+ All Categories
Home > Documents > SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING...

SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING...

Date post: 05-Nov-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
8
FACTA UNIVERSITATIS (NI ˇ S) Ser. Math. Inform. Vol. 27 No 3 (2012), 337–344 ON M 2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME IN HEISENBERG GROUP Heis 3 Talat K¨orpinar and Essin Turhan Abstract. In this paper, we study M 2 surfaces of biharmonic B-general helices accord- ing to Bishop frame in the Heisenberg group Heis 3 . Finally, we characterize the M 2 surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis 3 . 1. Introduction Harmonic maps f :(M,g) −→ (N,h) between manifolds are the critical points of the energy E (f )= M e (f ) v g , (1.1) where v g is the volume form on (M,g) and e (f )(x) := 1 2 df (x)2 T * Mf -1 TN is the energy density of f at the point x M . Critical points of the energy functional are called harmonic maps. In this paper, we study M 2 surfaces of biharmonic B-general helices according to Bishop frame in the Heisenberg group Heis 3 . Finally, we characterize the M 2 surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberg group Heis 3 . Received September 5, 2012.; Accepted September 21, 2012. 2010 Mathematics Subject Classification. Primary 14H55; Secondary 14J29, 30F15 337
Transcript
Page 1: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

FACTA UNIVERSITATIS (NIS)

Ser. Math. Inform. Vol. 27 No 3 (2012), 337–344

ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICESACCORDING TO BISHOP FRAME IN HEISENBERG GROUP

Heis3

Talat Korpinar and Essin Turhan

Abstract. In this paper, we study M2 surfaces of biharmonic B-general helices accord-ing to Bishop frame in the Heisenberg group Heis3. Finally, we characterize the M2

surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberggroup Heis3.

1. Introduction

Harmonic maps f : (M, g) −→ (N,h) between manifolds are the critical points ofthe energy

E (f) =

∫M

e (f) vg,(1.1)

where vg is the volume form on (M, g) and

e (f) (x) :=1

2∥df (x)∥2T∗M⊗f−1TN

is the energy density of f at the point x ∈M .

Critical points of the energy functional are called harmonic maps.

In this paper, we study M2 surfaces of biharmonic B-general helices accordingto Bishop frame in the Heisenberg group Heis3. Finally, we characterize the M2

surfaces of biharmonic B-general helices in terms of Bishop frame in the Heisenberggroup Heis3.

Received September 5, 2012.; Accepted September 21, 2012.2010 Mathematics Subject Classification. Primary 14H55; Secondary 14J29, 30F15

337

Page 2: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

338 Talat Korpinar and Essin Turhan

2. The Heisenberg Group Heis3

Heisenberg group Heis3 can be seen as the space R3 endowed with the followingmultipilcation:

(x, y, z)(x, y, z) = (x+ x, y + y, z + z − 1

2xy +

1

2xy).(2.1)

Heis3 is a three-dimensional, connected, simply connected and 2-step nilpotent Liegroup.

The Riemannian metric g is given by

g = dx2 + dy2 + (dz − xdy)2.

The Lie algebra of Heis3 has an orthonormal basis

e1 =∂

∂x, e2 =

∂y+ x

∂z, e3 =

∂z,(2.2)

for which we have the Lie products

[e1, e2] = e3, [e2, e3] = [e3, e1] = 0

withg(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

3. Biharmonic B-General Helices with Bishop Frame In TheHeisenberg Group Heis3

Let γ : I −→ Heis3 be a non geodesic curve on the Heisenberg group Heis3 pa-rameterized by arc length. Let {T,N,B} be the Frenet frame fields tangent to theHeisenberg group Heis3 along γ defined as follows:

T is the unit vector field γ′ tangent to γ, N is the unit vector field in thedirection of ∇TT (normal to γ), and B is chosen so that {T,N,B} is a positivelyoriented orthonormal basis. Then, we have the following Frenet formulas:

∇TT = κN,

∇TN = −κT+ τB,(3.1)

∇TB = −τN,

where κ is the curvature of γ and τ is its torsion and

g (T,T) = 1, g (N,N) = 1, g (B,B) = 1,(3.2)

g (T,N) = g (T,B) = g (N,B) = 0.

