+ All Categories
Home > Documents > Study Guide - 9.2 Production of Materials · PDF...

Study Guide - 9.2 Production of Materials · PDF...

Date post: 09-Mar-2018
Category:
Upload: vuongdieu
View: 215 times
Download: 2 times
Share this document with a friend
28
Year 12 Chemistry 9.2 Production of Materials STUDY GUIDE
Transcript

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Year  12  Chemistry  

9.2  Production  of  Materials  

STUDY  GUIDE  

-­‐  2  -­‐  

 

Contextual  Outline  

Humans  have  always  exploited  their  natural  environment  for  all  their  needs  including  food,  clothing  and  shelter.  As  the  cultural  development  of  humans  continued,  they  looked  for  a  greater  variety  of  materials  to  cater  for  their  needs.    The  twentieth  century  saw  an  explosion  in  both  the  use  of  traditional  materials  and  in  the  research  for  development  of  a  wider  range  of  materials  to  satisfy  technological  developments.  Added  to  this  was  a  reduction  in  availability  of  the  traditional  resources  to  supply  the  increasing  world  population.      Chemists  and  chemical  engineers  continue  to  play  a  pivotal  role  in  the  search  for  new  sources  of  traditional  materials  such  as  those  from  the  petrochemical  industry.  As  the  fossil  organic  reserves  dwindle,  new  sources  of  the  organic  chemicals  presently  used  have  to  be  found.  In  addition,  chemists  are  continually  searching  for  compounds  to  be  used  in  the  design  and  production  of  new  materials  to  replace  those  that  have  been  deemed  no  longer  satisfactory  for  needs.    This  module  increases  students’  understanding  of  the  implications  of  chemistry  for  society  and  the  environment  and  the  current  issues,  research  and  developments  in  chemistry.    

Syllabus  Dot-­‐Points  

  Students  learn  to:   Students:  

1.     Fossil  fuels  provide  both  energy  and  raw  materials  such  as  ethylene,  for  the  production  of  other  substances  

 

• construct  word  and  balanced  formulae  equations  of  chemical  reactions  as  they  are  encountered  

• identify  the  industrial  source  of  ethylene  from  the  cracking  of  some  of  the  fractions  from  the  refining  of  petroleum  

• gather  and  present  information  from  first-­‐hand  or  secondary  sources  to  write  equations  to  represent  all  chemical  reactions  encountered  in  the  HSC  course  

• identify  data,  plan  and  perform  a  first-­‐hand  investigation  to  compare  the  reactivities  of  appropriate  alkenes  with  the  corresponding  alkanes  in  bromine  water    

• analyse  information  from  secondary  sources  such  as  computer  simulations,  molecular  model  kits  or  multimedia  resources  to  model  the  polymerisation  process    

• identify  that  ethylene,  because  of  the  high  reactivity  of  its  double  bond,  is  readily  transformed  into  many  useful  products  

• identify  that  ethylene  serves  as  a  monomer  from  which  polymers  are  made  

• identify  polyethylene  as  an  addition  polymer  and  explain  the  meaning  of  this  term  

• outline  the  steps  in  the  production  of  polyethylene  as  an  example  of  a  commercially  and  industrially  important  polymer  

• identify  the  following  as  commercially  significant  monomers:  - vinyl  chloride  - styrene  by  both  their  systematic  and  common  names  

• describe  the  uses  of  the  polymers  made  from  the  above  monomers  in  terms  of  their  properties  

   

-­‐  3  -­‐  

 

  Students  learn  to:   Students:  

2.     Some  scientists  research  the  extraction  of  materials  from  biomass  to  reduce  our  dependence  on  fossil  fuels  

 

• discuss  the  need  for  alternative  sources  of  the  compounds  presently  obtained  from  the  petrochemical  industry  

• use  available  evidence  to  gather    and  present  data  from  secondary  sources  and  analyse  progress  in  the  recent  development  and  use  of  a  named  biopolymer.  This  analysis  should  name  the  specific  enzyme(s)  used  or  organism  used  to  synthesise  the  material  and  an  evaluation  of  the  use  or  potential  use  of  the  polymer  produced  related  to  its  properties  

• explain  what  is  meant  by  a  condensation  polymer    

• describe  the  reaction  involved  when  a  condensation  polymer  is  formed  

• describe  the  structure  of  cellulose  and  identify  it  as  an  example  of  a  condensation  polymer  found  as  a  major  component  of  biomass  

• identify  that  cellulose  contains  the  basic  carbon-­‐chain  structures  needed  to  build  petrochemicals  and  discuss  its  potential  as  a  raw  material  

     

3.     Other  resources,  such  as  ethanol,  are  readily  available  from  renewable  resources  such  as  plants  

• describe  the  dehydration  of  ethanol  to  ethylene  and  identify  the  need  for  a  catalyst  in  this  process  and  the  catalyst  used  

• process  information  from  secondary  sources  such  as  molecular  model  kits,  digital  technologies  or  computer  simulations  to  model:  

