+ All Categories
Home > Documents > Slides - Laser Ablation

Slides - Laser Ablation

Date post: 14-Apr-2018
Category:
Upload: marcelo-ferreira
View: 216 times
Download: 0 times
Share this document with a friend

of 39

Transcript
  • 7/30/2019 Slides - Laser Ablation

    1/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    Fundamentals & ApplicationsFundamentals & Applications

    Samuel S. Mao

    Department of Mechanical Engineering

    University of California at Berkeley

    Advanced Energy Technology Department

    Lawrence Berkeley National Laboratory

    March 10, 2005

  • 7/30/2019 Slides - Laser Ablation

    2/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    What is Laser Ablation?

    Mass removal by coupling laser

    energy to a target material

  • 7/30/2019 Slides - Laser Ablation

    3/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Is it important?Is it important?

    target

    substrate

    material

    plume

    ) Film deposition

    * oxide/superconductor films

    * nanocrystals/nanotubes

    lase

    rabla

    tion

    target

    plasma lens

    optical spectrometer

    mass spectrometer

    )Materials characterization

    * semiconductor doping profiling

    * solid state chemical analysis

    target transparent solid

    microstructure

    )Micro structuring

    * direct wave guide writing

    * 3D micro fabrication

  • 7/30/2019 Slides - Laser Ablation

    4/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Is it important?Is it important?

    ) Film deposition

    * oxide/superconductor films

    * nanocrystals/nanotubes

    lase

    rabla

    tion

    100 m

    )Materials characterization

    * semiconductor doping profiling

    * solid state chemical analysis

    )Micro structuring

    * direct wave guide writing

    * 3D micro fabrication

  • 7/30/2019 Slides - Laser Ablation

    5/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    lase

    rabla

    tion

    Do we really understand?Do we really understand?

    plasmaplasma

    targettarget

    laserlaser

    beambeam Laser ablation is still

    largely unexplored at the

    fundamental level.

    J. C. Miller & R. F. Haglund,

    Laser Ablation and Desorption

    (Academic, New York, 1998)

  • 7/30/2019 Slides - Laser Ablation

    6/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    ) What is happening?

    nanosecondpicosecond microsecondfemtosecond

    10-15 s 10-12 s 10-9 s 10-6 s

    lase

    rpulse

    target

  • 7/30/2019 Slides - Laser Ablation

    7/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    ??

    ExperimentsExperiments -- ultrafast imagingultrafast imaging

    ablationlaser beam

    target

    CCD

    probe beam

    pump beam

    delay time

    imaginglaser beam

    )Pump-probe technique

  • 7/30/2019 Slides - Laser Ablation

    8/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    1 fs = 10 15 s

    Femtosecond Time ScaleFemtosecond Time Scale

    laserpulse

    glass

    air

    100 fs,800 nm

    E = 30 J

    )Ultrafast imaging - time dependent energy transfer

    self-focusing

    C

    Velectronic excitatione-h plasma

    100m

  • 7/30/2019 Slides - Laser Ablation

    9/39

  • 7/30/2019 Slides - Laser Ablation

    10/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Femtosecond Time ScaleFemtosecond Time Scale

    )Peak electron number density ne - time dependence

    0 500 1000 1500 2000 25001x10

    19

    2x1019

    3x1019

    4x1019

    5x1019

    6x1019

    Ne,max

    (cm-3)

    time (fs)

    flattened peak electron number density

    no breakdown

    0

    5

    0 fs

    z (m)el

    ectronnumberd

    ensity(1019 cm-3)

    0

    5

    333 fs

    0

    5

    667 fs

    0

    5

    1000 fs

    0

    5

    1333 fs

    0

    5

    1667 fs

    0 100 200 300 400 500

    0

    5 2000 fs

  • 7/30/2019 Slides - Laser Ablation

    11/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Femtosecond Time ScaleFemtosecond Time Scale

