+ All Categories
Home > Documents > (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP...

(TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP...

Date post: 23-Jan-2021
Category:
Upload: others
View: 8 times
Download: 0 times
Share this document with a friend
14
Vol. 113: 185-198, 1994 -- Distribu of tran Marine Science In ABSTRACT: T generated from studied, but ab and oceanic en ton compositio and deep wat diatoms domin except when a allow us to pr shape of size s pared to TEP g tion was found Bacteria densit 25% of the tot lated with tota bacteria KEY WORDS. INTRO A new class of trans (transparent exopolyme discovered to be abunda al. TEP can be m
Transcript
Page 1: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Vol

. 11

3: 1

85-1

98,

1994

--

MA

RIN

E E

CO

LO

GY

PR

OG

RE

SS

SE

RIE

S

Mar

. E

col.

Pro

g. S

er.

-p-

-

Pub

lish

ed O

ctob

er 1

3

-- -

Dis

trib

uti

on, s

ize

and

bac

teri

al c

olon

izat

ion

of

tra

nsp

aren

t ex

opol

ymer

par

ticl

es (

TE

P)

in t

he

ocea

n

U. P

asso

w l,

A.

L. ~

lld

re

d~

e

Ma

rin

e S

cien

ce I

nsti

tute

, 'B

iolo

gica

l S

cien

ces,

Uni

vers

ity

of C

alif

orni

a, S

anta

Bar

bar

a, C

alif

orni

a 93

10

6, U

SA

AB

STR

AC

T: T

he d

istr

ibut

ion,

ab

un

dan

ce, a

nd

siz

e sp

ectr

a of

tr

ansp

aren

t ex

opol

ymer

par

ticl

es (TEP)

gene

rate

d fr

om e

xcre

tion

pro

duct

s of

phyt

opla

nkto

n w

ere

inve

stig

ated

. T

EP

was

fou

nd a

t al

l st

atio

ns

stud

ied,

but

ab

un

dan

ce a

nd

tota

l qu

anti

ty o

f TEP

vari

ed b

y 4 o

rder

s of

mag

nitu

de a

mon

g co

asta

l, s

lope

an

d o

cean

ic e

nvir

onm

ents

. A

bund

ance

an

d s

ize

dist

ribu

tion

s of

TE

P ap

pea

red

to

be

rela

ted

to p

lank

- to

n co

mpo

siti

on.

Abu

ndan

ce t

ende

d to

be

high

er i

n co

asta

l an

d sh

allo

w w

ater

s co

mpa

red

to o

cean

ic

and

dee

p w

ater

s re

spec

tive

ly.

The

av

erag

e si

ze o

f T

EP

was

app

reci

ably

lar

ger

at s

tati

ons

wh

ere

diat

oms

dom

inat

ed p

hyto

plan

kton

. S

ize

dist

ribu

tion

s of TEP g

ener

ally

fol

low

ed a

pow

er-l

aw f

unct

ion,

ex

cept

wh

en a

ggre

gati

on d

omin

ated

int

erac

tion

of

part

icle

s. The t

ype

01 s

ize

dist

ribu

tion

of

TE

P m

ay

allo

w u

s to

pre

dict

th

e te

nden

cy o

f a

plan

kton

com

mun

ity

to a

gg

reg

ate.

Gen

eral

dif

fere

nces

in

the

shap

e of

siz

e sp

ectr

a of

TE

P i

ndic

ate TEP

gene

rate

d by

dia

tom

s to

be

stic

kier

an

d m

ore

frac

tal

com

- pa

red

to TEP g

ener

ated

by

non-

diat

om p

lank

ton.

All

TE

P w

ere

colo

nize

d by

bac

teri

a, b

ut n

o co

rrel

a-

tion

was

foun

d be

twee

n nu

mbe

rs of

att

ache

d ba

cter

ia o

n in

divi

dual

TEP a

nd

the

resp

ecti

ve s

ize

of TEP.

Bac

teri

a de

nsit

y on

TE

P, h

owev

er, d

ecre

ased

wit

h in

crea

sing

siz

e of

TEP e

xpon

enti

ally

. Bet

wee

n 2 a

nd

25

% o

f th

e to

tal

bact

eria

l po

pula

tion

wer

e at

tach

ed t

o TEP. T

otal

num

ber

of b

acte

ria

wer

e no

t co

rre-

la

ted with

tota

l qua

ntit

y of

TEP, s

ugge

stin

g th

at n

o si

mpl

e ov

eral

l rel

atio

nshi

p ex

ists

bet

wee

n TEP

and

ba

cter

ia

KE

Y W

OR

DS.

TE

P . A

ttac

hed

bact

eria

S

ize

freq

uenc

y di

stri

buti

ons

INT

RO

DU

CT

ION

A

new

cl

ass

of

tran

spar

ent

part

icle

s,

call

ed T

EP

(t

ran

spar

ent e

xopo

lym

er p

arti

cles

), h

as r

ecen

tly

been

di

scov

ered

to

be

abu

nd

ant

in t

he

oce

an (

All

dred

ge e

t al

. 1

99

3).

TE

P ca

n b

e m

ade

visi

ble

by

sta

inin

g w

ith

alci

an b

lue,

a s

tain

spe

cifi

c fo

r po

lysa

ccha

ride

s. T

EP

ar

e pr

esum

ably

pro

duce

d fr

om d

isso

lved

car

bohy

drat

e po

lym

ers

exud

ed b

y ph

ytop

lank

ton

and

bac

teri

a. I

n se

awat

er t

hes

e po

lym

er m

olec

ules

ali

gn a

nd

coa

lesc

e vi

a ca

tion

bri

dgin

g, f

orm

ing

invi

sibl

e pa

rtic

les

rang

ing

from

mic

rons

to

hu

nd

red

s of

mic

rons

in

size

. W

hile

pr

elim

inar

y st

udie

s in

dica

te t

hat

TE

P a

re im

port

dnt.

in

the

aggr

egat

ion

of di

atom

blo

oms,

pro

vide

the

mat

rix

of m

arin

e sn

ow, s

erv

e as

a s

ubst

rate

an

d m

icro

habi

tat

for

atta

ched

bac

teri

a, a

nd

rep

rese

nt

an i

mpo

rtan

t pat

h-

way

for

th

e tr

ansf

orm

atio

n of

clis

solv

ed t

o pa

rtic

ulat

e

mat

ter

(All

dred

ge e

t al

. 19

93, P

asso

w e

t al

. 1

99

4),

the

di

stri

buti

on,

abu

nd

ance

, an

d ch

arac

teri

stic

s of

this

ne

w c

lass

of

part

icle

s re

mai

n la

rgel

y u

nk

no

wn

. In

form

atio

n on

th

e ab

un

dan

ce a

nd

siz

e di

stri

buti

ons

of

TE

P p

rodu

ced

in d

iffe

rent

oce

anog

raph

ic r

egim

es

and

by

diff

eren

t sp

ecie

s of

phy

topl

ankt

on i

s ne

cess

ary

to a

ccur

atel

y as

sess

th

e si

gnif

ican

ce o

f th

is n

ew p

arti

- cl

e cl

ass

to t

he

biol

ogy

and

che

mis

try

of th

e pe

lagi

c zo

ne a

nd

to

iden

tify

tax

a m

ost

like

ly t

o p

rod

uce

TE

P

abun

dant

ly.

In

the

pres

ent

stud

y w

e co

mp

are

the

abu

nd

ance

an

d s

ize

dist

ribu

tion

of

TE

P g

ener

ated

by

diff

eren

t ph

ylop

lank

ton

spec

ies

and

d

eter

min

e th

e si

ze d

istr

ibut

ions

an

d a

bu

nd

ance

s of

T

EP

in

coas

tal

and

oc

eani

c en

viro

nmen

ts

in

rela

tion

to

pl

ankt

on

com

posi

tion

. T

he

role

of

T

EP

as

a si

te f

or b

acte

rial

at

tach

men

t in

di

ffer

ent

mar

ine

envi

ronm

ents

is

also

in

vest

igat

ed.

0 I

nter

-Res

earc

h 19

94

Res

dle

of

full

art

icle

not

pe

rnu

tfe

d

Page 2: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Mar. E

col, Prog S

er. 113: 185-198, 1994

ME

TH

OD

Cu

ltures and

samp

le collection.

Abundance

and

particle size frequency distributions of

TE

P w

ere in-

vestigated in batch cultures and

seawater. B

atch cul- tures ot" C

haetoceros gracili?,, Nitzschia angularis, T

ha

- lassiosira

weissflogij an

d

colonial P

fiaeocystis were

gro

wn

in f/2 m

edium w

ith silica at 12OC

and

100 pE

m-2

S''

light (12

:12

h cycle) in unbubbled Fernbach

flasks. Care w

as taken

to prep

are the media free of

precip

itates, as

salt precipitates

gen

erated

du

ring

autoclaving produce stain

able artefacts w

hich are dif- ficult to distinguish from

TE

P. C

ontrols for precipitates w

ere mad

e for each batch of

media.

Seaw

ater samp

les were collected on several o

cca- sions d

urin

g Ju

ne an

d July

1992 off

Santa B

arbara, C

aliforn

ia, USA

(34"

20

' N,

119' 50

' W),

by scu

ba

divers at 5 to 20 m

dep

ths. S

eawater sam

ples were col-

lected with

Niskin bottles in

August

1992 from 0 to

400 m d

epth

s in Monterey B

ay, California (36' 48' N

, 121Â 5

3' W

and

36' 4

6' N

, 121' 57

' W) an

d in M

arch 1

99

3 fro

m 300 to 1500 m

dep

ths in th

e open Atlantic off

Berm

uda (BA

TS

Stn 54; 3

1" 50' N

, 64' 10' W

]. S

lide p

reparatio

n an

d en

um

eration

. Sem

i-perrna- n

ent slides of T

EP

were p

repared

in duplicate by pass-

ing

l to 20 m

1 of seaw

ater onto a 0.4 pm polycarbonate

filter (Poretics). T

EP w

ere stained

on dam

p filters w

ith an

aqu

eou

s solution of 0

.02

% alcian blue (8 G

X), a

hydrophilic, catonic dy

e specific for polysaccharides, an

d 0

.06

% acetic acid. T

he stain

ing

solution was p

re- filtered th

rou

gh

0.2 pm before use. as th

e stain agg

re- g

ates with itself. T

he filter w

as fully covered with stain

(abo

ut 400 to 500 pi) w

hich was im

mediately sucked

through (as stainin

g is im

med

iate). Since residual stain

reacts with salts in

seawater to create artefacts, funnels

and

base w

ere rinsed with distilled w

ater before use.

Vacuum

pressu

re was k

ept low

and

constant. Filters

were th

en transferred to slides an

d p

repared

accord- in

g

to th

e F

ilter-Transfer-F

reeze (FTF) technique

(Hew

es & H

olm-H

ansen 1

98

3, H

ewes

et al. 1984).

Blanks w

ere prep

ared w

ith 'clean' seaw

ater (filtered rep

eatedly

through 0.2

pm

) or by

dipping the filter into seaw

ater before staining as described abo

ve.

All sam

ples, ex

cept th

ose from

Berm

ud

a, were p

re- p

ared fresh

. Sam

ples from

Berm

uda were preserved in

buffered form

alin (0

.5 to

1%

) and

slides p

repared

w

ithin 2 wk

after fixation. Slides m

ay be stored at room

temp

erature in th

e dark

for up

to 6 mo.