- the  addition  of  water  to  ethylene  - the  dehydration  of  ethanol  

• process  information  from  secondary  sources  to  summarise  the  processes  involved  in  the  industrial  production  of  ethanol  from  sugar  cane  

• process  information  from  secondary  sources  to  summarise  the  use  of  ethanol  as  an  alternative  car  fuel,  evaluating  the  success  of  current  usage  

• solve  problems,  plan  and  perform  a  first-­‐hand  investigation  to  carry  out  the  fermentation  of  glucose  and  monitor  mass  changes  

• present  information  from  secondary  sources  by  writing  a  balanced  equation  for  the  fermentation  of  glucose  to  ethanol  

• identify  data  sources,  choose  resources  and  perform  a  first-­‐hand  investigation  to  determine  and  compare  heats  of  combustion  of  at  least  three  liquid  alkanols  per  gram  and  per  mole  

• describe  the  addition  of  water  to  ethylene  resulting  in  the  production  of  ethanol  and  identify  the  need  for  a  catalyst  in  this  process  and  the  catalyst  used  

• describe  and  account  for  the  many  uses  of  ethanol  as  a  solvent  for  polar  and  non-­‐polar  substances  

• outline  the  use  of  ethanol  as  a  fuel  and  explain  why  it  can  be  called  a  renewable  resource  

• describe  conditions  under  which  fermentation  of  sugars  is  promoted  

• summarise  the  chemistry  of  the  fermentation  process  

• define  the  molar  heat  of  combustion  of  a  compound  and  calculate  the  value  for  ethanol  from  first-­‐hand  data    

• assess  the  potential  of  ethanol  as  an  alternative  fuel  and  discuss  the  advantages  and  disadvantages  of  its  use  

• identify  the  IUPAC  nomenclature  for  straight-­‐chained  alkanols  from  C1  to  C8  

   

-­‐  4  -­‐  

 

  Students  learn  to:   Students:  

4.     Oxidation-­‐reduction  reactions  are  increasingly  important  as  a  source  of  energy  

• explain  the  displacement  of  metals  from  solution  in  terms  of  transfer  of  electrons  

• perform  a  first-­‐hand  investigation  to  identify  the  conditions  under  which  a  galvanic  cell  is  produced  

• perform  a  first-­‐hand  investigation  and  gather  first-­‐hand  information  to  measure  the  difference  in  potential  of  different  combinations  of  metals  in  an  electrolyte  solution  

• gather  and  present  information  on  the  structure  and  chemistry  of  a  dry  cell  or  lead-­‐acid  cell  and  evaluate  it  in  comparison  to  one  of  the  following:  - button  cell  - fuel  cell  - vanadium  redox  cell  - lithium  cell  - liquid  junction  photovoltaic  device  

(eg  the  Gratzel  cell)  in  terms  of:  - chemistry  - cost  and  practicality  - impact  on  society  - environmental  impact  

• solve  problems  and  analyse  information  to  calculate  the  potential  

 requirement  of  named  electrochemical  processes  using  tables  of  standard  potentials  and  half-­‐equations  

• identify  the  relationship  between  displacement  of  metal  ions  in  solution  by  other  metals  to  the  relative  activity  of  metals  

• account  for  changes  in  the  oxidation  state  of  species  in  terms  of  their  loss  or  gain  of  electrons  

• describe  and  explain  galvanic  cells  in  terms  of  oxidation/reduction  reactions  

• outline  the  construction  of  galvanic  cells  and  trace  the  direction  of  electron  flow  

• define  the  terms  anode,  cathode,  electrode  and  electrolyte  to  describe  galvanic  cells  

     

5.     Nuclear  chemistry  provides  a  range  of  materials  

• distinguish  between  stable  and  radioactive  isotopes  and  describe  the  conditions  under  which  a  nucleus  is  unstable  

• process  information  from  secondary  sources  to  describe  recent  discoveries  of  elements  

• use  available  evidence  to  analyse  benefits  and  problems  associated  with  the  use  of  radioactive  isotopes  in  identified  industries  and  medicine  

• describe  how  transuranic  elements  are  produced    

• describe  how  commercial  radioisotopes  are  produced    

• identify  instruments  and  processes  that  can  be  used  to  detect  radiation  

• identify  one  use  of  a  named  radioisotope:  - in  industry    - in  medicine  

• describe  the  way  in  which  the  above  named  industrial  and  medical  radioisotopes  are  used  and  explain  their  use  in  terms  of  their  properties  

   

-­‐  5  -­‐  

 

Concept  Map  

The  main  concepts  in  this  module  are  organised  as  shown  in  the  concept  map  below.  

