+ All Categories
Home > Documents > The model for bioconcentration factor (BCF) in fish · 2009. 3. 30. · The model for...

The model for bioconcentration factor (BCF) in fish · 2009. 3. 30. · The model for...

Date post: 02-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
25
The model for bioconcentration factor (BCF) in fish Alessandra Roncaglioni Istituto di Ricerche Farmacologiche “Mario Negri” CAESAR workshop on QSAR models for REACH Mario Negri Institute, Milan, Italy March 10-11, 2009
Transcript
  • The model for bioconcentration factor

    (BCF) in fish

    Alessandra Roncaglioni

    Istituto di Ricerche Farmacologiche “Mario Negri”

    CAESAR workshop on QSAR models for REACH Mario Negri Institute, Milan, Italy

    March 10-11, 2009

  • Outline

    • Bioconcentration factor (BCF)

    • BCF & REACH

    • Data availability & variability

    • Modelling BCF in CAESAR

    • Comparison with other approaches

    • Applet for the BCF model

    • Conclusions

    2

  • Bioconcentration factor (BCF)

    Bioconcentration is the uptake of the test substance in an

    organism relative to the concentration of test substance in the

    surrounding medium leading to an increase in concentration.

    BCF = Cf / Cw = k1 / k2

    Experimental test preferred standard: OECD 305 (Bioconcentration flow-through fish test)

    → Test duration: 44-116 days

    → Number of likely fish recommended for the test: 132-240 fish

    → Cost for each experiment: 50-100 k€

    3

    k1 = uptake rate constantk2 = depuration rate constantCf = concentration at steady state conditionsCw = concentration at at steady state conditions

  • BCF in REACH

    • Potential use of BCF information in REACH is for:• C&L• Prioritization (PBT, vPvB)• Chemical Safety Assessment (CSA)

    • Quantitative and qualitative (classification) modelling– PBT– vPvB

    o B BCF > 2000 L/kg = 3.3 in Log unito vB BCF > 5000 L/kg = 3.7 in Log unit

    4

    tonn/year C&L B and vB CSA BCF value

    > 1 X X> 10 X X X

    > 100 X X X X

  • Experimental variability

    • According to Dimitrov et al.1: 0.75 Log units

    • Assessed in other compilations:

    → EURAS database2

    – Considered the “golden” standard for BCF

    – Reliability scores assigned to judge the quality of the experiments

    5

    1SAR QSAR Environ. Res. 16, 2005, 531-5542http://www.euras.be/eng/project.asp?ProjectId=92

    Data without reliablity score

    -2.00

    -1.00

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    Substances

    Lo

    gB

    CF

    EURAS database2

    Data without reliability score

    Data with high reliability score (1, 2)

    -1.00

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    Substances

    Lo

    gB

    CF

    EURAS database2

    Data with high reliability score (1 & 2)

  • Experimental variability

    • Assessed in other compilations:

    → Canadian database3

    – Large compilation of bioaccumulation data

    – Reliability scores assigned to judge the quality of the experiments

    • but … B – vB range = only 0.4 log units6 3Arnot et al. Environ. Rev. 14, 2006, 257-297

    logBCF - OECD fish, all score

    -3.00

    -2.00

    -1.00

    0.00

    1.00

    2.00

    3.00

    4.00

    5.00

    6.00

    7.00

    substances

    log

    BC

    F

    logBCF - Oncorhynchus mikiss , score 1

    0

    1

    2

    3

    4

    5

    substances

    log

    BC

    F

    Canadian databaseall OECD fish; reliability score = 1

    Canadian databaser. trout; reliability score = 1

  • Outline

    • Bioconcentration factor (BCF)

    • BCF & REACH

    • Data availability & variability

    • Modelling BCF in CAESAR

    • Comparison with other approaches

    • Applet for the BCF model

    • Conclusions

    7

  • CAESAR modelling for BCF (I)

    • Dataset– Dimitrov et al: data according to official guidelines, widest

    collection available (~ 500 compounds)

    – Structure check and error pruning (removing ~ 50 comp.)