Total

bacteria ab

un

dan

ces w

ere en

um

erated

on black

polycarbonate filters

(Poretics, 0

.2 urn)

after staining w

ith acridine oran

ge according to H

obble et at. (1

977J. S

amples

were d

ou

ble-stain

ed w

ith D

AP

I (4

',6-d

iamid

ino

-2-p

hen

y lindole) an

d

alcian blue

to en

um

erate bacteria

attached

to T

EP

. Repljcate

sea- w

ater samples w

ere first stained

in th

e funnel with

0.5 ml D

AP1 (25 pm

ml"') for 5

to 10 min, filtered onto

0.2

urn polycarbonate filters (Poretics] (P

orter & F

eig 1980, K

ing & P

arker 1988) an

d them

stained with alcian

blu

e as described above. Th

e FT

F technique h

as been reported to yield accurate estim

ates of bacterial ab

un

- d

ances (K

ing & P

arker 1988) which w

e could confirm

(Alldredge el al. 1

993).

Phytoplankton an

d T

EP

(> 3 urn) w

ere counted in 20 to 150 fields on each

slide at 200x magnification w

ith a com

pound light microscope. T

EP (N

) were assigned to

6

size classes by

maxim

um

leng

th, w

ith each

size increm

ent (dl) double th

e length of th

e previous. The

area of TE

P wcis calculated based on m

easurem

ents of

the actual size of 20 representive TE

P in each size class

for each set of

samples. A

lthough the shap

e of TE

P v

ar- ied

and

often was am

orphous, TE

P in an

y o

ne sam

ple an

d size class w

ere of sim

ilar shap

e and

the area of

TE

P on filters can be estim

ated fairly accurately with

this method (P

assow &

AL

ldredge un

pu

bl.).

Total bacteria an

d bacteria attach

ed to T

EP

were

counted using a Zeiss epifluorescence m

icroscope at a m

agnification of 8

00

x. T

en fields were counted fro

m

each of

2 replicate slides for total bacteria counts. Bac-

teria associated with 20 to 30 T

EP per slide w

ere enu

- m

erated by sw

itching betw

een W

and

visible Light

and

individual TE

P w

ere sized. Th

e averag

e numbers

of bacteria per area of

TEP were calculated for each

particle.

Estim

ates of

bacteria attach

ed

to T

EP

are considered conservative because T

EP are presum

ably 3-dim

ensional, making enum

eration on 1 plan

e diffi- cult, an

d thin sh

eets of T

EP

were difficult to discern.

TE

P concentrations in B

ermuda sam

ples were too low

to en

um

erate attached

bacteria, Im

pact of form

alin fixation. C

ontrols sho

wed

that form

alin itself do

es not interfere with th

e stain. H

ow-

ever, since the binding capacity of

alcian blue dep

end

s on

the

pH

(Parker

&

Diboll

1966, Horobin

1988), preservation

techniques w

hich alter

the p

tl of

the

sample are expected to affect quantitative results. W

e fo

un

d how

ever that small ch

ang

es in pH

(8.2 to 8.7) did not ch

ang

e the size or am

ount of stain

ed particles.

We

tested the im

pact of form

alin preservation on

TE

P using sam

ples collected d

urin

g a diatom

bloom

and

from a culture of colonial P

haeocysiis. S

lides from

samp

les collected during a diatom bloom

in Jun

e off S

anta B

arbara were prepared both from

fresh sam

ples an

d from

aliquots which had b

een p

reserved

in forma-

lin (0.5

to 1%

) for 6 mo. C

omparisons of

the particle

size distributions of T

EP

in preserv

ed an

d fresh ali-

quots revealed no significant difference [l-test, df = 4,

p >

0

.1), although

form

alin-p

reserved

samples

ap-

peared

to slightly underestimate total T

EP

abu

nd

ance.

Unpreserved, intact an

d healthy colonies of

Ph

aeo- cystis did not stain w

ith our method as stronger co

n-

centrations and longer staining times are n

eeded

to

Page 3: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pas

sow

& A

lldre

dge:

Dis

trib

~ili

on of

tra

nsp

iirc

nl cxopolynier ji

rtrl

icle

s

stai

n th

e co

lony

m

atri

x.

How

ever

, fo

rmal

in p

rese

r-

vati

on l

ead

s to

th

e di

srup

tion

of

th

e co

lony

mat

rix

and

sh

red

s of

th

e m

atri

x st

ain,

cr

eati

ng

TE

P-l

ike

arte

fact

s.

Fra

gile

org

anis

ms

like

cil

iate

s or

ath

ecat

e di

nofl

agel

late

s of

ten

disi

nteg

rate

in

for

mal

in a

nd

th

e ce

llul

ar

poly

sacc

hari

des

rele

ased

m

ay

also

cr

eate

ar

tefa

cts.

C

alcu

lati

on o

f th

e fr

acti

on o

f ba

cter

ia a

ttac

hed

to

TE

P. W

e ca

lcul

ated

the

fra

ctio

n of

bact

eria

att

ache

d to

T

EP

in

2 d

iffe

rent

way

s fr

om o

ur c

ount

s. F

irst

, th

e p

er-

cen

tag

e of

att

ach

ed b

acte

ria

was

cal

cula

ted

dire

ctly

for

each

dou

ble-

stai

ned

slid

e bo

rn m

icro

scop

e co

unts

of

tree

ver

sus

atta

ched

ba

cter

ia.

Sec

on

d,

beca

use

the

mag

nifi

cati

on n

eed

ed t

o co

unt

bact

eria

is

som

etim

es

too

high

to s

imul

tane

ousl

y co

unt l

arg

e T

EP

rep

rese

nta

- ti

vely

, we

calc

ulat

ed t

he

frac

tion

of

bact

eria

ass

ocia

ted

wit

h T

EP

fro

m (

1) t

he s

ize

dist

ribu

tion

of

TE

P (TEP

slid

es),

(2

) the

cou

nts

of to

tal

num

ber

of b

acte

ria

(acr

-i-

dine

ora

ng

e sl

ides

) an

d (

3) t

he

gen

eral

rel

atio

nshi

p b

etw

een

bac

teri

al d

ensi

ty o

n T

EP

(n

um

ber

of b

acte

ria

per

area

TE

P)

and

TE

P s

ize

deri

ved

from

all

cou

nts

or

doub

le-s

tain

ed s

lide

s. I

n g

ener

al,

both

ca

lcul

atio

ns

gav

e si

mil

ar

resu

lts,

al

thou

gh

som

etim

es

the

firs

t m

etho

d g

avr

high

er v

alue

s. A

ll v

alue

s gi

ven

in t

he

pre

sen

t p

aper

are

cal

cula

ted

acco

rdin

g to

th

e se

cond

m

etho

d an

d a

re c

onsi

dere

d co

nser

vati

ve.

Par

ticl

e-si

ze

dist

ribu

tion

s. P

arti

cle-

size

spe

ctra

of

susp

end

ed m

atte

r in

th

e oc

ean

can

ofte

n b

e fi

tted

to

a po

wer

-law

dis

trib

utio

n de

rive

d fr

om a

vol

ume

dist

iil.

~n-

li

on h

isto

gram

tha

t re

pre

sen

ts th

e di

stri

buti

on i

n w

hich

th

e vo

lum

e of

par

ticl

es o

f ea

ch s

ize

inte

rval

rem

ains

co

nsta

nt

(Bad

er 1

970,

She

ldon

el

'11.

19

72,

Ler

mii

n 19

79).

Dev

iati

ons

from

suc

h a

dist

ribu

tion

m<

iy g

ive

indi

cati

ons

of p

hysi

cal

or b

iolo

gica

l pr

oces

ses,

suc

h as

ag

gre

gat

ion

, fr

agm

enta

tion

, di

ssol

utio

n, o

r co

nsum

p-

tion

by

anim

als,

whi

ch a

lter

the

siz

e di

stri

buti

on o

f pa

rtic

les.

P

arti

cle-

size

dis

trib

utio

ns o

f T

EP

wer

e d

eter

min

ed

from

mic

rosc

opic

al e

num

erat

ions

. T

he

mea

n m

axim

al

len

gth

val

ue o

f ea

ch s

ize

inte

rval

(l,

in p

m)

and

the

ra

tio

betw

een

TE

P a

bu

nd

ance

per

inte

rval

an

d t

he s

ize

inte

rval

(dN

/di,

in T

EP

ml-* pm

") w

ere

plot

ted

on l

og-

log

coor

dina

te g

rap

hs.

Th

e be

st f

it li

nes

wer

e ca

lcu-

la

ted

bas

ed o

n a

leas

t-sq

uar

es e

stim

atio

n of

pa

rarn

e-

ters

A a

nd

b in

the

fol

low

ing

pow

er-l

aw r

elat

ions

hip

wh

ere

A a

nd

ba

re c

onst

ants

. Th

e sl

ope

of t

he s

ize

dis-

tr

ibut

ions

plo

tted

in l

og-l

og c

oord

inat

es is

giv

en b

y th

e po

wer

ex

po

nen

t b a

nd

des

crib

es

the

shap

e of

th

e cu

rve.

A d

ecre

ase

in b

sig

nifi

es a

red

ucti

on i

n th

e p

er-

cen

tag

e of

sm

all

part

icle

s. A

val

ue o

f b =

4 i

mpl

ies

equa

l pa

rtic

le v

olum

es i

n ea

ch s

ize

clas

s. A

ch

ang

e in

A

wh

en b

rem

ains

con

stan

t si

gnif

ies

a ch

ang

e in

the

to

tal

num

ber

of p

arti

cles

in

all

size

cla

sses

.

Par

ticl

e-si

ze d

istr

ibut

ions

of

TE

P a

re b

ased

on

th

e m

axim

al l

eng

th o

f T

EP

on

fil

ters

. T

he

actu

al s

ize

of

TE

P

wh

en

susp

end

ed

in

seaw

ater

is

pr

esum

ably

sm

alle

r th

an t

he

size

of

TE

P a

fter

th

ey c

olla

pse

on f

il-

ters

(P

asso

w &

All

dred

ge u

npub

l.).

It

is,

how

ever

, as

- su

med

tha

t th

e sh

ape

of

the

size

dis

trib

utio

ns o

f T

EP

, i.

e. t

he r

elat

ive

size

of

TE

P,

rem

ains

th

e sa

me

du

rin

g

filt

rati

on.

For

th

e co

asta

l d

ata,

reg

ress

ion

line

s w

ere

only

cal

- cu

late

d fo

r sa

mp

les

wh

ere

TE

P o

ccur

red

in a

t le

ast

4 di

ffer

ent

size

cla

sses

. All

regr

essi

ons

of

sam

ples

for

w

hich

cal

cula

tion

s w

ere

poss

ible

(28

tota

l) w

ere

stat

is-

tica

lly

sign

ific

ant

(p Ã

0.01

, in

mos

t ca

ses

p 0.

001)

, ex

cept

for

2 s

ampl

es w

hich

did

not

fol

low

a p

ower

-law

di

stri

buti

on a

nd

wer

e co

llec

ted

duri

ng t

he

agg

reg

atio

n

phas

e of

a

diat

om b

loom

. T

EP

con

cent

rati

ons

at t

he

open

oce

an s

tati

on o

ff B

erm

uda

(BA

TS

) wer

e lo

w a

nd

re

gres

sion

s w

ere

calc

ulat

ed if

TE

P w

as f

ound

in

3 or

m

ore

size

cla

sses

(9

out

of

12

dep

ths)

. Sev

en r

egre

s-

sion

s w

ere

sign

ific

ant

at t

he

0.0

5 le

vel.

T

o as

sess

how

ag

gre

gat

ion

ch

ang

es t

he

size

dis

trib

- ut

ion

of

TE

P,

size

dis

trib

utio

ns w

ere

calc

ulat

ed f

rom

a

floc

cula

tion

ex

per

imen

t w

ith

a ba

tch

cult

ure

of

Ch

aeto

cero

s gr

acili

s co

nduc

ted

earl

ier

(Pas

sow

et

al.