     

-­‐  6  -­‐  

 

Scope  and  Sequence  

Term   Week  Number   Content   Key  Concepts  20

13  Term  4  

1  9.2.A  –  Synthetic  Polymers   Ethene:  sources,  properties  and  

reactions   Addition  polymerisation   Polyethylene   Polyvinyl  chloride   Polystyrene  

2  

3  

9.2.B  –  Biological  Polymers   Condensation  polymerisation   Cellulose  as  a  condensation  

polymer   Cellulose  as  a  potential  

replacement  for  petrochemicals   Biological  polymers  

4  9.2.C  -­‐  Ethanol   Use  as  a  solvent  

Dehydration  reaction   Fermentation   Combustion   Potential  as  a  fuel  

5  

6  9.2.D  -­‐  Electrochemistry   Oxidation-­‐reduction  reactions  

Metal  displacement  reactions   Galvanic  cells   Different  types  of  batteries   Oxidation  states  

7  

8  9.2.E  –  Nuclear  Chemistry   Stability  of  the  nucleus  

Alpha,  beta  and  gamma  decay   Transuranic  elements   Radioisotopes  in  industry  and  

medicine  9  

 

 

Textbook  References  Preliminary  Course  Thickett,  Geoffrey.  2006,  Chemistry  1  :  Preliminary  course  /  Geoffrey  Thickett  John  Wiley  &  Sons,  Milton,  Qld.  

HSC  Course  Thickett,  Geoffrey.  2006,  Chemistry  2  :  HSC  course  /  Geoffrey  Thickett  John  Wiley  &  Sons,  Milton,  Qld.  

   

-­‐  7  -­‐  

 

Study  Guide  -­‐  9.2.A  Synthetic  Polymers  

 

9.2.A  Conceptual  Outline  

 

A  polymer  is  a  large  molecule  (macromolecule)  composed  of  repeating  structural  units.  These  sub-­‐units  are  called  monomers  and  are  typically  connected  by  covalent  chemical  bonds.  Although  the  term  polymer  is  sometimes  taken  to  refer  to  plastics,  it  actually  encompasses  a  large  class  of  compounds  comprising  both  natural  and  synthetic  materials  with  a  wide  variety  of  properties.  Polymeric  materials  play  an  essential  and  ubiquitous  role  in  everyday  life.  This  role  ranges  from  familiar  synthetic  plastics  and  elastomers  to  natural  biopolymers  such  as  nucleic  acids,  proteins  and  cellulose  that  are  essential  for  life.  Most  commonly,  the  continuously  linked  backbone  of  a  polymer  used  for  the  preparation  of  plastics  consists  mainly  of  carbon  atoms.  A  simple  example  is  polyethylene  whose  repeating  unit  is  based  on  ethylene  monomer.  

In  this  topic  students:  

Describe  the  structure,  properties,  uses,  chemistry  and  production  of  the  addition  polymers  polyethylene,  polyvinyl  chloride  (PVC)  and  polystyrene.  

Describe  the  structure,  properties,  identification  and  reactions  of  ethene   Explain  how  ethene  serves  as  a  useful  monomer  from  which  many  commercially  important  polymers  are  made   Describe  the  process  of  sourcing  ethene  for  polymer  production   Write  equations  for  some  of  the  chemical  reactions  of  ethene  

   

-­‐  8  -­‐  

 

9.2.A  Assumed  Knowledge  

Concept   Preliminary  Dot-­‐Points   Jacaranda  Chemistry  1  

Organic  chemistry   describe  the  use  of  fractional  distillation  to  separate  the  components  of  petroleum  and  identify  the  uses  of  each  fraction  obtained  

identify  and  use  the  IUPAC  nomenclature  for  describing  straight-­‐chained  alkanes  and  alkenes  from  C1  to  C8  

compare  and  contrast  the  properties  of  alkanes  and  alkenes  C1  to  C8  and  use  the  term  ‘homologous  series’  to  describe  a  series  with  the  same  functional  group  

explain  the  relationship  between  the  melting  point,  boiling  point  and  volatility  of  the  above  hydrocarbons,  and  their  non-­‐polar  nature  and  intermolecular  forces  (dispersion  forces)  

Chapter  16  Carbon  and  carbon  compounds  pp.293-­‐312  

 

9.2.A  Syllabus  Dot-­‐Points  

Ethene  –  sources  

identify  the  industrial  source  of  ethylene  from  the  cracking  of  some  of  the  fractions  from  the  refining  of  petroleum  

Ethene  –  properties  uses  and  reactions  

construct  word  and  balanced  formulae  equations  of  chemical  reactions  as  they  are  encountered  

identify  that  ethylene,  because  of  the  high  reactivity  of  its  double  bond,  is  readily  transformed  into  many  useful  products  

identify  data,  plan  and  perform  a  first-­‐hand  investigation  to  compare  the  reactivities  of  appropriate  alkenes  with  the  corresponding  alkanes  in  bromine  water    

identify  that  ethylene  serves  as  a  monomer  from  which  polymers  are  made   analyse  information  from  secondary  sources  such  as  computer  simulations,  molecular  model  

kits  or  multimedia  resources  to  model  the  polymerisation  process  

Polyethylene   identify  polyethylene  as  an  addition  polymer  and  explain  the  meaning  of  this  term   outline  the  steps  in  the  production  of  polyethylene  as  an  example  of  a  commercially  and  

industrially  important  polymer   describe  the  uses  of  the  polymers  made  from  the  above  monomers  in  terms  of  their  properties  