    • Descriptors– 2D descr. & lipophilicity: DRAGON, CODESSA, ACD, Pallas, MDL

    – Tautomerism issue (example next slide)

    • Models– Descriptor selection: GA, heuristic method

    – Classification: AFP

    – Quantitative: MLR, NN (SVM, CP, MLP), GMDH

    8

  • Tautomers behaviour in the BCF dataset

    9

    02468

    101214161820222426

    Moriguchi LogP KowWin LogP

    > 10%

    5% to 10%

    1% to 5%

    < 1%

    Lipophilicity descriptor variation

    26

    447

    BCF dataset

    Tautomeric forms

    Non tautomeric forms

  • Tautomers behaviour in the BCF dataset

    10

    02468

    101214161820222426

    Moriguchi LogP KowWin LogP

    > 10%

    5% to 10%

    1% to 5%

    < 1%

    Lipophilicity descriptor variation

    0.00

    0.50

    1.00

    1.50

    2.00

    2.50

    ID 3

    58

    ID 3

    71

    ID 3

    72

    ID 3

    99

    ID 4

    14

    ID 4

    29

    ID 4

    30

    ID 4

    36

    ID 4

    43

    ID 4

    45

    ID 4

    46

    ID 4

    49

    ID 4

    52

    ID 4

    55

    ID 4

    64

    ID 4

    72

    ID 4

    75

    ID 4

    85

    ID 4

    95

    ID 5

    07

    Mean St. Dev.

    Predicted values for BCF model (log units)26

    447

    BCF dataset

    Tautomeric forms

    Non tautomeric forms

  • -1

    0

    1

    2

    3

    4

    5

    -1 0 1 2 3 4 5

    Pre

    dic

    ted

    act

    ivit

    y

    Observed activity

    CAESAR modelling for BCF (II)

    • Hybrid model– If/then rules in different area of the relation

    (increase the slope and reduce Y intercept)

    – GMDH – self organization

    • Validation– Training / test splitting based on the chemical composition

    (atomic fragments)

    Training set n = 378 Test set n = 95

    – Cross-validation & test set prediction

    11

  • Results of CAESAR modelling

    12

    Modellingmethod

    Nr. ofvariables

    Descriptorsused (SW)

    Acc./R2

    training setAcc./R2 cv (loo)

    training setAcc./R2

    test set

    SAR (AFP) 3Dragon ACD

    0.86 0.74 0.81

    QSAR (RBF) 5Dragon MDL

    0.81 0.78 0.77

    QSAR (CP-NN) 8Dragon MDLACD

    0.95 0.70 0.76

    QSAR (MLP) 5 Dragon 0.80 0.80 0.79

    QSAR (GMDH) 4Dragon MDL

    0.76 0.76 0.77

    HM (2 models) 8Dragon MDL

    0.83 0.82 0.80

    HM (5 models) 36Dragon MDL KowWin

    0.85 0.85 0.80

  • In common in M1 and M2

    Description of selected model

    13

    • Combination of 2 RBF-NN models with 5 descriptors each

    MlogP Moriguchi log of the octanol–water partition coefficient (logP)

    BEHp2 Highest eigenvalue n. 2 of Burden matrix/weighted by atomic polarizabilities

    AEige Absolute eigenvalue sum from electronegativity weighted distance matrix

    GATS5v Geary autocorrelation – lag 5/weighted by atomic van der Waals volumes

    Cl-089 Cl attached to C1(sp2)

    X0sol Solvation connectivity index chi-0

    MATS5v Moran autocorrelation – lag 5/weighted by atomic van der Waals Volumes

    SsCl Sum of all (–Cl) E-State values in molecule

  • In common in M1 and M2

    Description of selected model

    14

    • Combination of 2 RBF-NN models with 5 descriptors each

    MlogP Moriguchi log of the octanol–water partition coefficient (logP)

    BEHp2 Highest eigenvalue n. 2 of Burden matrix/weighted by atomic polarizabilities

    AEige Absolute eigenvalue sum from electronegativity weighted distance matrix

    GATS5v Geary autocorrelation – lag 5/weighted by atomic van der Waals volumes

    Cl-089 Cl attached to C1(sp2)

    X0sol Solvation connectivity index chi-0

    MATS5v Moran autocorrelation – lag 5/weighted by atomic van der Waals Volumes

    SsCl Sum of all (–Cl) E-State values in molecule

    -1

    0

    1

    2

    3

    4

    5

    -1 0 1 2 3 4 5

    Pre

    dic

    ted

    com

    bin

    ee

    dac

    tivi

    ty

    M1, M2 activity

    Pred Comb. = 1.05 mean (M1,M2) – 0.065

    2.41

    1.355

    Pred Comb. = 0.996 min (M1,M2) + 0.042

    Pred Comb. = 0.936 mean (M1,M2) – 0.123

  • -2

    -1

    0

    1

    2

    3

    4

    5

    -2 -1 0 1 2 3 4 5

    Pre

    dic

    ted

    logB

    CF

    valu

    es

    Experimental LogBCF values

    Training Set

    Test set

    Description of selected model

    15

  • Outline

    • Bioconcentration factor (BCF)