1994

). F

or

that

ex

peri

men

t th

e cu

ltur

e ha

d b

een

ro

tate

d fo

r 20

rni

n in

a c

uv

ette

flo

ccul

ator

(L

ogan

&

Kir

chm

ann

19

91

) an

d s

ubsa

mpl

es h

ad b

een

coll

ecte

d af

ter

4, 8

an

d 20

inin

of

rota

tion

at

a sh

ear

of

30 S

-'.

Cal

cula

tion

s w

ere

base

d on

cou

nts

of

TE

P i

n 4

size

c,

lrrm

,s b

etw

een

20

and

500

pm

.

RE

SUL

TS

TEP in

nat

ure

Ab

un

dan

ce, s

ize

and

ver

tica

l di

stri

buti

on

TE

P w

as f

ound

in d

ll na

tura

l se

awat

er s

ampl

es in

ves-

ti

gate

d. T

otal

nu

mb

er a

bu

nd

ance

an

d t

otal

are

a (e

sti-

m

ate

of

quan

tity

) of

TE

P,

how

ever

, va

ried

by

4 o

rder

s of

mag

nit

ud

e (1

0'

to 1

04 T

EP

ml-

' an

d 0

.2 to

200

0 m

m2

1-I

resp

ecti

vely

) (T

able

1).

Th

e le

ng

th o

f in

divi

dual

T

EP

ran

ged

from

3 t

o se

vera

l h

un

dre

d p

m. T

he

aver

- a

ge

dia

met

er o

f T

EP

ran

ged

fro

m 1

2 p

m a

t th

e b

egin

- ni

ng o

f th

e di

atom

blo

om t

o 1

63

pm

du

rin

g fl

occu

lati

on

of t

he b

loom

. A

t M

onte

rey

Bay

, th

e av

erag

e d

iam

eter

of

TE

P r

ang

ed b

etw

een

8 a

nd

13 p

m, e

xcep

t 27

Aug

ust

1992

at

10

m

(wh

ere

diat

oms

do

min

ated

th

e ph

yto-

pl

ankt

on)

wh

en it

was

15

pm

. A

t th

e B

AT

S st

atio

n th

e av

erag

e d

iam

eter

ran

ged

bet

wee

n 9

an

d 1

2 p

m, e

xcep

t at

900

m w

her

e th

e av

erag

e d

iam

eter

was

23

pm.

Exa

mpl

es o

f ve

rtic

al d

istr

ibut

ion

pat

tern

s of

TE

P a

nd

ce

lls

a1 se

vera

l sta

tion

s ar

e de

pict

ed i

n F

ig. 1. T

EP

con

- ce

ntra

tion

s w

ere

gene

rall

y h

igh

er i

n th

e tr

opho

geni

c

Page 4: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Mar, E

col. Prog. S

er. 113: 185-198, 1994

Table 1

. Abundance, lolal area an

d slope of size speclrd of T

EP (b

, cf. Eq

. 1) for some typical sam

ples. MB

: Monterey B

ay; SB

: Santa Ba

rha

ra: B

AT

S: Berm

uda. Da

ta from

diatom bloom

from A

lldredge et al. (19

93

)

Sam

ples

Environm

ent D

ominating plankton

TE

P A

bundance A

rea (no. ml")

(mm

2 l l)

24 Jul. 10 m

C

oastal SB

Clear

25 I

2.8

27 A

ug. 76 111

Slop

e MB

C

lear 500

50 3.0

26 Au

g. 5 m

Coastal M

B

Mixed

4926 500

3.0

26 Au

g. 400 m

BA

TS, 400 m

27 Au

g. 10 ~n

27 Au

g. 5 m

27 Au

g. 20 m

BA

TS. 300 m

B

AT

S, 800 m

BA

TS, 900 m

B

AT

S, 1400 m

Coastal M

B

Ocean

ic

Coastal M

B

Coastal M

B

Coastal M

B

Oceanic

Oceanic

Oceanic

Oceanic

Clear

Clear

Diatom

s D

inoflagellates D

inoflagellates + Ph

aeocystis

Clear

Clear

Diatom

s C

lear

19 Jun, 10 m

Coastal SB

D

iatom bloom

24 Jun. 10 m

C

oastal SB

D

iatom bloom

29 Jun, 10 m

C

oastal SB

Diatom

bloom

(plankton-rich) zon

e than

below (for ex

amp

le: Mon-

terey Bay, 26 A

ugust 1992; F

ig. la, b

]. TE

P concen-

trations decreased

parallel with concentrations of bac-

terio-, phyto- and

protozooplankton at 20 m. H

owever,

concentrations of T

EP

varied appreciably below th

e trophogenic zo

ne an

d a relative high ab

un

dan

ce wa

s o

bserv

ed at 300 m

. Diatom

s were rare at this station.

and

microplankton w

as dominated by dinoflagellates

and

dilates.

Ab

un

dan

ce and

size of T

EP

may also vary

within

the tio

ph

og

enic zone, ap

pearin

g in acco

rdan

ce with

chan

ges in th

e plankton composition (F

ig. {c, d

). In M

onterey Bay (2

7 A

ugust 1992), TE

P ab

un

dan

ce was

lowest at

10

m, th

e dep

th of

the diatom

maxim

um

(105 diatoms l"'),

and

highest at 50 m, th

e lower en

d of

the trophogenic zone. A

t 10 m th

e averag

e size of TE

P

was, how

ever, very large. Dinoflagellates w

are

most

abu

nd

ant at th

e surface (104 1-l) an

d d

ecreased con-

tinuously with d

epth

. A sm

all population of colonial

Phaeocystis w

as presen

t betw

een 1

0 an

d 20 n

l dep

th.

Bacteria concentrations d

ecreased continuously w

ith d

epth

. C

om

pared

to coastal stations, concentrations of TEP w

ere extremely low

at all dep

ths (300 to 1400 m

) of the

op

en ocean station (B

AT

S) n

ear Berm

uda (Fig. Ie, f).

At M

onterey Bay (2

6 A

ugust 1992), for exam

ple, ab

ou

t 2500 T

EP

ml-I w

ere observed at 400 in w

hereas only

2 TE

P m

l"' prevailed at 400 m in th

e op

en A

tlantic. T

otal quantity of TE

P [expressed as total area) was also

3 to 4 orders of mag

nitu

de low

er com

pared

to coastal w

aters. Above 800 m

and

below 1000 m

concentrations

were very uniform

, but a peak

in TEP num-bers w

as observed at 900 m

. Plankton concentrations w

ere low

(c

100 cells I-')

at all dep

ths, except at 900 m

. Several

species of m

ostly Chaetoceros w

ere observed at con- centrations of

1.6 X 105 cells 1"' at 900 m

.

Size distributions

Although

total ab

un

dan

ce of T

EP

was extrem

ely variable, the general sh

apes of th

e size frequ

ency

dis- tributions w

ere similar (F

ig. 2a). All but 2 of

the size

frequency spectra of T

EP

analyzed (n =

33) follow a

Pareto (pow

er-law) distribution (E

q. 1, F

ig. 2a 10 cl].

How

ever, both at Monterey B

ay (27 August) an

d at

BA

TS

the sh

apes (b-values] of the pow

er-law distribu-

tions at different dep

ths differ (F

ig. 2b, c). We classified

all frequency distributions into 2 main g

rou

ps and 1

transition g

rou

p according to their b-value. T

he 2 av

er- ag

e b-values representing the 2 m

ain groups are

sig- nificantly different (S

tudents' t, p < 0.001). E

xamples of

normalized

frequency distributions (dN

/N) a

re given

for each g

rou

p in F

ig. 3. In th

e first type of distribution (Gro

up

1 ) over 95 % of

TE

P occurred in th

e first 2 size classes (c2

5 p

m) and

more th

an 6

0%

were sm

aller than 10 pm. T

his gro

up

includes all sp

ectra fitting a pow

er-law relationship

with a value of

b b

etween

2.9

and

3.9

(averag

e b =

3.3 Â 0

,3, m

edian b = 3

.3). In this g

rou

p, th

e fit of the

regression lines to the data w

ds extremely tig

ht, indi-

cating a good fit to the pow

er-law distribution. A

ll size

Page 5: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pti

sso

w &

Alld

recl

gc D

istr

ibut

ion

01 t

rans

pare

nt c

xop

olyn

ier

part

icle

s 189

26 A

ugus

t

a

TE

P a

rea

(mm

I"

')

0

300

600

L

EP (

m1

1

sow

8000

TE

P c

once

ntra

tion

26 A

ugus

t

* - I b Bac

teri

a (1

0'm

l "'

1

Phyt

opla

nkt

on (

rnil

>

TEP

are

a (mm ' F

' 1

0

500

,. .,

. . . .

. . , . "

Â¥

Â

....

diat

oms

27 A

ugus

t c

'EP

(m

ll>

5

00

0

-(

13

>8

<(

,

10000

27 A

ugus

t

Ph

yto

pla

nkt

on

(rn

l')

0

100

200

BA

TS s

tatio

n e

BOO

TE

P a

rea

(mm

/V

'

) 0

-3

.

0 5

L

-

TE

P (

rn

l)

8-

TEP

con

cem

raiio

n

BA

TS st

atio

n

f

Fig

. 1.

Ver

tica

l pr

ofile

s of

mic

ro-

and

bac

leri

opla

nkto

n an

d o

f T

EP

abu

nd

ance

an

d t

otal

are

a at

(a,

b)

a de

ep s

tati

on (

26

Au

gust

19

92)

and

(c.

d) a

sha

llow

er s

tati

on (

27

Aug

ust

1992

) in

Mon

tere

y B

ay, a

nd

(e,

f) B

AT

S M

arch

199

3. S

D o

f T

EP

ab

un

dan

ce o

ften

to

o sm

all t

o sh

ow

spec

tra

belo

ngin

g to

thi

s g

rou

p h

ave

in c

omm

on t

hat

they

wer

e ob

serv

ed a

t st

atio

ns w

her

e di

atom

co

nce

n-

trat

ions

wer

e ve

ry l

ow a

nd

nev

er d

omin

atin

g. D

ino-

fl

agel

late

s,

cili

ates

or

Pha

eocy

stis

w

ere

mod

erat

ely

abu

nd

ant

at s

ome

of

thes

e st

atio

ns,

wh

erea

s m

icro

- pl

ankt

on c

once

ntra

tion

s w

ere

extr

emel

y lo

w a

t ot

hers

. S

ampl

es

belo

ngin

g to

th

is

gro

up

(1

6) c

ame

from

co

asta

l S

anta

Bar

bara

, fro

m M

onte

rey

Bay

(F

ig. 2

a, b

) an

d f

rom

the

op

en o

cean

(Fig. 2c

). A

ll fr

eque

ncy

dist

ri-

buti

ons

fro

m s

ampl

es

coll

ecte

d du

ring

su

mm

er

in

Mon

tere

y B

ay (

Fig

. Za,

b)

exce

pt t

he 1

0 m

dep

th o

n 27

Aug

ust

1992

bel

ong

in t

his

grou

p. T

he

size

dis

trib

u-

tion

s ob

serv

ed a

t th

e B

AT

S s

tati

on b

etw

een

300

an

d

800

m c

lear

ly b

elon

g to

Gro

up

1 a

s w

ell

(b = 3

.0 to

3.6),

but

at g

reat

er d

epth

s th

e va

lues

of

b w

ere

too

low

to

qual

ify.