PVC   • identify  the  following  as  commercially  significant  monomers:  -­‐  vinyl  chloride    by  both  their  systematic  and  common  names  

describe  the  uses  of  the  polymers  made  from  the  above  monomers  in  terms  of  their  properties  

Polystyrene   • identify  the  following  as  commercially  significant  monomers:  -­‐  styrene    by  both  their  systematic  and  common  names  

describe  the  uses  of  the  polymers  made  from  the  above  monomers  in  terms  of  their  properties  

 

   

-­‐  9  -­‐  

 

9.2.A  Resources  

Websites   Jacaranda  Chemistry  2   Twig-­‐World  Video  

Quarkology  9.2.A  –  Synthetic  Polymers  http://www.quarkology.com/12-­‐chemistry/92-­‐production-­‐materials/92A-­‐synthetic-­‐polymers.html  

Chapter  Reference    Chapter  1  Ethylene  and  addition  polymers,  pp.2-­‐27  

Fractional  Distillation  http://australia.twig-­‐world.com/films/fractional-­‐distillation-­‐1371/  

Monomers  http://australia.twig-­‐world.com/films/glossary/monomer-­‐425/  

Polymers  http://australia.twig-­‐world.com/films/glossary/polymer-­‐549/  

Plastics  http://australia.twig-­‐world.com/films/plastics-­‐and-­‐polymers-­‐1372/  

 

9.2.A  Student  Activities   Completed  

Textbook  1.1  Questions  1  -­‐  15,  pp.16-­‐17    

Textbook  1.2  Questions  1  -­‐  10,  pp.25-­‐26    

Textbook  1.1  Practical  Activities  -­‐  Reactivity  of  Alkanes  and  Alkenes,  p.27    

Textbook  1.2  Practical  Activities  –  Modelling  Addition  Polymerisation,  p.27    

Tutorial  9.2.A  –  Synthetic  Polymers    

HSC  MC  Questions  9.2.A  –  Synthetic  Polymers    

HSC  ER  Questions  9.2.A  –  Synthetic  Polymers    

Assignment  9.2.A  –  Synthetic  Polymers    

   

   

   

 

   

-­‐  10  -­‐  

 

9.2.A  Synthetic  Polymers  Notes  

 ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………  

   

-­‐  11  -­‐  

 

Study  Guide  -­‐  9.2.B  Biological  Polymers  

 

9.2.B  Conceptual  Outline  

 

Fossil  fuels  are  non-­‐renewable  resources,  available  in  fixed  amounts.  Human  activity  has  the  potential  to  completely  exhaust  reserves  of  fossil  fuel  resources.  Biomass,  organic  matter  produced  by  photosynthesis  in  plants,  is  a  renewable  resource.  Biomass  consists  mostly  of  cellulose  and  can  be  used  and  then  formed  again  from  its  products  by  the  input  of  solar  energy  during  photosynthesis.  If  the  matter  involved  is  recycled,  biomass  could  be  a  source  of  raw  materials  for  as  long  as  the  sun  supplies  solar  energy.  

Petrochemicals  are  chemicals  made  from  compounds  in  petroleum  or  natural  gas.  Currently  Australia  has  petroleum  reserves  that  will  last  about  ten  years  and  natural  gas  reserves  that  will  last  about  one  hundred  years.  Fossil  fuels  have  taken  hundreds  of  millions  of  years  to  accumulate.  Over  95%  of  fossil  fuel  is  burnt  as  a  source  of  energy  and  once  burnt,  fossil  fuels  are  no  longer  available.  Less  than  5%  of  fossil  fuel  is  used  to  make  plastics  and  only  a  small  percentage  of  that  plastic  is  recycled.  If  energy  and  material  needs  are  to  be  met  in  the  future,  alternative  sources  will  be  needed  as  fossil  fuel  sources  are  used  up.  

In  this  topic  students:  

Identify  and  describe  examples  of  condensation  reactions,   Describe  the  structure,  formation  and  properties  of  cellulose,   Assess  potential  of  cellulose  as  a  replacement  for  compounds  currently  obtained  from  petrochemicals,  and   Describe  the  production,  properties  and  use  of  a  named  biolpolymer.  

