+ All Categories
Home > Documents > Solution techniques

Solution techniques

Date post: 25-Feb-2016
Category:
Upload: azizi
View: 53 times
Download: 1 times
Share this document with a friend
Description:
Solution techniques. Martin Ellison University of Warwick and CEPR Bank of England, December 2005. State-space form. Generalised state-space form. Many techniques available to solve this class of models We use industry standard: Blanchard-Kahn. Alternative state-space form. - PowerPoint PPT Presentation
22
Solution techniques Martin Ellison University of Warwick and CEPR Bank of England, December 2005
Transcript
Page 1: Solution techniques

Solution techniquesMartin Ellison

University of Warwick and CEPR

Bank of England, December 2005

Page 2: Solution techniques

State-space form

10110 tttt vBXAXEA

Generalised state-space form

Many techniques available to solve this class of models

We use industry standard: Blanchard-Kahn

Page 3: Solution techniques

Alternative state-space form

10101

101

tttt vBAXAAXE

11 tttt BvAXXE

A B

Page 4: Solution techniques

Partitioning of model

11

1

t

t

t

tt

t Bvyw

AyEw

t

tt y

wX

backward-looking variables

predetermined variables

forward-looking variablescontrol variables

Page 5: Solution techniques

Jordan decomposition of A

11

1

t

t

t

tt

t Bvyw

AyEw

1 PPA

eigenvectors diagonal matrix of eigenvalues

Page 6: Solution techniques

Blanchard-Kahn condition

The solution of the rational expectations model is unique if the number of unstable eigenvectors of the system is exactly equal to the number of

forward-looking (control) variables.

i.e., number of eigenvalues in Λ greater than 1 in magnitude must be equal to number of forward-looking variables

Page 7: Solution techniques

tw

ty

Too many stable roots

0w

multiple solutions

equilibrium path not unique

need alternative techniques

Page 8: Solution techniques

tw

ty

Too many unstable roots

0w

no solution

all paths are explosive

transversality conditions violated

Page 9: Solution techniques

tw

ty

Blanchard-Kahn satisfied

0w

one solution

equilibrium path is unique

system has saddle path stability

Page 10: Solution techniques

Rearrangement of Jordan form

111

1

11

t

t

t

tt

t BvPyw

PyEw

P

11

1

1

t

t

t

tt

t Bvyw

PPyEw

R

Page 11: Solution techniques

Partition of model

2

1

00

*22

*21

*12

*111

PPPP

P

11

1

11

t

t

t

tt

t Rvyw

PyEw

P

2

1

RR

R

stable

unstable

Page 12: Solution techniques

Transformed problem

1

1~~

t

tt yw

E

t

t

yw~~

ttt

ttt

yyPwP

wyPwP~

~*22

*21

*12

*11

12

1*22

*21

*12

*11

2

1

1

1*22

*21

*12

*11

00

t

t

t

tt

t vRR

yw

PPPP

yEw

PPPP

12

1

2

1

1

1~~

00

~~

t

t

t

tt

t vRR

yw

yEw

Page 13: Solution techniques

Decoupled equations

12

1

2

1

1

1~~

00

~~

t

t

t

tt

t vRR

yw

yEw

1111~~

ttt vRww

1221~~

tttt vRyyE

Decoupled equations can be solved separately

stable

unstable

Page 14: Solution techniques

Solution strategy

Solve unstable transformed equation ty~

Translate back into original problem

tw~

t

t

yw

Solve stable transformed equation

Page 15: Solution techniques

Solution of unstable equation

As , only stable solution is12 tyt 0~

0~ *22

*21 ttt yPwPy

tj

jtt yyE ~~2

tt wPPy *21

1*22

Solve unstable equation forward to time t+j

Forward-looking (control) variables are function of backward-looking (predetermined) variables

Page 16: Solution techniques

Solution of stable equation

tt

ttt

wPPy

yPwPw*21

1*22

*12

*11

~

tj

jtt wwE ~~1

tt wPPPPw )(~ *21

1*22

*12

*11

Solve stable equation forward to time t+j

As , no problems with instability11

Page 17: Solution techniques

Solution of stable equation

111*

211*

22*12

*11

*21

1*22

*12

*111

1*21

1*22

*12

*111

)(

)()(

t

tt

vRPPPP

wPPPPPPPPw

1111~~

ttt vRww

tt wPPPPw )(~ *21

1*22

*12

*11

11*21

1*22

*12

*11

~)( tt wwPPPP

Future backward-looking (predetermined) variables are function of current backward-looking (predetermined) variables

Page 18: Solution techniques

Full solution

111*

211*

22*12

*11

*21

1*22

*12

*111

1*21

1*22

*12

*111

*21

1*22

)(

)()(

t

tt

tt

vRPPPP

wPPPPPPPPw

wPPy

All variables are function of backward-looking (predetermined) variables: recursive structure

Page 19: Solution techniques

Baseline DSGE model

tt

t

tt

tt vx

ExE

0ˆˆ

11

ˆˆ

01 11

1

11

11 ttt vv

State space form

To make model more interesting, assume policy shocks vt follow an AR(1) process

Page 20: Solution techniques

New state-space form

tv

111

1

1

11

001

ˆˆ

101

00

ˆˆ

0010

001

t

t

t

t

tt

tt

t

xv

ExEv

ttx ,ˆ

One backward-looking variable

Two forward-looking variables

Page 21: Solution techniques

Blanchard-Khan conditions

t

tt

tt

xy

vw

ˆ

Require one stable root and two unstable roots

Partition model according to

Page 22: Solution techniques

Next steps

Exercise to check Blanchard-Kahn conditions numerically in MATLAB

Numerical solution of model

Simulation techniques


Recommended