+ All Categories
Home > Documents > SimulatingsoilcarboninSimulating soil carbon in … FYM 堆肥 Weather: temperature, precipitation,...

SimulatingsoilcarboninSimulating soil carbon in … FYM 堆肥 Weather: temperature, precipitation,...

Date post: 15-Jun-2018
Category:
Upload: hoangphuc
View: 217 times
Download: 0 times
Share this document with a friend
18
26 Sep. 2012@Tsukuba Simulating soil carbon in Simulating soil carbon in Japanese agricultural land by the Rothamsted carbon model Yasuhito SHIRATO Yasuhito SHIRATO Yasumi YAGASAKI (National Institute for Agro- (National Institute for Agro- Environmental Sciences, Japan)
Transcript

26 Sep. 2012@Tsukuba

Simulating soil carbon inSimulating soil carbon in Japanese agricultural land by the Rothamsted carbon model

Yasuhito SHIRATOYasuhito SHIRATOYasumi YAGASAKI

(National Institute for Agro-(National Institute for Agro-Environmental Sciences, Japan)

Two steps

1. Validation and “Utilization of soil information”

modification of the model

Long‐term soil experimentsthe model

2. Country‐ scale application of

Soil map & databaseapplication of the model Agricultural activity data

Objective:Objective:Estimate potential of soil C sequestration

Rothamsted Carbon modelRothamsted Carbon model

Inputs 堆肥FYMWeather: temperature, precipitation, open‐pan 

Inputs作物残渣

堆肥

CO2

FYMCrop residue

evaporationSoil: Clay content, depth of topsoil initialdepth of topsoil, initial SOC concentration and Bulk density

RPMDPM

Management: C inputs (crop residue, FYM), soil cover BIO HUMsoil cover

( hl )

IOMOutputsSOC (monthly) DPM: Decomposable plant material; RPM:

Resistant plant material; BIO: Microbial biomass; HUM: Humified organic matter; IOM: Inert

One of widely used models, but has not been well validated in Asia.

g ;organic matter

Long-term experimentsUtilization of soil information

Long term experiments

稲 わ ら た い 肥 0 7 5 t 区

2.5

(全炭 素(% ))Total C (%)

Plot with Rice Straw Compost (7.5t/ha/year)

稲 わ ら た い 肥 0 .2 5 t 区

稲 わ ら た い 肥 0 .7 5 t 区

2

Plot with Rice Straw Compost (2.5t/ha/year)

Plot with Rice Straw Compost (7.5t/ha/year)

化 学 肥 料 単 用 区

1.5

p ( y )

化 学 肥 料 単 用 区

1

Plot with Chemical Fertilizer Only

0 .5

1 2 3 4 5 6 7 8 9 10 11 12 13 1 4 15 16 17 18

(連用年数)Yearsea s

ManagementSoil propertiesMechanismsMechanismsModeling

Long‐term experiments for model validation Utilization of soil information

6 sites4 it

Upland crop fields

4 sitesPaddy soils 5 sites

Data from 15 long‐term experiments under variety of weather, soil typeEach site has several plots with different management (NPK, manure, straw, etc.)

60Performance of RothC in non‐volcanic upland soils

Example of validation results

40

50

60

ha

-1)

Good performance Increasing SOC

20

30

40

OC

(t

C h

Without any modification

30

Anjyo: NPK+FYMb

0

10

SO

Yellow soilmodification or calibration

25

30

a-1)

1975 1976 1977 1978 1979 1980 1981

•6 sites under various

10

15

20

C (

t C

ha

Decreasing SOC

•6 sites under various weather condition.•Various soil types.

Kumagaya: -N5

10

SO

C Modeled

Measured

Decreasing SOC

Brown lowland soil

PredictedVarious soil types.

•Various management

0

1975 1977 1979 1981 1983

Validation and modification of RothC in Japan

Upland (Andosols)

Paddy

Upland

(Andosols)

Upland (Other soils) Anaerobic conditionVolcanic ash derived ) Anaerobic condition

Slow decompositionVolcanic ash derivedStable humus

M difi d d l O i i l R thC i OK

Proportion of area in Japanese arable land

M difi d d lModified model Original RothC is OK Modified model

Next: Country scale simulation using 3 versions

Country-scale simulationCountry-scale simulation

Simulation unit: 100m × 100m grid

3rd grid: 30″ x 45″ (≒ 1 1 k )

1st id

2nd grid:5′ x 7.5 ′(≒ 10 x 10 km)

3rd grid: 30″ x 45″ (≒ 1 x 1 km)

4th grid: 3″ x 4.5″ (≒ 0.1 x 0.1 km)total: ca. 38,000,000 grids

1st grid:40′ x 1°(≒80 x 80 km)

Soil mapLand use map

1 paddy2 cropland3 orchard4 managed grassland5 unmanaged grassland6 f l d6 forest lands7 wetlands8 settlements9 other lands

Land use historySimulation unit: 100m grid

水稲作付け

Agricultural land use change during 51 years

ha)

PaddyNot fixed!