 

   

-­‐  12  -­‐  

 

9.2.B  Assumed  Knowledge  

Concept   Preliminary  Dot-­‐Points   Jacaranda  Chemistry  1  

Role  of  photosynthesis  in  transforming  light  energy  to  chemical  energy  

Outline  the  role  of  the  production  of  high  energy  carbohydrates  from  carbon  dioxide  as  the  important  step  in  the  stabilisation  of  the  sun’s  energy  in  a  form  that  can  be  used  by  animals  as  well  as  plants  

Chapter  15  Photosynthesis  and  Fuels  pp.280-­‐292  

 

9.2.B  Syllabus  Dot-­‐Points  

Condensation  polymers  

explain  what  is  meant  by  a  condensation  polymer   describe  the  reaction  involved  when  a  condensation  polymer  is  formed  

Cellulose   describe  the  structure  of  cellulose  and  identify  it  as  an  example  of  a  condensation  polymer  found  as  a  major  component  of  biomass  

The  need  for  alternatives  to  fossil  fuels  

discuss  the  need  for  alternative  sources  of  the  compounds  presently  obtained  from  the  petrochemical  industry  

identify  that  cellulose  contains  the  basic  carbon-­‐chain  structures  needed  to  build  petrochemicals  and  discuss  its  potential  as  a  raw  material  

Biopolymers  (eg.  Biopol)  

use  available  evidence  to  gather    and  present  data  from  secondary  sources  and  analyse  progress  in  the  recent  development  and  use  of  a  named  biopolymer.  This  analysis  should  name  the  specific  enzyme(s)  used  or  organism  used  to  synthesise  the  material  and  an  evaluation  of  the  use  or  potential  use  of  the  polymer  produced  related  to  its  properties  

 

   

-­‐  13  -­‐  

 

9.2.B  Resources  

Websites   Jacaranda  Chemistry  2   Twig-­‐World  Video  

Quarkology  9.2.B  –  Biological  Polymers  http://www.quarkology.com/12-­‐chemistry/92-­‐production-­‐materials/92B-­‐biological-­‐polymers.html  

Chapter  Reference    Chapter  2  Condensation  polymers  and  Biomass  pp.30-­‐42    

Cellulose  http://australia.twig-­‐world.com/films/glossary/cellulose-­‐649/  

Nylon  http://australia.twig-­‐world.com/films/invention-­‐of-­‐nylon-­‐1377/  

 

9.2.B  Student  Activities   Completed  

Textbook  Questions  2.1  Questions  1-­‐5,  p.33    

Textbook  2.2  Questions  1-­‐9,  pp.39-­‐40    

Textbook  2.1  Data  Analysis,  pp.41-­‐42    

Tutorial  9.2.B  –  Biological  Polymers    

HSC  MC  Questions  9.2.B  –  Biological  Polymers    

HSC  ER  Questions  9.2.B  –  Biological  Polymers    

Assignment  9.2.B  –  Biological  Polymers    

   

   

   

 

   

-­‐  14  -­‐  

 

9.2.B  –  Biological  Polymers  Notes  

 ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………  

   

-­‐  15  -­‐  

 

Study  Guide  -­‐  9.2.C  Ethanol  

 

9.2.C  Conceptual  Outline  

 

Humans  discovered  ethanol  not  long  after  they  figured  out  how  to  put  fire  to  good  use.  Today,  ethanol  has  many  uses:  we  drink  it;  dissolve  solutes  in  it,  use  it  in  food,  industry  and  other  manufacturing;  and  blend  it  with  petrol  to  make  a  sustainable  and  renewable  transport  fuel.  

Ethanol  belongs  to  the  homologous  series  of  alkanols,  each  with  a  hydroxyl  (-­‐OH)  functional  group.  It  can  be  made  by  fermenting  the  sugars  found  in  plants  using  yeasts  (fungi)  and  bacteria.  Ethanol  can  be  used  as  a  fuel  for  vehicles  in  its  pure  form  as  a  replacement  for  petrol,  but  it  is  usually  blended  with  petrol  so  as  to  improve  vehicle  emissions  and  make  motor  fuel  more  sustainable.  

In  this  topic  students:  

Describe  the  properties  of  ethanol  and  relate  them  to  its  use,   Describe  and  write  equations  for  the  dehydration,  fermentation  and  combustion  of  ethanol,  and   Assess  the  potential  of  ethanol  as  an  alternative  to  petrol.    

 

   

-­‐  16  -­‐  

 

9.2.C  Assumed  Knowledge  

Concept   Preliminary  Dot-­‐Points   Jacaranda  Chemistry  1  

Intermolecular  bonding  

describe  hydrogen  bonding  between  molecules   describe  the  attractive  forces  between  polar  molecules  

as  dipole-­‐dipole  forces   describe  dispersion  forces  between  molecules  

Chapter  12.1  Intermolecular  forces  and  polarity  of  molecules  pp.216-­‐226  

Solvent  behaviour   analyse  the  relationship  between  the  solubility  of  substances  in  water  and  the  polar  nature  of  the  water  molecule  

Chapter  12.2  Interactions  with  water  pp.227-­‐232  

Specific  heat  capacity   explain  what  is  meant  by  the  specific  heat  capacity  of  a  substance  

explain  and  use  the  equation

ΔH = −mCΔT  

Chapter  14  Water  and  energy  pp.262-­‐275  

 

9.2.C  Syllabus  Dot-­‐Points  

Alkanols   identify  the  IUPAC  nomenclature  for  straight-­‐chained  alkanols  from  C1  to  C8  