    )Fundamental processes

    laserpulse

    9 Nonlinear absorption

    9 Nonlinear optics

    Self-focusing - intensity dependence of refractive index

    Electronic excitation - interband absorption

    C

    V

    positive refractive index change

    negative refractive index change

    0

    z

    suppress self-focusing

  • 7/30/2019 Slides - Laser Ablation

    12/39

  • 7/30/2019 Slides - Laser Ablation

    13/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    ) What is happening?

    femtosecond picosecond nanosecond microsecond

    laserpulse

    target

  • 7/30/2019 Slides - Laser Ablation

    14/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    50 m

    (laser pulse: 35 ps, fluence: 90 J/cm

    2

    )

    t = 50 ps

    50 m

    (laser pulse: 35 ps, fluence: 60 J/cm

    2

    )

    t = 50 ps

    ablationlaser

    pulse

    target Cu

    (air)

    1 ps = 10 12 s

    Picosecond Time ScalePicosecond Time Scale

    ) Picosecond imaging

  • 7/30/2019 Slides - Laser Ablation

    15/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Threshold behavior

    (laser pulse length 35 ps; pictures taken at 20 ps)

    85 J/cm2

    plasma onset

    110 J/cm2

    regime-2

    40 J/cm2

    regime-1

    50 m

    9 Threshold for picosecond plasma formation same asthe threshold for ablation efficiency reduction:

    ~ 85 J/cm2 (laser fluence)

    ~ 1012 W/cm2 (power density)

    (threshold for direct laser-induced air breakdown: ~ 1013 W/cm2)

    0 100 200 300 400 5000

    5

    10

    15

    20

    25

    ab

    lationdepth(m)

    laser fluence (J/cm2)

    1 2

  • 7/30/2019 Slides - Laser Ablation

    16/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Ultrafast interferometry

    r

    z

    t = 15 ps interference pattern

    50 m

    target

  • 7/30/2019 Slides - Laser Ablation

    17/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Electron number density

    0 50 100 150 200 2500.0

    2.0x1019

    4.0x1019

    6.0x1019

    8.0x10

    19

    1.0x1020

    1.2x1020

    Ne

    (cm

    -3)

    Z (m)

    z

    t = 15 ps

    air density

    9 A large electronnumber density!(close to target surface)

  • 7/30/2019 Slides - Laser Ablation

    18/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Longitudinal (z) expansion

    z

    (laser energy: 10 mJ)

    50m

    0 20 40 60 80 100 1200

    100

    200

    300

    400

    500

    z(m)

    t (ps)

    longitudinal plasma extent vs. time

    9 longitudinal expansion is suppressed (t > 50 ps)!

  • 7/30/2019 Slides - Laser Ablation

    19/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Lateral (r) expansion

    (t > 50 ps: expansion only in lateral direction)

    lateral plasma radius vs. time

    (laser energy: 10 mJ)

    r 0 500 1000 1500 2000 25000

    10

    20

    30

    40

    50

    r(m)

    t (ps)

    9 lateral expansion follows a power law!

  • 7/30/2019 Slides - Laser Ablation

    20/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    Distribution of laser energy (100%):

    ~~ 50% absorbed by the picosecond micro-plasma

    ~~ 50% reaching target surface

    2/1

    4/1

    tr

    o

    E

    E: energy deposition density (laser axis)

    0: ambient gas (air) density

    similarity relation(2D blast wave - line energy source)

    10 100 10001

    10

    100

    t1/2

    10.0 mJ

    7.5 mJ

    r(m)

    time (ps)

    t1/2 power law

    )Energy deposition to picosecond plasma

    plasma onset

    85 J/cm2 110 J/cm2

    50 m

    40 J/cm2

    0 100 200 300 400 5000

    5

    10

    15

    20

    25

    ablationdepth(m

    )

    laser fluence (J/cm2)

    reduced efficiency

  • 7/30/2019 Slides - Laser Ablation

    21/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Picosecond Time ScalePicosecond Time Scale