G

rou

p 2

inc

lude

s al

l sa

mp

les

(13)

wit

h a

val

ue

of

b b

etw

een

0.7

an

d 2

.2 (

aver

age

1.6

 0

.45,

med

ian

1.7)

. A

ltho

ugh

sign

ific

ant,

th

ese

regr

essi

ons

ten

ded

to

be

less

tig

ht a

nd

sta

nd

ard

dev

iati

ons

wer

e h

igh

er, i

ndic

at-

ing

devi

atio

ns f

rom

a s

impl

e po

wer

-law

dis

trib

utio

n.

Siz

e di

stri

buti

ons

of th

is t

yp

e w

ere

gene

rall

y o

bse

rved

a

t st

atio

ns

wh

ere

diat

oms

wer

e do

min

atin

g ph

yto-

pl

ankt

on.

Dis

trib

utio

ns c

olle

cted

du

rin

g t

he

earl

y fl

oc-

Page 6: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

190 M

ar. Ecol. P

roq. Ser. 1 1 1

: 185- 198, 1994

TE

P (n

o. ml"

urn

") cin

g stag

e of a diato

m bloom

off San

ta Barb

ara (1

9 an

d 24 Ju

ne

1992; Fig

. 2d

) both b

elon

g to

Gro

up

2 (b=

1.6 an

d 2.1 resp

ectively

]. Sp

ectra of T

EP

at BA

TS

at 900 m (F

ig. 2c), w

he

re ab

un

- d

ance of

Ch

aetoceros sop

. was h

igh

, belo

ng

to th

is gro

up

as well (

b = 1.5). In sam

ples collected

at 2 dep

ths off S

anta B

arbara in

July

(tifter sedi-

men

tation

of a bloom) an

d at 1000 m

at B

AT

S,

TE

P ex

hib

ited a size d

istribu

tion

of ty

pe 2 (

b =

1

.4, 1

.5, 2

.2), alth

ou

gh

no

ph

yto

plan

kto

n

was

presen

t. S

ize distrib

utio

ns of T

EP

ob

served

in th

e p

res- ence of d

iatom

s did

not all belo

ng

into

Gro

up

2.

So

me sp

ectra exh

ibited

b-v

alues too lo

w to

qu

al- ify for G

rou

p 1

and

too hig

h for G

rou

p 2 (tran

si- tion g

rou

p). S

amp

les collected

at an early stag

e of

the d

iatom

bloom (b

= 2

.7) a

nd

the sam

ple

from

Mo

nterey

Bay fro

m

10 m

on

27 Au

gu

st 1992 (

b =

2.6; Fig.

2b

) wh

ere diato

ms

were

do

min

ating

a mixed su

mm

er dsscin

blag

e, hav

e sp

ectra of TEP b

elon

gin

g to th

e transitio

n g

rou

p.

In all sam

ples ex

hib

iting

spectra b

elon

gin

g to

the tran

sition

gro

up

diato

ms d

om

inated

ph

yto

- p

lank

ton

, excep

t a

t dep

ths below

1

00

0 m

at B

AT

S, w

here

no

p

hy

top

lank

ton

w

as p

resent

(Fig

, 2c). S

ize distrib

utio

ns of T

EP

ob

served

du

ring

the

late floccing stage of a d

iatom

bloom off

San

ta B

arbara (1

0 m

) had a differen

t sha

pe

(Fig

. 2d

). T

he size d

istribu

tion

s of TEP from

26 and

29 Ju

ne

19

92

, wh

en th

e bloom w

as fully flocced

, d

id n

ot follow

a po

wer-law

distrib

utio

n a

nd

did

not fit in eith

er gro

up

.

D@

BOO

20

0 - 6

00

0

1 150 -

40

0 -

40

00

- 100 -

200 -

20

00

50

-

0-

0

-

0

^ 1

26

August: G

rou

p 1

(M

B. Sml

l.. \ '-. \

- \

'. \

'. \

'. \

', 2

7 A

ugust: Gro

up

1

\ ,

(Me

, 7Çm

, 80

0m

Gro

up

1

1 -.*

Bacteria attach

ed to T

EP

Th

e nu

mb

er of b

acteria attached

to ind

ivid

ual

TE

P w

as no

t correlated

to the size of

the resp

ec- tive T

EP

(Fig

. 4a). M

ost T

EP

we

re sm

aller than

BOO

Fig. 2. S

ize distributions of T

EP

in the field. (a) Total

abundance (sum of

N) ranges from

25 to 5000 TE

P

ml. Three exam

ples from S

anta Barbara (S

B) 24 Ju

ly

at 10 m

(b = 2.8) and M

onterey Bay (M

B) near-shore

26 August at 5 m

(b =

3.0) and

offshore 27 August at

76 m (b

= 3.0

). (b, c) T

he shape of the size distribution

of T

EP m

ay vary with depth. E

xamples from

(b) M

on- terey B

ay (MB

) 27 August at 5

, 10 and 20 m (fa= 3

.0,2

.6

and 3.4 respectively) and (c) BA

TS at 300. 800, 900 and

1400 m (b

= 3.6, 3

.3, 2

.2 and 2.8 respectively). (d

) The

shape of the size distributions of TEP may change dur-

ing the flocculation of diatom

blooms. E

xample from

the S

anta Barbara channel during a C

haetoceros spp.

bloom at 10 m

depth on 19, 24 and 29 Jun

e (b =

1.6, 2

.1 respectively, 29 June does not follow

a power-law

distribution]

Jun

e: Gro

up

2

29

June /

no

gro

up

/

/

,

A' ..

"S

A-" N

T

EP

leng

th (urn)

Page 7: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pas

sow

& A

Jldr

edcf

e- D

istr

ibut

ion

of tr

an

sp

are

nt

pxop

olym

cr p

drtic

las

L

W

I- -

- Q

26

Au

gu

st 1

0m

0

Q G

rou

p 1

-.

v 29 J

une

10

m '

no gro

up '

Fig

. 3.

Nor

mal

ized

siz

e-fr

eque

ncy

dist

ribu

tion

s of

TE

P. E

xam

ples

of

the

4 di

ffer

ent

type

s of

dist

ribu

tion

s ob

serv

ed.

Th

e di

stri

buti

on

from

26

Aug

ust

belo

ngs

to G

roup

1 (

non-

diat

oms)

, th

at f

rom

24

Jun

e to

Gro

up 2

(fl

occi

ng d

iato

ms)

, th

at f

rom

27

Aug

ust t

o th

e tr

ansi

tion

gro

up (

no

n-

floc

cing

dia

tom

s) a

nd t

hat

from

29

Jun

e do

es n

ot

fit i

nto

any

cate

gory

(fl

eece

d di

atom

s)

10

0

TE

P l

eng

th (u

rn)

50 u

rn a

nd

car

ried

les

s th

an

100

bac

teri

a,

but

up t

o 90

0 ba

cter

ia w

ere

obse

rved

per

pa

rtic

le. S

tain

able

thi

n sh

eets

of

TE

P, e

spe-

ci

ally

ver

y la

rge

on

es (

3 20

0 pm

), c

arri

ed

com

para

bly

low

ab

un

dan

ces

of ba

cter

ia.

How

ever

, th

e ba

cter

ial

abu

nd

ance

per

ar

ea o

f T

EP

is a

sig

nifi

cant

fun

ctio

n of

TE

P

size

(F

ig. 4b)

. Wh

erea

s sm

all T

EP

(c

10

pm

) h

ad 2

bac

teri

a at

tach

ed p

er p

n-i2

, les

s th

an

0.1

bact

eria

wer

e at

tach

ed p

er u

rn2

of T

EP

on

TEP >

100

pm. T

her

e w

as n

o ap

pre

cia-

bl

e di

ffer

ence

in b

acte

rial

den

sity

bet

wee

n

TEP

coll

ecte

d d

uri

ng

th

e di

atom

blo

om a

nd

T

EP

col

lect

ed a

t ot

her

tim

es.

Tot

al a

bu

nd

ance

of

bact

eria

in

a sa

mp

le

was

not

cor

rela

ted

to t

otal

qua

ntit

y of

TE

P (F

ig. 5

a).

Th

e f

ract

ion

of ba

cter

ia a

ttac

hed

to

TE

P (

Fig

. 5b

) gen

eral

ly r

ang

ed b

etw

een

2

and

25

% (

1 e

xcep

tion

on

27 A

ugus

t 19

92

at 5

0 m

: 8

9%

). N

o di

ffer

ence

in

atta

ched

ba

cter

ia

was

obs

erve

d b

etw

een

TE

P c

ol-

lect

ed d

urin

g th

e di

atom

blo

om s

tudy

and

T

EP

col

lect

ed a

t ot

her

tim

es.

NON-

diat

om

0

DIA

TO

M

TEP i

n c

ult

ure

s

Ab

un

dan

ce

TE

P f

ound

in

b

atch

cu

ltur

es o

f di

atom

sp

ecie

s ge

nera

lly

had

a

sim

ilar

ov

eral

l ap

pea

ran

ce t

o TEP f

ound

in

nat

ure

. H

ow-

ever

, ab

un

dan

ce a

nd

siz

e of

TE

P g

ener

ated

by

di

ffer

ent

spec

ies

diff

ered

app

reci

ably

(T

able

2)

. T

EP

o

bse

rved

in

cu

ltur

es of

Ch

ae

loce

ros

grac

ilis

wer

e ve

ry s

mal

l (3

to

5 pm

, av

erag

e 4 pm) a

nd

co

mm

a-sh

aped

TE

P le

ng

th (u

rn)

Fig

. 4

(a) T

otal

num

ber

abun

danc

e of

bac

teri

a pe

r in

divi

dual

TE

P v

ersu

s si

ze of

the

resp

ecti

ve TEP.

[b) B

acte

ria

dens

ity

per

area

TEP v

ersu

s th

e si

ze

of th

e re

spec

tive

TEP

Page 8: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Mar. E

col. Prog. Ser. 113; 185-1 98, 1994

0

No

n-d

iatom

typ

e

A

Diato

m-typ

e

0 N

on

-diatam

typ

e

A

Diato

m-typ

e

0

1 2

To

tal Area o

f TE

P

(mm

2 rnl"')

Fig. 5

. (a) Total bacteria num

ber per sample versus total quantity of

TEP. (b

] Fraction of bacteria attached to TE

P versus the total quantity of TE

P per sam

ple. Regression calculated om

itting the 2 values of the fleeced bloom

and the 89 %

value

du

ced 3500 T

EP

ml"

within th

e first 2 d

(early exp

on

enti~

il ph

ase), but no signi-

ficant ch

ang

e w

as observed

thereafter (F

ig. 6b

). Most

TEP

were larg

e (1

0 to

25 pm

) and

total quantity of TE

P w

as hig

h

com

pared

to C, gracilis. T

EP

gen

erated by

Nitzschia an

gu

laris belonged mostly to th

e sm

allest size

class, but

larger particles

were

abu

nd

ant

(Fig. 6c). TEP

from

N.

ang

ularis w

as circular or squ

are-shap

ed

and

an o

rder of

rndgnitude less abu

nd

ant

than

C. gracitis. T

he d

ecrease of total TE

P ab

un

dan

ce on

Day

5

(late exponential phase) w

as presumably a

n artefact, as N

. angularis form

s mats w

hich contain TE

P

on

flask walls. T

hese could not be sam

pled

quantitatively.

As

maxim

al cell

density an

d cell sizes of

these 3 species differ con- siderably (F

ig. 6), th

e specific quantity of T

EP

g

enerated

(total area

of T

EP

/total volum

e of cells) was calculated (T

able 2).