Reactions  of  ethanol  

describe  the  dehydration  of  ethanol  to  ethylene  and  identify  the  need  for  a  catalyst  in  this  process  and  the  catalyst  used  

describe  the  addition  of  water  to  ethylene  resulting  in  the  production  of  ethanol  and  identify  the  need  for  a  catalyst  in  this  process  and  the  catalyst  used  

• process  information  from  secondary  sources  such  as  molecular  model  kits,  digital  technologies  or  computer  simulations  to  model:  -­‐  the  addition  of  water  to  ethylene  

the  dehydration  of  ethanol  

Ethanol  as  a  solvent  

describe  and  account  for  the  many  uses  of  ethanol  as  a  solvent  for  polar  and  non-­‐polar  substances  

Fermentation   describe  conditions  under  which  fermentation  of  sugars  is  promoted   summarise  the  chemistry  of  the  fermentation  process   process  information  from  secondary  sources  to  summarise  the  processes  involved  in  the  

industrial  production  of  ethanol  from  sugar  cane   solve  problems,  plan  and  perform  a  first-­‐hand  investigation  to  carry  out  the  fermentation  of  

glucose  and  monitor  mass  changes   present  information  from  secondary  sources  by  writing  a  balanced  equation  for  the  

fermentation  of  glucose  to  ethanol  

Molar  heat  of  combustion  of  a  fuel  

define  the  molar  heat  of  combustion  of  a  compound  and  calculate  the  value  for  ethanol  from  first-­‐hand  data  

identify  data  sources,  choose  resources  and  perform  a  first-­‐hand  investigation  to  determine  and  compare  heats  of  combustion  of  at  least  three  liquid  alkanols  per  gram  and  per  mole  

Ethanol  as  a  fuel  

outline  the  use  of  ethanol  as  a  fuel  and  explain  why  it  can  be  called  a  renewable  resource   assess  the  potential  of  ethanol  as  an  alternative  fuel  and  discuss  the  advantages  and  

disadvantages  of  its  use   process  information  from  secondary  sources  to  summarise  the  use  of  ethanol  as  an  alternative  

car  fuel,  evaluating  the  success  of  current  usage  

 

-­‐  17  -­‐  

 

9.2.C  Resources  

Websites   Jacaranda  Chemistry  2   Twig-­‐World  Video  

Quarkology  9.2.C  -­‐  Ethanol  http://www.quarkology.com/12-­‐chemistry/92-­‐production-­‐materials/92C-­‐ethanol.html  

Chapter  Reference    Chapter  3  Ethanol  and  Biofuels  pp.44-­‐62  

Alcohols  http://australia.twig-­‐world.com/films/glossary/alcohol-­‐399/  

Fermentation  http://australia.twig-­‐world.com/films/fermentation-­‐1382/  

Combustion  http://australia.twig-­‐world.com/films/glossary/combustion-­‐410/  

Biofuels  http://australia.twig-­‐world.com/films/biofuels-­‐1327/  

 

   

-­‐  18  -­‐  

 

9.2.C  Student  Activities   Completed  

Textbook  3.1  Questions  1-­‐10,  p.50    

Textbook  3.2  Questions  1-­‐7,  p.56    

Textbook  3.1  Practical  Activities  –  Modelling  Reactions  Involving  Ethanol,  p.57    

Textbook  3.2  Practical  Activities  –  Fermentation,  p.58    

Textbook  3.3  Practical  Activities  –  Heats  of  Combustion  of  Alkanols,  pp.59-­‐60    

Textbook  3.4  Data  Analysis  –  Industrial  Preparation  of  Ethanol  from  Sugar  Cane,  p.61    

Textbook  3.5  Data  Analysis  –  Ethanol  as  an  Alternative  Fuel,  p.62    

Tutorial  9.2.C  -­‐  Ethanol    

HSC  MC  Questions  9.2.C  -­‐  Ethanol    

HSC  ER  Questions  9.2.C  -­‐  Ethanol    

Practical  9.2.C.1  -­‐  Fermentation    

Practical  9.2.C.2  –  Heat  of  Combustion  of  Alkanols    

Assignment  9.2.C  -­‐  Ethanol    

   

   

   

 

   

-­‐  19  -­‐  

 

9.2.C  –  Ethanol  Notes  

 ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………  

   

-­‐  20  -­‐  

 

Study  Guide  -­‐  9.2.D  Electrochemistry  

 

9.2.D  Conceptual  Outline  

 

The  term  oxidation  was  originally  used  to  describe  reactions  in  which  an  element  combines  with  oxygen.  After  electrons  were  discovered,  chemists  extended  the  definition  of  oxidation  to  involve  the  transfer  of  electrons  from  one  atom  to  another.  Because  electrons  cannot  be  created  or  destroyed,  the  species  losing  electrons  is  said  to  be  oxidised  while  the  species  gaining  electrons  is  said  to  be  reduced.  