    • BCF & REACH

    • Data availability & variability

    • Modelling BCF in CAESAR

    • Comparison with other approaches

    • Applet for the BCF model

    • Conclusions

    16

  • LogP based BCF estimations

    17

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

    Exp

    erie

    mn

    tal L

    ogB

    CF

    Experimental LogP

    Correlation between LogP and LogBCF

    Canadian db

    EURAS

    Dimitrov

    vBB

  • LogP based BCF estimations

    18

    -2

    -1

    0

    1

    2

    3

    4

    5

    6

    7

    -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

    Exp

    erie

    mn

    tal L

    ogB

    CF

    Experimental LogP

    Correlation between LogP and LogBCF

    Canadian db

    EURAS

    Dimitrov

    vBB

    LogP

    ≤ 4.5 > 4.5

    LogBCF< 3.3 68.98% 14.66%

    ≥ 3.3 2.26% 14.10%

  • External validation & EPI Suite comparison

    19

    EPI Suite v4.0 CAESAR

    Training set R2 = 0.72 (451) R2 = 0.83 (368)

    Test set R2 = 0.67 (112) R2 = 0.82 (91)

    Externalcompounds

    R2 = 0.56 (71) R2 = 0.61 (184)

    • Experimental BCF values (median) coming from:– Dimitrov et al.

    – Canadian

    – EURAS

    • Tested models– CAESAR BCF model

    – EPI Suite v4.0*

    • Three series analyzed– Training set

    – Test set

    – Compounds not contained in the databases used respectively to develop the model

    *http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm

  • CAESAR model refinement

    20

    • Rules for identifing compounds associated withgreater uncertainty in CAESAR model predictions

    CxHy…Cl6

    CxHy…F10

    CxHy…Si

    CxHy…Sn

    Ar-O and Ar-[Br,Cl]3

    Ar-(NO2)3

    Ar-(tBu)2

    N

    NAr

    ArO

    OR1

    R2

    P

    S

    O

    OS R3

    R2

    R1

    N

    R1

    OP

    O

    OS

    R2

    R3

    -1

    0

    1

    2

    3

    4

    5

    6

    -1 0 1 2 3 4 5 6

    Pre

    dic

    ted

    Lo

    gBC

    F

    Experimental LogBCF

    Training

    Test

    External

    R2 = 0.84

    R2 = 0.81

    R2 = 0.71

  • Classification

    21

    EPI Suite v4.0Estimated LogBCF

    nB B vB

    ExperimentalLogBCF

    nB 76.03% 2.68% 3.00%

    B 4.89% 1.10% 1.26%

    vB 2.05% 2.37% 6.62%

    CAESAR BCF model(entire dataset)

    Estimated LogBCF

    nB B vB

    ExperimentalLogBCF

    nB 79.63% 1.09% 0.47%

    B 5.29% 1.40% 0.93%

    vB 2.80% 2.02% 6.38%

    CAESAR BCF model(pruned dataset)

    Estimated LogBCF

    nB B vB

    ExperimentalLogBCF

    nB 83.39% 1.29% 0.37%

    B 4.80% 1.66% 0.55%

    vB 0.74% 1.48% 5.72%

    542 compounds

    634 compounds

    643 compounds

  • Outline

    • Bioconcentration factor (BCF)

    • BCF & REACH

    • Data availability & variability

    • Modelling BCF in CAESAR

    • Comparison with other approaches

    • Applet for the BCF model

    • Conclusions

    22

  • CAESAR BCF model applet

    23

    http://www.caesar-project.eu/

  • Conclusions

    • New integrated models for BCF with better

    performance than available methods

    • Final model fully implemented and appropriate

    documentation (QMRF) ensures transparency and

    reproducibility

    • Appreciation of similarity and confidence in prediction

    • Feasible to use output as a definitive value or in

    classification

    • Experimental data & quality check

    • Use within ITS in collaboration with OSIRIS project24

  • Acknowledgments

    • Lab. team & sw developerso E. Benfenati

    o C. Zhao

    o E. Boriani

    o A. Lombardo

    o A. Chana

    o O. Schifanella

    o C. Milan

    o R. Gonella Diaza

    o A. Manganaro

    o A. Gomez Delgado

    o D. Bigoni

    o A. Cassano

    25

    • CAESAR partnerso P2 CSL DEFRA

    o P3 BCX

    o P4 POLIMI

    o P5 KM

    o P6 LJMU

    o P7 UFZ

    o P8 NIC-LJ

    o P9 TNO

    • OSIRIS project


Recommended