    )Theoretical model (laser-solid-gas interaction)electron

    ion (gas)

    atom (gas)

    gas (1atm)

    before laser irradiation

    Cu

    laserbeam

    after laser irradiation

    Cuelectron

    Cu atom

    photon

    9 laser heating of target (metal) electron heating - absorption of laser energy

    lattice heating - electron-phonon collisions

    9 plasma development above target surface electron emission (seed)

    impact ionization of gas

  • 7/30/2019 Slides - Laser Ablation

    22/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    ) What is happening?

    femtosecond picosecond nanosecond microsecond

    laserpulse

    target

  • 7/30/2019 Slides - Laser Ablation

    23/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    1 ns = 10 9 s

    Nanosecond Time ScaleNanosecond Time Scale

    )Plasma evolution picosecond to nanosecond

    z time dependence

    (35 ps, 7 mJ)

    z laser energy dependence

    (35 ps, 2 ns)

  • 7/30/2019 Slides - Laser Ablation

    24/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Nanosecond Time ScaleNanosecond Time Scale

    )Plasma development

    plasma advancement:~ 10

    6

    cm/s~ 10 m every 1 ns (1000 ps)

    solid

    laser

    pulse

    shock wave

    plasma

    vapor

    target

  • 7/30/2019 Slides - Laser Ablation

    25/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Nanosecond Time ScaleNanosecond Time Scale

    )Plasma shielding nanosecond

    solid

    l

    aser

    10 100

    0.1

    1

    10

    ablationdepth(m)

    laser fluence (J/cm2)

    25 ns, 248 nm laser ablation of Cu

    (single pulse, in air, 100 m spot diameter)

    Experiment

    0 1 2 3 4 5 6 7 8 9 10 11 12

    without plasma

    t (ns)

    Theory

    100 GW/cm2

    30 GW/cm2

    20 GW/cm2

    3 ns, 1064 nm laser ablation of Si

    (single pulse)

  • 7/30/2019 Slides - Laser Ablation

    26/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    ) What is happening?

    femtosecond picosecond nanosecond microsecond

    las

    erpulse

    target

  • 7/30/2019 Slides - Laser Ablation

    27/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    1 s = 10 6 sMicrosecond Time ScaleMicrosecond Time Scale

    )Plume evolution

    z below threshold

    10 ns 160 ns 760 ns 1.6 s 4.9 s64 ns100 m

    (3 ns, 1.8x1010 W/cm2)

    z above threshold

    4.2 s1.3 s860 ns200 ns70 ns5 ns100 m

    (3 ns, 2.1x1010 W/cm2)

  • 7/30/2019 Slides - Laser Ablation

    28/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Microsecond Time ScaleMicrosecond Time Scale

    18 GW/cm2

    0.0

    +2.0

    -2.0

    -4.0

    -6.0

    abla

    tiondepth

    (m)

    21 GW/cm2

    0.0

    +2.0

    -2.0

    -4.0

    -6.0

    ablationdepth

    (m)

    4.2 s4.9 s

    )Threshold behavior

    1010

    1011

    0

    5

    10

    15

    20

    25

    ablation

    depth(m)

    laser intensity (W/cm2)

  • 7/30/2019 Slides - Laser Ablation

    29/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Microsecond Time ScaleMicrosecond Time Scale

    )Theoretical model

    solid

    ~ 1 ns

    solid

    superheated

    liquid layer

    ~ 100 ns

    solid~ 1 s

    109

    1010

    1011

    5

    10

    15

    20experiment

    theory

    ablation

    depth(m)

    laser intensity (W/cm2

    )

    )]11

    (exp[)2( 2/1

    0 TTk

    mLTmk

    mp

    t

    x

    bB

    evBb

    x

    =

    =

    Normal vaporization (Hertz-Knudsen equations)

    ablation below threshold: normal evaporation

    ablation above threshold: normal evaporation and explosive boiling

    )exp()( xIx

    Tk

    xt

    TC laser +

    =

    Explosive boiling (heat diffusion Tmax~ Tc)

  • 7/30/2019 Slides - Laser Ablation

    30/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    ) What is happening?