If  the  electrons  from  an  oxidation  reaction  can  be  made  to  flow  around  a  circuit  to  the  site  of  reduction,  we  have  a  galvanic  cell  or  battery.  These  cells  convert  chemical  energy  to  electrical  energy  and  rely  on  oxidation-­‐reduction  reactions.  

In  this  unit  you  will  learn  to:  

Recognise  oxidation-­‐reduction  reactions   Assigning  oxidation  states  to  species  to  determine  if  oxidation  or  reduction  has  occurred   Use  metal  displacement  reactions  to  put  metals  into  an  order  or  activity   Describe  and  construct  galvanic  cells  and  calculate  their  theoretical  cell  potentials   Compare  different  types  of  galvanic  cells  

 

   

-­‐  21  -­‐  

 

9.2.D  Assumed  Knowledge  

Concept   Preliminary  Dot-­‐Points   Jacaranda  Chemistry  1  

Oxidation-­‐reduction   Identify  the  reaction  of  metals  with  acids  as  requiring  the  transfer  of  electrons  

Chapter  7.1  Metals  and  their  reactivity  pp.128-­‐131  

 

9.2.D  Syllabus  Dot-­‐Points  

Metal  displacement  reactions  

explain  the  displacement  of  metals  from  solution  in  terms  of  transfer  of  electrons   identify  the  relationship  between  displacement  of  metal  ions  in  solution  by  other  metals  to  the  

relative  activity  of  metals  

Oxidation  states  

account  for  changes  in  the  oxidation  state  of  species  in  terms  of  their  loss  or  gain  of  electrons  

Galvanic  cells  

describe  and  explain  galvanic  cells  in  terms  of  oxidation/reduction  reactions   outline  the  construction  of  galvanic  cells  and  trace  the  direction  of  electron  flow   define  the  terms  anode,  cathode,  electrode  and  electrolyte  to  describe  galvanic  cells   perform  a  first-­‐hand  investigation  to  identify  the  conditions  under  which  a  galvanic  cell  is  

produced   perform  a  first-­‐hand  investigation  and  gather  first-­‐hand  information  to  measure  the  difference  

in  potential  of  different  combinations  of  metals  in  an  electrolyte  solution   solve  problems  and  analyse  information  to  calculate  the  potential    requirement  of  named  

electrochemical  processes  using  tables  of  standard  potentials  and  half-­‐equations  

Comparison  of  galvanic  cells  

• gather  and  present  information  on  the  structure  and  chemistry  of  a  dry  cell  or  lead-­‐acid  cell  and  evaluate  it  in  comparison  to  one  of  the  following:  - button  cell  - fuel  cell  - vanadium  redox  cell  - lithium  cell  - liquid  junction  photovoltaic  device  (eg  the  Gratzel  cell)  in  terms  of:  - chemistry  - cost  and  practicality  - impact  on  society  - environmental  impact  

 

   

-­‐  22  -­‐  

 

9.2.D  Resources  

Websites   Jacaranda  Chemistry  2   Twig-­‐World  Video  

Quarkology  9.2.D  -­‐  Electrochemistry  http://www.quarkology.com/12-­‐chemistry/92-­‐production-­‐materials/92D-­‐electrochemistry.html  

Chapter  Reference  Chapter  4  Electrochemistry  and  batteries,  pp.63-­‐91  

Redox  Reaction  http://australia.twig-­‐world.com/films/glossary/redox-­‐reaction-­‐775/  

Oxidation  http://australia.twig-­‐world.com/films/glossary/oxidation-­‐750/  

Reduction  http://australia.twig-­‐world.com/films/glossary/reduction-­‐552/  

Eco-­‐Transport  http://australia.twig-­‐world.com/films/eco-­‐transport-­‐1341/  

 

9.2.D  Student  Activities   Completed  

Textbook  4.1  Questions  1  -­‐  8,  pp.  71-­‐72    

Textbook  4.2  Questions  1  -­‐  10,  p.  86    

Textbook  4.1  Practical  Activities  –  Galvanic  Cells,  p.27    

Textbook  4.2  Data  Analysis  –  Comparing  Batteries,  pp.91-­‐92    

Tutorial  9.2.D  -­‐  Electrochemistry    

HSC  MC  Questions  9.2.D  -­‐  Electrochemistry    

HSC  ER  Questions  9.2.D  -­‐  Electrochemistry    

Assignment  9.2.D  -­‐  Electrochemistry    

   

   

   

 

   

-­‐  23  -­‐  

 

9.2.D  –  Electrochemistry  Notes  

 ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………  

   

-­‐  24  -­‐  

 

Study  Guide  -­‐  9.2.E  Nuclear  Chemistry  

 

9.2.E  Conceptual  Outline  

 

Radioactive  materials  that  release  alpha,  beta  or  gamma  radiation  have  a  range  of  uses  in  both  industry  and  medicine.  They  are  used  as  diagnostic  tools  in  both  industry  and  medicine  and  are  used  in  the  treatment  of  diseases  such  as  cancer  in  medicine.  Radioisotopes  have  an  unstable  nucleus  and  release  energy  by  ejecting  particles  or  electromagnetic  radiation  from  the  nucleus.  They  are  made  in  nuclear  reactors  where  radioactive  decay  processes  are  artificially  induced  by  bombarding  nuclei  with  neutrons.  Some  radioisotopes  can  be  made  by  smashing  the  nuclei  of  atoms  together  in  particle  accelerators  through  a  process  known  as  nuclear  fusion.  Many  artifically  synthesised  elements  called  transuranic  elements  have  been  made  in  this  way  in  particle  accelerators.  