2  田

樹園地

(m

illio

n

Upland

OrchardDiff i

0 3 6 9 2 5 8 1 4 7 0 3 6 9 2 5 8

樹園地

牧草地

Are

a Orchard

Grassland

•Different version of model•different activity

1970

1973

1976

1979

1982

1985

1988

1991

1994

1997

2000

2003

2006

2009

2012

2015

2018

T bl f l d h hi t

different activity data 

1970 1971 1972 ・ ・ ・ ・ 2018 2019 2020

P P U U U U U P P P100m grid

P: paddyU: uplandO: orchard

Table of land use change history

O O O S S S S S S S

F F F G G G G G G G

gG: grassland

F: ForestS S ttl t

・ ・ ・ ・ ・ ・ ・ ・ ・ ・S: Settlement

All grids which have agricultural land use at least once were included in simulation

Weather data: 1km × 1km resolution

grid size: 30″ x 45″ (≒ 1 1 k )

°

grid size: 30 x 45 (≒ 1 x 1 km)total: ca. 380,000 gridsyear: 1979-2008

Mth P i ( )

1990 Feb.

Av. Mth Temp. (°C)

1990 Jul.

Mth Precip. (mm)

1990 Jul.1990 Jun.

•Estimated C input to soils: 1) crop residue 2)Farmyard manure (FYM)

Activity data (management): resolution=prefecture•Estimated C input to soils: 1) crop residue, 2)Farmyard manure (FYM) •47 prefecture•51 year

C inputs from crop residue•4 agricultural land uses (paddy, upland, orchard, grassland)

p pYield residue amount entered soils

QuestionnaireStatistics Literature

C inputs from FYMQuestionnaire Statistics Literature

Head of livestock excreta FYM amount entered soilsQuestionnaire Statistics Literature

Assumption: OM produced in a prefecture enters soils inAssumption: OM produced in a prefecture enters soils in that prefecture, but different rate with land uses

Activity data (management): resolution=prefecture

Many steps and assumptions: high uncertaintyuncertainty 3 levels of estimates (small,

medium, large) of C inputs were created Simulation was performed for each

of 3of 3

Simulation period: 1970-202070 実測Initial SOC

60

70

)

実測

モデル(緩和シナ

リオ)

毎年の土壌へのC投入量(県別。作

物残渣・堆肥)を入力して計算

C inputs (t /ha) each year, 47 prefectures, 4 land uses Simulation

(Mitigation)

Initial SOC

40

50

(tC ha

‐1) リオ)

モデル(BAU)

吸収 排出量算

Simulation (BAU)

N t t

30

壌炭

素量

1970年の土壌 将来は2つの管

吸収or排出量算

定(ネット・ネット

方式)→基準年Initial SOC (0- 2 scenarios

Net-net accounting. Compare annual SOC change in

SO

C

10

20

土壌

1970年の土壌

炭素量(0‐30 cm)を初期値。

平衡を仮定

将来は2つの管

理シナリオ

(BAU、緩和)で

2020年まで計算

(1990年)と約束

期間(2013‐2020)の、SOC年間変化

Initial SOC (030cm, tC/ha) in 1970: equilibrium

2 scenarios (BAU, Mitigation) in future

SOC change in 1990 with commitment period

0

1960 1970 1980 1990 2000 2010 2020年

平衡を仮定。 2020年まで計算 量(傾き)を比較assumed (2013~2020)

50‐year‐simulation of SOC from 1970

1960 1970 1980 1990 2000 2010 2020年

Calculate annual SOC change (CO2 emission or removal) rateNet‐net accounting (Kyoto protocol)

Summary  RothC was validated against long‐term experiments in Japan.

Modified versions for Andosols and for paddy soils were p ydeveloped.

Country‐scale simulation with three versions of the RothC at y100m‐resolution was conducted from 1970‐2020. 

Inter‐annual variability in CO2 emission (SOC decrease) was y 2 ( )large .

Range of 2 to 5 Mt of net‐net CO2 removal were estimated by g 2 yKyoto protocol accounting method.

Effect of weather condition during commitment period wereEffect of weather condition during commitment period were larger than the effect of improved management.

The suitability of net‐net accounting method by using singleThe suitability of net net accounting method by using single base year should be considered.

Future work

Uncertainty analysis (e.g. activity data)

Comparison with monitoring‐based estimation

GWP calculation together with CH4 and N2OGWP calculation together with CH4 and N2O

LCA including fossil fuel use

Proposalsp

Create and share Asian soil map

Land use map Land use map

Networking long‐term experiments 

For extending our methodology to AsiaFor better utilization of soil information inFor better utilization of soil information in Asia

Thank you for your attention!Thank you for your attention!


Recommended