    femtosecond picosecond nanosecond

    las

    erpulse

    target

    microsecond

  • 7/30/2019 Slides - Laser Ablation

    31/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    )Fundamental processes

    laser

    electronic

    plasma

    electronicexcitation

    solid

    heated zone

    plasma

    vapor

    liquid

    fspsnssdroplets

    absorption/excitationfs

    ionization (photon)

    conductionps

    radiation

    ionization (shock wave)

    vaporizationconvection

    melting

    ns

    boilings

  • 7/30/2019 Slides - Laser Ablation

    32/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Laser AblationLaser Ablation

    Applications

    20 40 60 80 100 120 140 160 180

    0.0

    0.5

    1.0 ns laser, 266 nm

    fs laser, 266 nm

    Zn/Curatio

    time (s)

    micro-analysis nano-material

  • 7/30/2019 Slides - Laser Ablation

    33/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Applications ofApplications ofUltrafastUltrafastLaser AblationLaser Ablation

    )Ultrafast laser ablation (pulse < tthermal) FEL capability! Non-thermal ablation regime

    E

    +

    -fs laser

    ion

    electron

    target

    9 Reduced dependence on thermal properties

    9 Reduced larger cluster particles generation

  • 7/30/2019 Slides - Laser Ablation

    34/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    )Micro Analysis

    20 40 60 80 100 120 140 160 1800.0

    0.5

    1.0ns laser, 266 nmfs laser, 266 nm

    M

    Ssignal:Zn/

    Curatio

    time(s)

    Mass Spectrometry - Laser ablation of brass (CuZn alloy)

    ns

    fs

    The problem of nanosecond laser ablation

    Applications ofApplications ofUltrafastUltrafastLaser AblationLaser Ablation

  • 7/30/2019 Slides - Laser Ablation

    35/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    MicroMicro--Analysis ApplicationAnalysis Application

    New magnetic film material

    (data storage applications)

    0 10 20 30 40 50102

    103

    104

    105

    106

    107

    108

    109

    1010

    depth profile (bulk material)

    Cu

    Fe

    elementcounts(a.u.)

    time (s)

    laser

    depth profiling

    sputtering target

    0.00

    0.05

    0.10

    0.15

    0.20

    151050

    Cu/Feratio

    time (s)

    surface profiling (film material)

    laser

    surface profiling

    deposited film

  • 7/30/2019 Slides - Laser Ablation

    36/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    Applications ofApplications ofUltrafastUltrafastLaser AblationLaser Ablation

    )Nano Material

    The problem of nanosecond laser ablation

    50 m

    50 m

    Nanowires with large particles

    1 m

  • 7/30/2019 Slides - Laser Ablation

    37/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    NanoNano--Material ApplicationMaterial Application

    ) Pulsed laser deposition ZnO nanowire growth

    Setup

    substratetemperature control

    ultrafast laser

    gas

    gas

    target

    fabrication chamber

  • 7/30/2019 Slides - Laser Ablation

    38/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    NanoNano--Material ApplicationMaterial Application

    excitation

    source266 nm (Nd:YAG)

    ZnO nanowiresapphire

    substrate

    ~ 100 nm

    ZnO nanowire:

    natural laser cavity

    370 375 380 385 390 395 4000

    500

    1000

    1500

    2000

    2500

    3000

    above threshold

    below threshold

    intensity(a.u

    .)

    wavelength (nm)

    [Science 292 (2001) 1897]

    10-3

    10-2

    10-1

    100

    101

    105

    106

    lasing

    spontaneous

    emissionintensity(a.u.)

    excitation energy (mJ)

    )Nanolaser spectra

    UV lasing

    (room temperature)

    )Nanowire nanolaser

  • 7/30/2019 Slides - Laser Ablation

    39/39

    University of California at Berkeley Q Lawrence Berkeley National Laboratory

    AcknowledgementsAcknowledgements

    U. S. Department of Energy

    Yanfeng Zhang

    Quanming LuPeidong Yang

    Richard Russo

    Xianglei Mao


Recommended