According to those calculations C

. gracills produced th

e most T

EP

per cell volum

e. C

om

pared

to the larg

e differences in num

- b

er abu

nd

anrn

of T

EP

betw

een species,

the specific quantity of T

EP

produced was,

however, rem

arkab

ly sim

ilar, N

o T

EP

was found in cultures of colonial

Phaeocystis ev

en

in stationary p

hase a

s long as colonies d

id not

disintegrate. In sen

escence w

hen

colonies beg

an to dis-

integ

rate, the fragm

ents of the disrupted

colonies stained

blue. A

lthough fo

rmed

differently from

diatom T

EP

, these parti-

cles may

be classified as T

EP an

d could

play an

important part for th

e formation of

marine

snow

after P

haeocystis bloom

s (P

assow &

Wassm

ann 19

94

).

bu

t slightly larger particles b

egan

to app

ear in late ex

po

nen

tial ph

ase on

Day 9 (F

ig. 6a). T

otal TE

P con- S

ize-frequency distributions centrations

were very high

(up

to 8000 T

EP

ml")

com

pared

to oth

er diatoms a

nd

increased du

ring

the

Most of

the size frequency spectra of

TE

P d

urin

g

wh

ole

growth

cycle. T

halassiosira

weissflogjj

pro- the

growth

cycle of

Chaetoceros

gracilis belong

Table 2. C

haracteristics of TE

P generated in cultures of diatom

s

Species M

aximal abundance

Maxim

al total area Specific production

(no, nil")

(mm2 mr

l) (mm2

TE

P nun-' cell '1

Ch

aetoceros gracilis T

halassiosira w

eissflogii N

itzschia an

gularis

"TE

P formed m

ats on flask walls m

aking quantification of T

EP

after early exponential phase impossible

Page 9: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pass

ow &

Alk

lrec

lg~:

Dis

trib

utio

n of

tran

spar

ent e

xopo

lym

cr p

arti

cles

to G

rou

p 1.

Init

iall

y, a

t th

e b

egin

nin

g o

f th

e ex

po

nen

tial

ph

ase

(Day

3) t

he

val

ue

of b

was

ex

cept

iona

lly

hig

h (

b =

4.2

), d

ecre

ased

du

r-

ing

exp

onen

tial

gro

wth

(to

3.6

on D

ay g

), b

ut

incr

ease

d sl

ight

ly

at t

he

begi

nnin

g of

th

e st

atio

nary

ph

ase,

bef

ore

it d

ecre

ased

dra

sti-

ca

lly

(Day

1

3,

b =

2.4

) a

l la

te

stat

iona

ry

ph

ase

(Fig

. 7a)

. TEP p

rod

uce

d in

th

e cu

llur

e of

N

Uzs

chia

an

gula

ris

exhi

bite

d at

i!c

ii-Iy

ex

pone

nlia

l p

has

e a

dist

ribu

tion

bel

ongi

ng

10 C

I'I

IL

~~

2

(b

= 2

.1).

Siz

e sp

cdra

of

TE

P

gen

erat

ed b

y T

hala

ssio

sira

w

elss

flog

ii d

id

not

foll

ow a

pow

er-l

aw d

istr

ibut

ion.

-I \

\ la

te e

xpo

nen

tial

Flo

ccul

a ti

on e

xper

imen

t

i ,*,

, A

da

y 0

,

A

,,

0

,

Th

e ch

ang

e in

si

ze

spec

tra

of

TE

P o

bse

rved

du

rin

g a

flo

ccul

atio

n ex

peri

men

t w

ith

Cha

etoc

eros

gr

acil

is

Illu

stra

tes

how

ag

gre

gat

ion

pro

cess

es a

lter

th

e si

ze d

istr

ib-

utio

n of

TE

P (

Fig

. 7b). I

niti

ally

the

siz

e sp

ec-

tra

of

TE

P f

itte

d a

pow

er-l

aw d

istr

ibut

ion

wit

h a

b-va

lue

ol

Gro

up

1 (

b =

3.2)

. bu

t d

ur-

in

g th

e ag

gre

gat

ion

b-v

alue

s d

ecre

ased

an

d

[,he

fit

10

a po

wer

-law

fu

ncti

on b

egan

to

de

teri

orat

e (a

fter

4 a

nd 8

rni

n b

= 2

.3 a

nd

0.9

re

spec

tive

ly).

Alt

er 2

0 m

in r

otat

ion

the

size

di

stri

buti

on o

f T

EP

did

not

fit

a po

wer

-law

fu

ncti

on a

ny

mo

re a

nd

th

e h

igh

est

abu

n-

dan

ce o

f T

EP

was

fou

nd i

n t

he

thir

d si

ze

clas

s, a

t 10

0 pm

. DIS

CU

SSIO

N

Dis

trib

utio

n of

TEP

The

gen

eral

dis

trib

utio

n p

atte

rn o

f T

EP

in

the

oce

an w

as s

imil

ar to

th

at o

f ph

ytop

lank

- to

n: T

EP

was

fou

nd t

o be

mor

e ab

un

dan

t in

co

asta

l ar

eas

than

in

the

op

en o

cean

an

d

mor

e ab

un

dan

t in

the

trop

hoge

nic

zone

tha

n be

low

. T

he

rang

es o

f co

ncen

trat

ions

an

d

size

s of

T

EP

in

the

oce

an w

ere

sim

ilar

to

thos

e of

ph

ytop

lank

ton.

N

ever

thel

ess,

no

si

mpl

e ov

eral

l re

lati

onsh

ip b

etw

een

am

bi-

en

t ph

ytop

lank

ton

and

TE

P c

once

ntra

tion

w

as o

bser

ved.

Phy

topl

ankt

on c

ompo

siti

on,

how

ever

, ap

pea

red

to

be

an i

mpo

rtan

t fa

c-

tor.

Con

cent

rati

ons

of TEP t

end

ed t

,o b

e lo

w

wh

en

diat

oms

do

min

ated

ph

ytop

lank

ton,

b

ut

aver

age

size

an

d to

tal

area

of

TE

P w

ere

larg

e co

mp

ared

to

stat

ions

wh

ere

diat

oms

wer

e sc

arce

.

- /

We

exo

on

entl

al

b

da

y 0

A

h

r ,

l l

10

10

0

- - E 1

00

0

, ea

rly

exp

on

enti

al

3.

7

10

TE

P l

en

gth

(ur

n)

10

0

Fig

. 6

. Si

ze-f

requ

ency

dis

trib

utio

n [d

(N/l

og l

) vs

log

11

of TCP b

efor

e in

ocul

atio

n of

th

e m

edia

(D

ay 0

) an

d du

ring

ear

ly a

nd l

ate

expo

nent

ial

grow

th p

hase

of

the

3 di

atom

cul

ture

s. (

a) C

hae

toce

ros

grac

ilis.

Ear

ly:

Day

3 (

2 X

10

5 cel

ls r

nl")

; la

te: Day 9

(10

" cel

ls ml"'). (

b)

Tha

lass

iosi

ra

wei

ssfl

ogii

. Ear

ly: D

ay 2

(2

X 10

" ce

lls

ml"

'); la

te:

Day

5 (

7.7

X lo

4 cells

ml-l). (

c) N

itzs

chia

ang

ular

is. E

arly

: Day

2 (

7 X

103

cell

s m

l*')

; lat

e: D

ay 5

(2

X 10

'' ce

lls m

l-'l

Page 10: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

194 M

ar. Eco

l. Prog. S

er. 113: 185-198, 1994

A

- - a

utions of com

ponent particles (Lam

bert et b

-va

lue

s

cells ml

al. 1981, McC

ave 19

84

). -

a U

nder the assum

ption of constant

pro-

4 -.

&.

'Â¥ 'Â

¥

duction of particles into the sm

allest size *

à - - +

- - Ã

-A'" \

class (to keep

the flux of

material through

- -

the spectrum constant) coagulation d

ue to

0 sh

ear and

loss of larg

e agg

regates d

ue to

3-

sedim

entation will create stead y-state size

spectra which fit a pow

er-ldw distribution

10

with b =

4 (Lerrnan 1979, H

un

t 1980, 1982,

n

McC

ave 1984). The effect of

aggregation

~s

l

on

size distributions dep

end

s, however, on

the m

echanisms (B

rownian m

otion, shear,

,

differential settling) governing coagulation lo5

(Hu

nt1

98

0,1

98

2).

4

10 12

As dissolution is faster for sm

aller than

for 1

2 6

a larger particles the slope of

the resulting In

ocu

lation

d

ay

s

size distribution would d

ecrease (smaller b

) if only dissolution occurred (L

erman

1979). 1

b i

0 o m

inu

tes

0

8 min

utes

A

20 m

inu

tes

c

- 1

0 1

Q.

-

"A

Fr,igm

entation or disaggregation

on the

other hand lead to a residual distribution w

ith ~i

steeper slope (b

larger, m

ore sm

aller particles) (L

erman 1

97

9). F

iltration rnecha- nism

s, like grazing of zooplankton, may not

chan

ge the sh

ape of

the curve (if they are

effective over the w

hole sixe rang

e), bu

t red

uce

the total

nu

mb

er of

particles (ch

ang

e in A

). It is not know

n which processes signifi-

cantly alter abu

nd

ance an

d distribution of

TE

P. T

he sh

apes of

size distributions may

indicate wh

ich processes

are of prim

ary

50

100

300

importance for T

EP

. In the following discus-

sion the size spectra of T

EP

observed in T

EP

length (urn) different

environments w

ill b

e analyzed,

Fig. 7. (a) C

han

ge of b

-valu

e du

ring

gro

wth

of Ch

aciocero

s gracilis. Cell

mak

ing

the foU

owina assum

ptions: co

ncen

tration

w

as determined daily.

(b) C

han

ge in

the sh

ape of

size (1) A

power-law

distribution with

b =

4 spectra of T

EP

du

ring

flocculation of C

. gracilis represents a theoretical steady-state situa- tion, w

here production of

small TEP is bal-

Th

eory

of size spectra an

d assum

ptions an

ced b

y loss of coagulated T

EP

. We w

iEl use this value as a reference point in our discussion.

Particle

size distributions

reflect interactions

be- (2

) For steady-state conditions to occur particles must

tween particles. M

arine particulate matter can g

ener-

be generated continuously into the low

end

of the size

ally be fitted by a power-law

distribution. Th

e shap

e of spectra. T

EP

is formed from

dissolved excretion prod- size distributions of

rndrine susp

end

ed particles b

e- ucts of

phytoplankton via coagulation of m

icrofibrils tw

een l to l00

pm

, or even

up to l00

0 pm, ap

pear to be

(Alldredge et

al. 1993, Passow

et

al. 1994). New

ly essentially constant as reflected in a constant value of

formed T

EP

will accordingly b

e introduced into th

e th

e logarithmic slope of th

e size distributions (b

= 4

) low

end

of th

e size spectrum.

(Sheldon et al. 1

97

2, L

al & L

erman 1

97

5, L

erman et al.

(3) A

s TE

P are relatively larg

e but do

not sink app

re- 1977, H

un

t 1980, 1982, M

cCave

1984). Reasons

tor ciably (u

np

ub

l. data), it is assum

ed thai coagulation of such a constant size distribution of m

arine su

spen

ded

T

EP

is dominated by sh

ear. m

atter are, however, controversial an

d it has been su

g-

(4) Furtherm

ore, it

will

be

assumed

that T

EP

is g

ested that

distributions of individual particle

types prim

arily g

enerated

by phytoplankton an

d that pro-

may not follow

a po

wer-law

distributions, but that the

duction of TE

P ceases in th

e absen

ce of phytoplankton. overall distributions are m

ade u

p of log-norm

al distrib- P

resumably T

EP

is also gen

erated by excretion prod-

Page 11: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pass

ow &

Alld

redg

e: D

istri

butio

n of

tran

spar

ent e

xopo

lym

er p

artic

les

ucts

01

bac

teri

a, b

ut n

o re

lati

onsh

ip b

etw

een

bac

teri

a an

d T

EP

ab

un

dan

ce w

as o

bse

rved

. (5

) It i

s as

sum

ed th

at T

EP

gen

erat

ed b

y d

iffe

ren

t sp

e-

cies

hav

e di

ffer

ent

prop

erti

es.