Page 3: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

On M2 Surfaces of Biharmonic B General Helices... 339

In the rest of the paper, we suppose everywhere κ = 0 and τ = 0.

The Bishop frame or parallel transport frame is an alternative approach todefining a moving frame that is well defined even when the curve has a vanishingsecond derivative. The Bishop frame is expressed as

∇TT = k1M1 + k2M2,

∇TM1 = −k1T,(3.3)

∇TM2 = −k2T,

where

g (T,T) = 1, g (M1,M1) = 1, g (M2,M2) = 1,(3.4)

g (T,M1) = g (T,M2) = g (M1,M2) = 0.

Here, we shall call the set {T,M1,M2} as Bishop trihedra, k1 and k2 as Bishopcurvatures, where θ (s) = arctan k2

k1, τ(s) = θ′ (s) and κ(s) =

√k22 + k21. Thus,

Bishop curvatures are defined by

k1 = κ(s) cos θ (s) ,(3.5)

k2 = κ(s) sin θ (s) .

With respect to the orthonormal basis {e1, e2, e3} we can write

T = T 1e1 + T 2e2 + T 3e3,

M1 = M11 e1 +M2

1 e2 +M31 e3,(3.6)

M2 = M12 e1 +M2

2 e2 +M32 e3.

Theorem 3.1. γ : I −→ Heis3 is a biharmonic curve with Bishop frame if andonly if

k21 + k22 = constant = C = 0,

k′′1 − Ck1 = k1

[1

4−(M3

2

)2]− k2M31M

32 ,(3.7)

k′′2 − Ck2 = k1M31M

32 + k2

[1

4−(M3

1

)2].

To separate a general helix according to Bishop frame from that of Frenet- Serretframe, in the rest of the paper, we shall use notation for the curve defined above asB-general helix, [10].

Page 4: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

340 Talat Korpinar and Essin Turhan

4. M2 Surface of Biharmonic B-General Helices with Bishop Frame InThe Heisenberg Group Heis3

The M2 surface of γB is a ruled surface

E (s, u) = γB (s) + uM2 (s) .(4.1)

Lemma 4.2. Let γB : I −→ Heis3 be a unit speed biharmonic B-general helixwith non-zero natural curvatures. Then the M2 surface of γB is

E (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]e1

+[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]e2(4.2)

+[−[sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]

+ (cos θ) s+sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

(s

2−

sin 2[(k21+k2

2

sin2 θ− cos θ)

12 s+ ζ0]

4(k21+k2

2

sin2 θ− cos θ)

12

− ζ1 sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]− u sin θ + ζ4]e3,

where ζ0, ζ1, ζ2, ζ3, ζ4 are constants of integration.

Proof. Using orthonormal basis (2.2) and (3.7), we obtain

T = (sin θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0], sin θ sin[(

k21 + k22sin2 θ

− cos θ)12 s+ ζ0],

cos θ +sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

sin2[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0](4.3)

+ζ1 sin θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]),

where ζ1 is the constant of integration.

Page 5: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

On M2 Surfaces of Biharmonic B General Helices... 341

T = sin θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]e1 + sin θ sin[(

k21 + k22sin2 θ

− cos θ)12 s+ ζ0]e2

+cos θe3.(4.4)

On the other hand, using Bishop formulas (3.3) and (2.1), we have

M2 = cos θ cos[(k21 + k22sin2 θ

−cos θ)12 s+ζ0]e1+cos θ sin[(

k21 + k22sin2 θ

−cos θ)12 s+ζ0]e2−sin θe3.

(4.5)

Using the above equation, we have (4.2), and the theorem is proved.

We need the following lemma.