In  this  unit  you  will  learn  to:  

Describe  the  structure  of  the  nucleus  using  atomic  notation   Distinguish  isotopes  of  an  element  and  represent  them  using  atomic  notation   Explain  what  makes  a  nucleus  unstable   Describe  the  processes  of  alpha,  beta  and  gamma  decay  using  chemical  equations   Describe  the  properties  of  alpha,  beta  and  gamma  radiation   Outline  ways  to  detect  radiation   Describe  how  transuranic  elements  are  produced   Describe  some  uses  of  radioisotopes  in  industry  and  medicine  

-­‐  25  -­‐  

 

9.2.E  Assumed  Knowledge  

Concept   Preliminary  Dot-­‐Points   Jacaranda  Chemistry  1  

Atomic  structure   Describe  atoms  in  terms  of  mass  number  and  atomic  number  

Chapter  2.1  Classifying  elements  pp.40-­‐45  

 

9.2.E  Syllabus  Dot-­‐Points  

Radioactive  decay  (fission)  and  nuclear  stability  

distinguish  between  stable  and  radioactive  isotopes  and  describe  the  conditions  under  which  a  nucleus  is  unstable  

identify  instruments  and  processes  that  can  be  used  to  detect  radiation  

Radioisotope  production  

describe  how  commercial  radioisotopes  are  produced  

Transuranic  elements  

describe  how  transuranic  elements  are  produced   process  information  from  secondary  sources  to  describe  recent  discoveries  of  elements  

Industrial  uses  of  radioisotopes  

• identify  one  use  of  a  named  radioisotope:  -­‐  in  industry    

describe  the  way  in  which  the  above  named  industrial  and  medical  radioisotopes  are  used  and  explain  their  use  in  terms  of  their  properties  

use  available  evidence  to  analyse  benefits  and  problems  associated  with  the  use  of  radioactive  isotopes  in  identified  industries  and  medicine  

Medical  uses  of  radioisotopes  

identify  one  use  of  a  named  radioisotope:  -­‐  in  medicine  

describe  the  way  in  which  the  above  named  industrial  and  medical  radioisotopes  are  used  and  explain  their  use  in  terms  of  their  properties  

use  available  evidence  to  analyse  benefits  and  problems  associated  with  the  use  of  radioactive  isotopes  in  identified  industries  and  medicine  

 

   

-­‐  26  -­‐  

 

9.2.E  Resources  

Websites   Jacaranda  Chemistry  2   Twig-­‐World  Video  

Quarkology  9.2.E  –  Nuclear  Chemistry  http://www.quarkology.com/12-­‐chemistry/92-­‐production-­‐materials/92E-­‐nuclear-­‐chemistry.html  

Chapter  Reference  Chapter  5  Nuclear  chemistry  and  radioisotopes,  pp.  93-­‐106    

Isotopes  http://australia.twig-­‐world.com/films/glossary/isotope-­‐520/  

Radioactive  Substances  http://australia.twig-­‐world.com/films/radioactive-­‐substances-­‐1532/  

Reducing  Radiation  Risk  http://australia.twig-­‐world.com/films/reducing-­‐radiation-­‐risk-­‐1534/  

Radioactive  Half-­‐Life  http://australia.twig-­‐world.com/films/radioactive-­‐half-­‐life-­‐1533/  

Nuclear  Fission  http://australia.twig-­‐world.com/films/nuclear-­‐fission-­‐1564/  

X-­‐rays  and  Gamma  Rays  in  Medicine  http://australia.twig-­‐world.com/films/nuclear-­‐fission-­‐1564/  

 

   

-­‐  27  -­‐  

 

9.2.E  Student  Activities   Completed  

Textbook  5.1  Questions  1  -­‐  8,  p.  99    

Textbook  5.2  Questions  1  -­‐  8,  pp.  104-­‐105    

Textbook  5.1  Data  Analysis  –  Radioisotopes,  pp.91-­‐92    

Tutorial  9.2.E  –  Nuclear  Chemistry    

HSC  MC  Questions  9.2.E  –  Nuclear  Chemistry    

HSC  ER  Questions  9.2.E  –  Nuclear  Chemistry    

Assignment  9.2.E  –  Nuclear  Chemistry    

   

   

   

   

-­‐  28  -­‐  

 

9.2.E  –  Nuclear  Chemistry  Notes  

 ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………    ……………………………………………………………………………………………………………………………………………………………………………………  

 


Recommended