TE

P d

iffe

red

cons

ider

- ab

ly i

n si

ze,

shap

e an

d a

bu

nd

ance

bet

wee

n s

peci

es.

Th

e ro

le o

f T

EP

du

rin

g a

gg

reg

atio

n a

lso

diff

ers

for

clif-

fe

ren

t sp

ecie

s (d

oc

ke

r &

Pas

sow

in p

ress

). T

he

stic

ki-

ness

of

TE

P p

rod

uce

d b

y C

haet

ocer

os g

raci

lis

is h

igh

(P

asso

w e

t al

. 19

94).

wh

erea

s T

EP

of

Nit

ztsc

hia

angu

- la

ns

and

Tha

lass

iosi

ra w

eiss

flog

ii d

o no

t ap

pea

r to

be

stic

ky (

Log

an e

t al

. 1994).

Kie

rboe

& H

anse

n (

1993

) fo

und

TE

P f

rom

Rho

dom

onas

hal

tica

an

d S

keie

ton

emfi

co

stat

um n

ot t

o b

e st

icky

, w

her

eas

Cos

cino

disc

us s

p.

gen

erat

ed T

EP

that

co

agu

late

d e

asil

y,

Siz

e sp

ectr

a of

TEP

In c

ultu

re

Siz

e sp

ectr

a o

bse

rved

in

cu

ltu

res

may

hel

p i

nte

rpre

t fi

eld

dat

a, a

s ba

tch

cult

ures

are

rel

ativ

ely

sim

ple

sys-

te

ms

(no

loss

fro

m s

edim

enta

tio

n, c

on

sum

pti

on

). T

otal

qu

anti

ty a

nd

ab

un

dan

ce o

f T

EP

in

crea

sed

du

rin

g t

he

grow

th c

ycle

of

Cha

etoc

eros

gra

cjli

s an

d t

he

syst

em

was

far

from

ste

ady

sta

te. C

han

ges

in

the

size

spe

ctra

of

TE

P d

uri

ng

gro

wth

of

C. g

raci

lis

may

be

expl

aine

d by

the

int

erac

tion

bet

wee

n p

rodu

ctio

n an

d a

gg

reg

a-

tion

of TEP. In

itia

lly

the

b-va

lue

was

ver

y hi

gh (

4.2

) an

d c

lose

to

the

stea

dy

-sta

te e

quil

ibri

um p

ost

ula

ted

if

intr

oduc

tion

of

new

(s

mal

l) p

arti

cles

is

bala

nced

by

co

agul

atio

n an

d l

oss

of la

rge

agg

reg

ates

(H

un

t 1

98

0,

1982

). D

urin

g th

e ex

po

nen

tial

gro

wth

ph

ase

the b-

valu

e of

the

spec

tra

of T

EP

dec

reas

ed c

onti

nuou

sly

(to

3.6

on

Day

g),

sug

ges

tin

g t

hat

coag

ulat

ion

was

sli

ghtl

y fa

ster

tha

n pr

oduc

tion

of

TE

P, A

t th

e on

set

of th

e st

a-

tion

ary

ph

ase

the

form

atio

n ra

te

of T

EP

in

crea

sed

ap

prec

iabl

y, a

pp

aren

tly

now

do

min

atin

g,

as t

he p

er-

cen

tag

e of

sm

all p

arti

cles

in

crea

sed

. Alt

houg

h pr

oduc

- tio

n ra

te

of T

EP

st

ayed

hig

h

duri

ng

the

stat

iona

ry

ph

ase,

th

e b-

valu

e d

rop

ped

dra

stic

ally

, in

dica

ting

tha

t ag

gre

gat

ion

d

om

inat

ed

inte

ract

ions

of

TE

P

at

this

ti

me.

In

the

floc

cula

tor

high

sh

ear

rate

s m

ade

coag

u-

lati

on o

f TEP i

mp

ort

ant

on t

ime

scal

es t

oo s

hort

for

pr

oduc

tion

of

TEP t

o b

e of

sign

ific

ance

. T

he

init

ial

dec

reas

e in

b-v

alu

es a

s fl

occu

lati

on b

egan

an

d t

he

sub

seq

uen

t de

viat

ion

from

a p

ower

-law

dis

trib

utio

n d

uri

ng

th

e fl

occi

ng p

has

e d

escr

ibe

this

ag

gre

gat

ion

do

min

ated

sys

tem

.

In t

he

pre

sen

ce o

f di

atom

s

In t

he

fiel

d, s

ize

spec

tra

01 T

EP

ob

serv

ed in

th

e p

res-

en

ce o

f di

atom

s b

elo

ng

ed e

ith

er to

Gro

up

2, t

he

tran

si-

tion

gro

up

or

did

not

foll

ow a

po

wer

-law

dis

trib

utio

n.

Th

e se

qu

ence

of

spec

tra

of T

EP

col

lect

ed d

uri

ng

th

e fl

occi

ng b

loom

evo

lved

sim

ilar

ly t

o th

ose

obse

rved

fo

r C

ha

eto

cero

s gr

acil

is i

n th

e fl

occu

lato

r, s

ug

ges

tin

g t

hat

co

agul

atio

n of

TE

P d

om

inat

ed p

roce

sses

alt

erin

g s

ize

dist

ribu

tion

s of

TE

P i

n th

ese

sam

ple

s. T

he i

nclu

sion

of

a sp

ecif

ic s

pec

tra

in o

ne

of t

he

gro

up

s al

so a

pp

eare

d to

co

rres

po

nd

to t

he

deg

ree

of fl

occu

lati

on o

f th

e d

iato

ms.

S

ize

dist

ribu

tion

s of

T

EP

bel

ongi

ng t

o th

e tr

ansi

tion

g

rou

p w

ere

ob

serv

ed w

hen

dia

tom

s w

ere

not

floc

cing

. T

he

size

dis

trib

utio

ns o

f T

EP

did

not

fol

low

po

wer

-law

di

stri

buti

ons

wh

en

a bl

oom

w

as

full

y fl

occ

ed.

Siz

e sp

ectr

a be

long

ing

to G

rou

p 2

in

dic

ated

th

at m

acro

- sc

opic

ally

vis

ible

flo

es w

ould

for

m w

ithi

n d

ays.

Thi

s im

plie

s th

at m

icro

scop

ical

ly v

isib

le c

oagu

lati

on o

f T

EP

p

rece

eds

the

mac

rosc

opic

al f

locc

ulat

ion

of a

bloo

m,

sug

ges

tin

g t

hat

siz

e sp

ectr

a of

TE

P m

ay h

ave

pre

dic

- ti

ve v

alu

e.

Dia

tom

ass

emb

lag

es w

ere

mos

tly

Ch

aet

oce

ros

spp

. d

om

inat

ed b

loom

-dia

tom

s. O

ur

exp

erim

ents

as

wel

l as

d

ata

from

oth

ers

(Kia

rboe

& H

anse

n 1

993,

Kia

rboe

et

al.

1994

) in

dic

ate

that

TE

P m

ay b

e le

ss i

mp

ort

ant

dur-

in

g f

locc

ulat

ion

of o

ther

dia

tom

sp

ecie

s.

A

size

sp

ectr

um

nea

r eq

uili

briu

m

cond

itio

ns (

be-

lo

ng

ing

to

Gro

up

1)

was

nev

er o

bser

ved

in t

he

pre

s-

ence

of

diat

oms

in n

atu

re. P

roce

sses

lik

e di

ssol

utio

n or

se

lect

ive

cons

umpt

ion

of sm

alle

r T

EP

may

hav

e ca

use

d

the

ob

serv

ed d

evia

tion

s fr

om a

ste

ady

-sta

te s

itu

atio

n.

How

ever

, as

eff

ects

of

diss

olut

ion

wer

e no

t vi

sibl

e in

cu

ltu

res,

we

do

not

ass

um

e th

is to

be

a pr

oces

s of

maj

or

imp

ort

ance

, S

ize

dist

ribu

tion

s w

ith

b-va

lues

bel

ow 4

w

ould

als

o b

e ex

pec

ted

, if

TE

P w

ere

frac

tal.

In

fact

, u

nd

er t

he

assu

mp

tio

n of

ste

ady

sta

te t

he

frac

tal d

imen

- si

on o

f ag

gre

gat

ed p

arti

cles

may

be

calc

ula

ted

fro

m

b-va

lues

(Ji

ang

& L

ogan

199

1, L

ogan

& K

ilps

199

4). A

s ag

gre

gat

es f

orm

ed i

n m

arin

e sy

stem

s g

ener

ally

hav

e fr

acta

l p

rop

erti

es (

Log

an &

Wil

kins

on 1

990,

Kil

ps e

t al

. 19

94),

we

sug

ges

t th

at t

he

low

b-v

alue

s d

uri

ng

gro

w-

ing

(no

n-fl

occi

ng)

diat

om b

loom

s m

ay r

efle

ct i

n p

art

the

frac

tal

nat

ure

of

TE

P a

gg

reg

ates

.

In t

he

pre

sen

ce o

f no

n-di

atom

phy

topl

ankt

on

Siz

e sp

ectr

a of

TE

P i

n th

e p

rese

nce

of

no

n-d

iato

m

phyt

opla

nkto

n b

elo

ng

ed t

o G

rou

p 1

. Th

ese

dis

trib

u-

tion

s m

ay

rep

rese

nt

cond

itio

ns

nea

r st

ead

y

stat

e,

wh

ere

coag

ulat

ion

of T

EP

is b

alan

ced

by

prod

ucti

on o

f T

EP

. L

arg

e ag

gre

gat

es w

ere

nev

er o

bse

rved

at

thes

e st

atio

ns,

mak

ing

an

ap

pre

ciab

le l

oss

of T

EP

du

e to

si

nkin

g un

like

ly.

If lo

ss w

as l

ow,

both

pro

du

ctio

n a

nd

co

agul

atio

n of

TE

P m

ust

hav

e b

een

low

. Siz

e sp

ectr

a of

TE

P ob

serv

ed i

n th

e p

rese

nce

of

no

n-d

iato

m p

hyto

- p

lan

kto

n n

ever

bel

on

ged

to

Gro

up

2 o

r th

e tr

ansi

tion

g

rou

p,

whi

ch

also

in

dic

ates

th

at

coag

ula

tio

n n

ever

Page 12: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Mar. E

col. Prog. Ser. 113: 185-198, 1994

dominated size distributions of T

EP

in these sam

ples. L

ow

coagulation rates

sug

gest that

TE

P

from n

on

- diatom

phytoplankton may be less sticky than diatom

- T

EP

. Th

e hig

her

b-values may furtherm

ore indicate that non-diatom

TEP is less fractal than TE

P g

enerated

by diatom

s. In the ab

sence of

phytoplankton

Th

e size

distributions of

TE

P

in th

e ab

sence

of phytoplankton w

ere not predictable and

presumably

dep

end

on

the phytoplankton assem

blag

e which g

en-

erated T

EP prior to sam

plin

g. In July, after the sed

i- m

entation of th

e diatom bloom

, the size distribution of

TE

P belonged to G

roup 2 and

probably reflected the

flocced bloom

, alth

ou

gh

phytoplankton

(and

m

ost T

EP

) had

sedirnented. A TEP size spectra belonging to

Group 2 w

as also observed at 1000 m at B

AT

S, below

th

e layer abu

nd

ant in C

haetoceros spp

. Size distribu-

tions of T

EP

from

below the euphotic zone (oceanic

and

coastal) gen

erally belonged to G

roup 1. A

s TE

P

are presumably

not g

enerated

below

the

eup

ho

tic zone, an

d as th

e sinking velocity of individual T

EP

m

ust be very small, it m

ay be concluded that processes ch

ang

ing

distributions of non-diatom

TE

P are slow

.

