochastic growth & flat histogram (PERM/flatPERM)

Simulations and results:

Canonical model: interacting self-avoiding walks (ISAW)Site-weighted random walks (SWRW)

An unfinished story!

Thomas Prellberg Simulating models of polymer collapse

Page 99: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:T. Prellberg and J. Krawczyk, “Flat histogram version of the pruned and enriched Rosenbluthmethod,” Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)T. Prellberg, J. Krawczyk, and A. Rechnitzer, “Polymer simulations with a flat histogramstochastic growth algorithm,” Computer Simulation Studies in Condensed Matter Physics XVII,pages 122-135, Springer Verlag, 2006

Thomas Prellberg Simulating models of polymer collapse

Page 100: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:T. Prellberg and J. Krawczyk, “Flat histogram version of the pruned and enriched Rosenbluthmethod,” Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)T. Prellberg, J. Krawczyk, and A. Rechnitzer, “Polymer simulations with a flat histogramstochastic growth algorithm,” Computer Simulation Studies in Condensed Matter Physics XVII,pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surfaceJ. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “Stretching of a chain polymeradsorbed at a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2004)P10004J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Layering transitions for adsorbingpolymers in poor solvents,” Europhys. Lett. 70 (2005) 726-732J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Pulling absorbing and collapsingpolymers off a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2005)P05008

Thomas Prellberg Simulating models of polymer collapse

Page 101: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:T. Prellberg and J. Krawczyk, “Flat histogram version of the pruned and enriched Rosenbluthmethod,” Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)T. Prellberg, J. Krawczyk, and A. Rechnitzer, “Polymer simulations with a flat histogramstochastic growth algorithm,” Computer Simulation Studies in Condensed Matter Physics XVII,pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surfaceJ. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “Stretching of a chain polymeradsorbed at a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2004)P10004J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Layering transitions for adsorbingpolymers in poor solvents,” Europhys. Lett. 70 (2005) 726-732J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Pulling absorbing and collapsingpolymers off a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2005)P05008

This talk:A. L. Owczarek and T. Prellberg, “Collapse transition of self-avoiding trails on the square lattice,”submitted to Physica AJ. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “On a type of self-avoiding randomwalk with multiple site weightings and restrictions,” submitted to Phys. Rev. Lett.

Thomas Prellberg Simulating models of polymer collapse

Page 102: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

Acknowledgements

Joined work with A.L. Owczarek, A. Rechnitzer, J. Krawczyk

The algorithm:T. Prellberg and J. Krawczyk, “Flat histogram version of the pruned and enriched Rosenbluthmethod,” Phys. Rev. Lett. 92 (2004) 120602; selected for Virt. J. Biol. Phys. Res. 7 (2004)T. Prellberg, J. Krawczyk, and A. Rechnitzer, “Polymer simulations with a flat histogramstochastic growth algorithm,” Computer Simulation Studies in Condensed Matter Physics XVII,pages 122-135, Springer Verlag, 2006

Some applications: bulk vs surfaceJ. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “Stretching of a chain polymeradsorbed at a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2004)P10004J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Layering transitions for adsorbingpolymers in poor solvents,” Europhys. Lett. 70 (2005) 726-732J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Pulling absorbing and collapsingpolymers off a surface,” Journal of Statistical Mechanics: theory and experiment, JSTAT (2005)P05008

This talk:A. L. Owczarek and T. Prellberg, “Collapse transition of self-avoiding trails on the square lattice,”submitted to Physica AJ. Krawczyk, T. Prellberg, A. L. Owczarek, and A. Rechnitzer, “On a type of self-avoiding randomwalk with multiple site weightings and restrictions,” submitted to Phys. Rev. Lett.

Things to come:J. Krawczyk, A. L. Owczarek, T. Prellberg, and A. Rechnitzer, “Simulation of Lattice Polymerswith Hydrogen-Like Bonding,” preprint

Thomas Prellberg Simulating models of polymer collapse

Page 103: Simulating models of polymer collapsetp/talks/siteweighted.pdf · Thomas Prellberg Simulating models of polymer collapse. Polymers in Solution Thomas Prellberg Simulating models of

The End

Thomas Prellberg Simulating models of polymer collapse


Recommended