Lemma 4.2. Let γB : I −→ Heis3 be a unit speed biharmonic B-general helixwith non-zero natural curvatures. Then the M2 surface of γB are

xE (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2],

yE (s, u) = [− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3],

zE (s, u) = [sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]

+u cos θ sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]] + ζ3]

+[−[sin θ

(k21+k2

2

sin2 θ− cos θ)

12

sin[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ2]

[− sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0] + ζ3]

+ (cos θ) s+sin2 θ

(k21+k2

2

sin2 θ− cos θ)

12

(s

2−

sin 2[(k21+k2

2

sin2 θ− cos θ)

12 s+ ζ0]

4(k21+k2

2

sin2 θ− cos θ)

12

Page 6: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

342 Talat Korpinar and Essin Turhan

− ζ1 sin θ

(k21+k2

2

sin2 θ− cos θ)

12

cos[(k21 + k22sin2 θ

− cos θ)12 s+ ζ0]− u sin θ + ζ4],

where ζ0, ζ1, ζ2, ζ3, ζ4 are constants of integration.

Proof. Using the orthonormal basis we easily have the above system. Hence,the proof is completed.

-1

0

1

2

3

-5

0

5

-5

0

5

Fig. 4.1: The first illustration.

Page 7: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

On M2 Surfaces of Biharmonic B General Helices... 343

-1

0

1

2

3

-2

0

2

4

6

-5

0

5

Fig. 4.2: The second illustration

REFERENCES

1. L. R. Bishop: There is More Than One Way to Frame a Curve, Amer. Math. Monthly82 (3) (1975) 246-251.

2. N. Chouaieb, A. Goriely and JH. Maddocks: Helices, PNAS 103 (2006), 398-403.

3. TA. Cook: The curves of life, Constable, London 1914, Reprinted (Dover, London1979).

4. J. Eells, J.H. Sampson: Harmonic mappings of Riemannian manifolds, Amer. J.Math. 86 (1964), 109–160.

5. J. Happel, H. Brenner: Low Reynolds Number Hydrodynamics with Special Appli-cations to Particulate Media, Prentice-Hall, New Jersey, (1965).

6. J. Inoguchi: Submanifolds with harmonic mean curvature in contact 3-manifolds,Colloq. Math. 100 (2004), 163–179.

7. G. Y.Jiang: 2-harmonic isometric immersions between Riemannian manifolds, Chi-nese Ann. Math. Ser. A 7(2) (1986), 130–144.

8. G. Y. Jiang:2-harmonic maps and their first and second variational formulas, ChineseAnn. Math. Ser. A 7(4) (1986), 389–402.

9. W. E. Langlois: Slow Viscous Flow, Macmillan, New York; Collier-Macmillan, Lon-don, (1964).

10. T. Korpınar, E. Turhan, V. Asil: Biharmonic B-General Helices with BishopFrame In The Heisenberg Group Heis3, World Applied Sciences Journal 14 (10) (2010),1565-1568.

Page 8: SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING …facta.junis.ni.ac.rs/mai/mai2703/fumi2703_07.pdf · ON M2 SURFACES OF BIHARMONIC B-GENERAL HELICES ACCORDING TO BISHOP FRAME

344 Talat Korpinar and Essin Turhan

11. E. Loubeau, C. Oniciuc: On the biharmonic and harmonic indices of the Hopf map,preprint, arXiv:math.DG/0402295 v1 (2004).

12. J. Milnor: Curvatures of Left-Invariant Metrics on Lie Groups, Advances in Math-ematics 21 (1976), 293-329.

13. B. O’Neill: Semi-Riemannian Geometry, Academic Press, New York (1983).

14. S. Rahmani: Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimensiontrois, Journal of Geometry and Physics 9 (1992), 295-302.

15. D.J. Struik: Lectures on Classical Differential Geometry, New York: Dover, 1988.

16. J.D. Watson, F.H. Crick: Molecular structures of nucleic acids, Nature, 1953, 171,737-738.

Talat KORPINAR

Fırat University, Department of Mathematics

23119, Elazıg, TURKEY

[email protected]

Essin TURHAN

Fırat University, Department of Mathematics

23119, Elazıg, TURKEY

[email protected]


Recommended