Co

nclu

sion

s from analysis of size sp

ectra

Our

field d

ata su

gg

ests that

TE

P g

enerated

by

diatoms

differ from

non-diatom

T

EP

. D

iatom

TE

P

app

ear to be more fractal an

d exhibit a h

igh

er slicki- ness. T

EP

pro

du

ced by different diatom

species also

differ. Th

e size spectra of T

EP

gen

erated by diatom

s furtherm

ore differ dep

end

ing

on the d

egree of fioccu-

lation of the diatoms. P

ossibly, the spectra of TE

P g

en-

erated by diatom

s may be u

sed to m

ake predictions

abo

ut th

e deg

ree of flocculation of cells, as th

e coagu- lation of

TE

P ap

pears to p

recede th

e macroscopically

visible flocculation

of the

bloom.

Of

all processes

potentially altering size distributions of TE

P, only coag-

ulation of T

EP

gen

erated by diatom

s was conspicuous.

All other processes seem

ed com

parably slow an

d size

distributions of non-diatom

TE

P ap

peared

to remain

un

chan

ged

over long periods, thus occurring even at g

reat dep

ths. B

acteria associated with T

EP

Th

e abu

nd

ance of

bacteria attached

to TE

P w

as not directly related

to size of TE

P. B

acteria density on TE

P,

however, d

ecreased w

ith increasing size of TE

P. A

sim-

ilar decrease in specific bacterial density w

ith agg

re-

gate size (bacteria per ag

greg

ate weight vs ag

greg

ate size) occurs on m

arine snow (A

lldredge & G

otschalk 1

99

0). T

he d

ecrease of bacterial density with T

EP size

may

be an

artefact of m

easuring TE

P collapsed on fil-

ters (in 2 dimensions). T

EP

are presumably 3-dim

en- sional

and

often

fractal w

hen

su

spen

ded

. B

acteria them

selves may also influence the size of

TE

P, either by degradation or by generation of

alcian blu

e stain-

able m

ucous. Bacteria attaching to surfaces h

ave been

found to excrete extracellular polysaccharides abu

n-

dantly (D

erho 1990, C

owen

1992, Vandevivere

&

Kirchrnan

1993). Th

e high

variability of

bacterial attachm

ent within one size class m

ay be caused by dif-

ferences in deg

ree of colonization, ag

e or composition

of TE

P.

Th

e relationship b

etween

total nu

mb

er of bacteria

and

total quantity of TE

P d

oes not indicate th

at bacte- ria ab

un

dan

ce is increased by th

e presen

ce of T

EP

. T

he larg

e quantity of TE

P during the floccing diatom

bloom w

as not paralleled by a respective increase in

bacteria for exam

ple. F

rom this it m

ay be concluded that T

EP

is not always a preferred en

ergy

source pro- m

oting growth of bacteria an

d no sim

ple relationship exists b

etween

TE

P and bacteria ab

un

dan

ce. Th

e per- cen

tage

of bactcrid

associated w

ith T

EP

, how

ever, ap

pear to d

epen

d

within

certain restrictions on th

e total area of

TE

P. T

his could indicate that

bacteria colonize TEP according to the surface area available, rather than extensively grow

on TE

P.

With one exception, less th

an 2

5%

of all bacteria

were associated w

ith TE

P. Th

ese values are lower than

those reported by us earlier [Alldredge et al. 1993, P

as- sow

et al. 19

94

). This difference is partially d

ue to use

of a different, possibly mo

re accurate, way of

calculat- ing

these p

ercentag

es. Values given in

the present

pap

er should be viewed as low

er estimates, w

hereas

earlier estimates rep

resented

up

per lim

its. In

marine

pelagic environm

ents attached

bacteria arc generally reported to account for less than 5

%, an

d

rarely more than 1

0%

, of the total bacteria assemb

lage

(Hodson et al. 1981, L

inley & F

ield 1982). T

EP

con- tributes appreciably

to m

arine snow

(m

acro-ag

gre-

gates), but as m

arine snow ag

greg

ates are generally rare,

less th

an

5%

of all

bacteria are

attached

to

marine

snow

(Alldredge

et al.

1986, Alldredge

&

Gotschalk

1990). Higher p

ercentag

es (10

to 20

%) of

attached

bacteria were only found in river plum

es or estuaries w

here allochtonous detrital m

aterial is abu

n-

dan

t and turbidity high (Ducklow

& K

irchman

1983, P

ainchaud & T

herriault 1989). W

e believe that

previous studies w

hich h

ave not

considered TE

P-attached bacteria

may

have u

nd

er- estim

ated the percen

tage of

attached

forms. B

acteria attach

ed to T

EP

may have to be ad

ded

to numbers of

attached

bacteria

derived by

most

meth

od

s. Many

Page 13: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Pas

sow

& A

lld

red

ge;

Dis

trib

utio

n of

tran

spar

ent

exop

olym

er p

artic

les

197

met

hods

rel

y on

siz

.e s

epar

atio

n w

ith

filt

ers

(Aza

m &

H

odso

n 19

77).

Pre

lim

inar

y te

sts

show

ed t

hat

TE

P i

s ex

trem

ely

flex

ible

an

d t

hat

TE

P s

ever

al t

ens

of p

m i

n si

ze c

an b

e pa

ssed

thr

ough

a 1

1i1n

filt

er.

Und

er t

he

mic

rosc

ope,

bac

teri

a at

tach

ed t

o T

EP

wou

ld b

e ic

lent

i-

fied

as

free

bac

teri

a w

itho

ut o

ur d

oubl

e-st

aini

ng t

ech-

ni

que.

W

itho

ut

stai

ning

on

ly

TE

P

whi

ch

are

very

de

nsel

y co

loni

zed,

an

d

lyin

g in

ba

cter

ia-p

oor

snr-

ro

undi

ngs,

will

be

reco

gniz

ed a

s pa

rtic

les.

In

a de

tail

ed

mic

rosc

opic

al

inve

stig

atio

n L

inle

y &

F

ield

(1

982)

de

scri

be

the

diff

eren

t ki

nd o

f ba

cter

ial

asso

ciat

ions

th

ey f

ound

on

the

wes

t co

ast

off

Sou

th A

fric

a. A

bout

8

5%

of

all

mic

ro-a

ggre

gati

ons

they

ob

serv

ed

are

desc

ribe

d as

'gel

atin

ous

agg

reg

ates

' whi

ch, a

ccor

ding

to

the

des

crip

tion

giv

en,

may

be

iden

tica

l w

ith

larg

e an

d h

eavi

ly c

olon

ized

TE

P. I

n th

eir

stu

dy

, abo

ut 5

% o

f al

l ba

cter

ia w

ere

atta

ched

an

d 4

% w

ere

atta

ched

to

the

'gel

atin

ous

agg

reg

ates

'. B

ecau

se

of

the

tran

s-

pare

ncy

of TEP, a

larg

e fr

acti

on o

f ba

cter

ia a

ssoc

iate

d w

ith

TE

P,

espe

cial

ly o

n la

rge

web

s, m

ay h

ave

bee

n

over

look

ed e

ven

in t

his

care

ful

inve

stig

atio

n.

Impa

ct o

f T

EP on e

colo

gy

Th

e va

riab

ilit

y in

ab

un

dan

ce, s

ize

and

type

of

TE

P in

m

arin

e sy

stem

s w

ill

resu

lt i

n a

high

var

iabi

lity

in

the

re

lati

ve s

igni

fica

nce

of T

EP

for

ag

gre

gat

ion

, as

a fo

od

sour

ce f

or z

oopl

ankt

on,

in t

he

carb

on c

ycle

, fo

r th

e m

icro

bial

co

mm

unit

y an

d

for

chem

ical

ad

sorp

tion

pr

oces

ses.

A

ll di

atom

s w

e in

vest

igat

ed

gen

erat

ed T

EP

, an

d

Ske

leto

nem

a c

osla

tiim

, C

haet

ocer

os a

ffin

is a

nd

Cos

- ci

nodi

scus

sp

. als

o p

rod

uce

muc

ous

part

icle

s, p

resu

m-

ably

TEP (

Kim

boe

& H

anse

n 1

993)

. Het

eroc

apsa

pyg

- mia

(din

ofla

gell

ate)

for

ms

som

e T

EP

(u

np

ub

l. d

ata)

an

d T

EP

or

TE

P-l

ike

muc

ous

part

icle

s ar

e al

so f

orm

ed

by

Rho

dom

onas

ba

ltica

(K

iorb

oe &

H

anse

n

19

93

).

Col

onia

l P

haeo

cyst

is,

how

ever

, do

not

gen

erat

e TEP

exce

pt w

hen

col

onie

s ar

e di

sint

egra

ting

(P

asso

w &

W

assm

ann

19

94

), I

t th

us a

pp

ears

th

at m

ost

phyt

o-

plan

kton

sp

ecie

s g

ener

ate

TE

P,

and

T

EP

w

ere

obse

rved

at

all

stat

ions

in

nat

ura

l w

ater

s, e

ven

in

the

abse

nce

of

abu

nd

ant

phyt

opla

nkto

n.

Th

e ro

le TEP p

lay

in t

he

form

atio

n of

mar

ine

snow

, ho

wev

er,

vari

es.

Th

e im

port

ance

of

TE

P f

or a

gg

reg

a-

lion

of

som

e di

atom

sp

ecie

s h

as b

een

sho

wn

(Pas

sow

et

al.

19

94

). O

ther

dia

tom

spe

cies

, ho

wev

er,

like

Ske

le-

tone

ma

cost

atu

rn (

Kie

rboe

et

al.

1994

) or

Nit

zsch

ia

angi

ilar

is (

Cro

cker

& P

asso

w i

n pr

ess)

for

m f

loes

wit

h li

ttle

TE

P.

Th

e d

ata

pre

sen

ted

her

e in

dica

te t

hat

TE

P g

ener

ated

by

non

-dia

tom

spe

cies

may

not

con

trib

ute

sign

ific

antl

y to

the

for

mat

ion

of m

arin

e sn

ow.

TE

P, e

spec

iall

y w

hen

cove

red

by b

acte

ria,

may

be

valu

able

foo

d fo

r pr

otoz

oo-

and

zoo

plan

kton

. H

ow-

ever

, ver

y la

rge,

sti

cky

web

s of

TE

P s

uch

as

obse

rved

d

uri

ng

fle

ecin

g bl

oonl

s ar

e m

ore

lik

ely

to i

nhib

it f

eed

- in

g by

cl

oggi

ng

feed

ing

str

uct

ure

s. S

mal

l TE

P, a

s o

bse

rved

mor

e co

mm

only

in

the

abse

nce

of

diat

oms,

o

n t

he

othe

r h

and

, m

ay b

e to

o sm

all

for

man

y f

ilte

r fe

eder

s.

Th

e to

tal

area

of

TE

P w

as r

elat

ivel

y sm

all

at s

tati

ons

wh

ere

diat

oms

wer

e ra

re, a

lth

ou

gh

ab

un

dan

ces

of TEP

wer

e ve

ry h

igh.

Thi

s w

ould

su

gg

est

that

in t

erm

s of

th

e cy

clin

g of

car

bon

TE

P m

ay b

e ap

prec

iabl

y m

ore

iinp

or-

tant

in

conn

ecti

on w

ith

diat

om b

loom

s th

an a

t ot

her

tim

es.

By

serv

ing

as a

sub

stra

te a

nd

pre

sun

~ab

ly an

en

erg

y

sou

rce

for

bact

eria

, TE

P m

ay a

lter

dis

trib

utio

n p

atte

rns

of b

acte

ria

and

the

ir a

vail

abil

ity

as a

foo

d so

urce

. Th

e d

egre

e to

whi

ch T

EP

may

be

util

ized

by

the

mic

robi

al

com

mun

ity

wil

l la

rgel

y d

epen

d u

po

n

the

chem

ical

co

mpo

siti

on o

f T

EP

. A

s ex

cret

ion

prod

ucts

of

phyt

o-

plan

kton

var

y w

ith

spec

ies

(Dec

ho 1

990)

, it

is a

ssu

med

th

at t

he

com

posi

tion

of

TE

P m

ay a

lso

vary

an

d th

at t

he

high

var

iabi

lity

of

ba

cter

ial

colo

niza

tion

of

TE

P m

ay

refl

ect

this

.

Ack

no

wle

dg

emen

ts.

Th

e p

roje

ct

was

fu

nd

ed

by

ON

R

(N00

014-

89-J

3206

). W

e th

ank

M

ark

BrZ

eZin

Ski

an

d

An

ne

Clo

se

for

pro

vid

ing

th

e sa

mp

les

from

B

AT

S an

d

Ch

ris

Go

tsch

alk

tor

hel

p w

ith f

igu

res.

We

furt

her

mo

re t

han

k B

ruce

L

og

an t

or v

alu

able

co

mm

ents

on

an

ear

lier

ver

sion

of

th

is

pap

er,

LIT

ER

AT

UR

E C

ITE

D

All

dre

dg

e, A

. L

., C

ole,

J. J

., C

aro

n, D

, A.

(19

86

). P

rodu

ctio

n of

h

eter

otr

op

hic

b

acte

ria

inh

abit

ing

m

acro

scop

ic

org

anic

ag

gre

gat

es (

mar

ine

sno

w)

from

su

rfac

e w

ater

s. L

imno

l.

Oce

ano

gr.

31:

68-

78

All

dre

dg

e, A

. L., G

ots

chal

k,

C.

C:.

(199

0). T

he

rela

tiv

e co

ntr

i-

buti

on o

f m

arin

e sn

ow

of

dif

fere

nt

ori

gin

s to

bio

logi

cal

pro

cess

es i

n c

oas

tal

wat

ers.

Co

nt.

She

lf Res.

10: 4

1-58

A

lld

red

ge,

A.

L.,

Pas

sow

, U

,, L

oq

an, B

. (1

99

3).

Th

e ex

iste

nce

, ab

un

dan

ce, a

nd

sig

nifi

canc

e of

lar

ge

tran

spar

ent

exo

po

ly-

mer

par

ticl

es i

n th

e o

cean

. D

eep

Sea

Res

. I 4

0:

1131

-1 1

40

Aza

rn,

F..

Ho

dso

n,

R.

E.

(19

77

). S

ize

dis

trib

uti

on

an

d a

ctiv

ity

of

mar

ine

mic

roh

eter

otr

op

hs.

L

imno

l.

Oce

ano

gr.

22

: 49

2-50

1 B

ader

, H

. (1

970)

. T

he

hy

per

bo

lic

dis

trib

uti

on

of

par

ticl

es.

J. g

eop

hy

s. R

es.

75:

2822

-283

0 C

ow

en, J

. P.

(1

99

2).

Mor

phol

ogic

al s

tud

y o

f m

arin

e b

acte

rial

ca

psu

les:

im

plic

atio

ns f

or m

arin

e ag

gre

gat

es.

Mar

. B

iol.

114:

85

-95

C

rock

et,

K.,

Pas

sow

, U

. (in

pre

ss).

Dif

fere

ntia

l ag

gre

gat

ion

of

dia

tom

s. M

ar. E

col.

Pro

g. S

er.

Dec

ho

, A

. W

. (1

99

0).

Mic

robi

al

exo

po

lym

er

secr

etio

ns

in

oce

an e

nv

iro

nm

ents

: th

eir

role

in

food

web

s an

d m

arin

e p

roce

sses

. O

cean

og

r. m

ar. B

iol.

A. R

ev.

28:

73-

153

Duc

klow

, H

. W

., K

irch

man

, D

. L

. (1

983)

. Bac

teri

al d

yn

amic

s an

d d

istr

ibut

ion

du

rin

g s

pri

ng

dia

tom

blo

om i

n H

ud

son

R

iver

plu

me,

US

A. J

. P

lan

kto

n R

es. 5

: 33

3-35

5 H

ewes

, C. D

., H

olm

-Han

sen

, 0. (

1983

). A

met

ho

d f

or r

eco

ver

- in

g na

nopl

ankt

.on

from

fil

ters

for

id

enti

fica

tio

n w

ith

th

e

Page 14: (TEP) · TEP. Bacteria density on TEP, however, decreased with increasing size of TEP exponentially. Between 2 and 25% of the total bacterial population were attached to TEP. Total

Mar. E

col. Prog. S

er, 113: 185-198, 1994

microscope:

the

filter-transfer-freeze (F

TF

) tech

niq

ue.

Lim

nol. Ocean

og

r. 28: 389-394 H

ewes, C

. D., R

eid, F. M. H

., Ho

lm-H

ansen

, 0. (1984). T

he

qu

antitativ

e analysis of nan

op

lank

ton

: a study of methods.

J. Plankton R

es. 6: 601-613 H

obbie, J. E., D

aley, R. J., Jasp

er, S. (1977). U

se of Nuclepore

filters for counting bacteria by fluorescence microscopy.

Appl. environ. M

icrobiol. 33: 1225-1228 H

odson, R. E., M

accubbin, A. E

., Pom

eroy, L. R

. (1981). Dis-

solved aden

osin

e triph

osp

hare utilization

by free-living an

d attach

ed bacterioplankton. M

ar. Biol. 64: 43-51

Horobin, R

. W. (1988). U

nderstandi.ng histochemistry: selec-

tion, evaluation and

desig

n o

f biological stains. Biochem

- istry an

d biotechnology. J. W

iley and

Sons, N

ew Y

ork 1-iunt, J. R

. (1980). Prediction of oceanic particle sizedistribu-

lions from coagulation an

d sed

imen

tation

mechanm

isrns. In:

Kavanaugh, M

. C., L

eckie, S. (ed

s.) Particulates in

water -

characterization, fate, effects and

removal. A

dv. C

hemistry 189: 243-257

Hunt,

J . R.

(1982). Self -similar

particle-size disiributions

du

ring

coagulation: theory and

exp

erimen

tal verification. J. F

luid Mech. 122: l(i9-185

Jiang

, Q., L

ogan, B. E

. (1991). Fractal dim

ensions of ag

gre-

gates

determ

ined

fro

m stead

y-state

size distributions.

Environ. S

ci. Tech. 25: 2031-2038

Kilps, J. R

., L

ogan, B. E

., AU

dredge, A

. L.

(1994) Fractal

dimensions of m

arine snow

agg

regates d

etermin

ed from

im

age analysis of

in situ ph

oto

grap

hs. D

eep S

ea Res, (in

press)

King. L. K.. P

arker, B. C

. (1988). A sim

ple, rapid meth

od

for en

um

erating

total viable and

metabohcally active bacteria

in gro

un

dw

ater. Appl. environ. M

icrobiol. 54: 1630-1631 K

iarboe, T., H

ansen

, J. L. S

. (1993). Phytoplankton ag

greg

ate form

ation: observations of p

atterns an

d m

echanisms of

cell sticking and

the. significance of exopolymer m

aterial. J. P

lankton Res. 1

5: 993-1018

Kiarboe, T

., Lu

nd

sgaard

, C., O

lesen, M., Han

sen, J. (1994).

Aggregation an

d sed

imen

tation

processes during a sprin

g

phytoplankton bloom: a field ex

perim

ent to test co

agu

la- lion theory. J. m

ar. Res. 52: 297-323

La), D

., Lerm

an, A. (1975). S

ize spectra of b

iog

enicp

articles in ocean w

aler and

sedim

ent. J. q

eop

hy

s. Res. 80: 423-430

Lam

bert, C. E

., Jehan

no

, C., S

ilverb

erg, N

., B

run-Cottan,

J. C., C

hesselet, R. (1

98

1). Log-norm

al distributions of sus-

pen

ded

particles in the o

pen

ocean

. J. mar. R

es. 39: 77-98

Th

is article was su

bmitted to th

e editor

Lerm

an, A

. (1979). Geochernical processes' w

ater and

sedi- m

ent environments. J. W

iley and

Sons, N

ew

York

Lerm

an, A., C

arder, K

. L., B

etzer, P. R. (1977). E

Jimination of

fine suspensoids

in th

e oceanic w

ater colum

n. E

arth P

ldiiet. Sci. L

ett 37: 61-70 L

inley, E. A

. S., F

ield, J. G. (1982). T

he n

ature an

d ecological

significance of bacterial ag

greg

ation

in a nearsh

ore u

p-

welling system

. Estuar

coast. Shelf S

ci. 14: 1 - 11 L

ogan, B. E

., Kilps, J. R

. (1994). Fractal dim

ensions of agg

re- g

ates formed in different fluid m

echanical environments.

Water R

es. 39: 390-395 L

ogan, B. E

., Kirctunann, D

. L. (1991). Uptake of

dissolved orgarucs by m

arine bacteria as a function of fluid m

otion. M

ar. Biol. Ill: 175-181

Logan, B

. E., P

assow, U

., Alldredge, A

. L. (1994). V

anab

le retention of

diatoms on screen

s du

ring

size separations. L

imnol. O

ceanogr. 39: 390-395 L

ogan, B. E.,

Wilkinson, D

. B.

(1990). F

ractal geometry of

marine snow

and

oth

er biological ag

greg

ates. L

imnol,

Oceanogr. 35: 130-136

McC

ave. I. N. (1984). S

ize spectra and

agg

regatio

n of

sus- p

end

ed particles in

the d

eep ocean. D

eep Sea R

es. 31: 329-352

Parker, B

. C., D

iboll, A. G

. (1966). Alcian stains for histochem

- ical localization of

acid and

sulfciird polysaccharides in alg

ae. Phycologia 6: 36-46

Pain

chau

d, J

,, Therriault, J.-C

. (1989). Relationship betw

een bacteria, phytoplankton an

d particulate organic carbon in

the u

pp

er St. L

awrence estuary. M

ar. Ecol. P

rog. Ser. 56:

301-311 P

assow, U

., Alldredge, A

. L., Logan, 8. E

. (1994). Th

e role of particulate carbohydrate ex

ud

att's in the flocculalion of

diatom bloom

s. Deep

Sea R

es. 4 1: 335-357 P

assow, U,, W

assmann, P. (1994). O

n the trophic fate of Phaeo-

cystis pouch

etii (Hariot): IV

. Th

e formation of m

ann

e sno

w

by P. pouch

etii. Mar. E

col. Prog. S

er. 104: 153-161 P

orter, G. K

., Feig, Y

. S

. (1980). Th

e use of

DA

P1 for identily- ing an

d counting aquatic m

icroflora. Linm

ol. Oceanogr.

25: 943-948 S

heldon, R. W

., Prak

ash, A

, Sutcliff, W

. H. Jr (1972). T

he size

distribution of particles in th

e ocenn. Lim

nol. Ocean

og

r. 17: 327-340

Vandevivere, P., K

irchman, D

. L. 11993). A

ttachment stim

u- lates exopolysaccharide synthesis by a bacterium

. Appl.

environ. Microbiol. 59: 3280-3286

Manuscript first

received: Janu

ary 25, 1994 R

evised version accep

ted: June 8

, 1994


Recommended