+ All Categories
Home > Documents > Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power...

Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power...

Date post: 03-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
25
Thermal Management Optimization of a 5 MW Power Electronic Converter Hugo Reynes, Jose Maneiro, Cyril Buttay, Piotr Dworakowski 02/01/2017 TITRE DE LA PRÉSENTATION - INTERVENANT - 1 iMaps – ATW on Micropackaging and Thermal Management
Transcript
Page 1: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal Management Optimizationof a 5 MW Power Electronic Converter

Hugo Reynes, Jose Maneiro, Cyril Buttay, Piotr Dworakowski

02/01/2017

TITRE DE LA PRÉSENTATION - INTERVENANT - 1

iMaps – ATW on Micropackaging and Thermal Management

Page 2: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Outline

02/02/2017Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 2

DC Distribution in Offshore Windfarms

Converter

Thermal behavior of SiC MOSFETs

Economic Analysis

Conclusions

Page 3: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

DC Distribution in Offshore Windfarms

Windfarm diagram with AC collector

Windfarm diagram with DC collector

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 3

Dolwin wind farm and HVDC converter

(800 MW). Document ABB

DC Solutions for offshore wind connections.

Document ABB

02/02/2017

Page 4: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

DC Distribution in Offshore Windfarms

DC advantagesNo reactive power

Flexibility for interconnexion

2 conductors instead of 3

DC grid collector setup with power electronic convertersNo low frequency transformers

No AC Collector substation

4

Rectifier+ DC link

DC collector+ DC link

Windturbines+AC transformer

Windturbines+DC Converter

AC Collectorplatform

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 5: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

DiagramIPOS (Input Parallel, Output Series)

6 Medium frequency transformers

Overview12 inverters (60cmx60cmx20cm)

6 power modules per inverter (72 total)

Water Cooling

5Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 6: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

Power Module

6

• Enclosure / case• Terminals• Encapsulant• Wire bonding• Die (SiC MOSFET)• Metallized substrate• Baseplate• Solder Layers

1 switch = 1 or more dies in parallel

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

Infineon XHP3 Package

02/02/2017

Page 7: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

Power Module

7

• Enclosure / case• Terminals• Encapsulant• Wire bonding• Die• Metallized substrate• Baseplate• Solder Layers

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

Infineon XHP3 Package

02/02/2017

Page 8: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

Power Module

8

• Enclosure / case• Terminals• Encapsulant• Wire bonding• Die• Metallized substrate• Baseplate• Solder Layers

Part Function Material Thickness (mm) Thermal Conductivity (W/m.K)

Die Electronic Switch 4H-SiC 0.4 270

MetallizedSubstrate

Interconnexion / Isolation / Heat path

CopperCeramic (AlN)

Copper

0.30.635~1

0.3

400150400

Baseplate Mechanical support / Heatpath

AlSiC 4 200

Solder Layers Substrate AttachDie attach (classical)Die attach (advanced

assembly)

Solder AlloySolder AlloyAg Sintered

0.10.050.05

3535

200

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 9: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

Die Rth junction to case (isothermal backside)

9

Ideal Case Worst Case Realistic Case

• « Unlimited » heat spreading• Optimized assembly,

thinnest layers possible

• No heat spreading(dies touching each other)

• Typical layer thicknesses

• Reasonable distances between dies

• Typical layer thicknesses

Rth=0.13 °C/W Rth=0.88 °C/W Rth=0.42 °C/W

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 10: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

Isothermal BacksideSimulation with actual geometry

𝑹𝒕𝒉,𝒋−𝒄 = 𝟎. 𝟒𝟐 °𝑪/𝑾

𝑹𝒕𝒉 =𝑻𝒋,𝒎𝒂𝒙 − 𝑻𝑪

𝑷

Heat Transfer CoefficientCloser to actual cooling system behavior

Simulation with actual geometry

CFD Calculations from the LCP Supplier𝑹𝒕𝒉,𝒋−𝒂𝒎𝒃 = 𝟎. 𝟔𝟑 °𝑪/𝑾

𝑹𝒕𝒉,𝒋−𝑨 =𝑻𝒋 − 𝑻𝑨

𝑷

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 10

TC = 70 °CTj = 100 °CP = 72 W

Die Rth junction to ambient

02/02/2017

Page 11: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Converter

11

Die Rth, junction to ambient

Temperature distribution:

0

50

100

150

200

250

1000 10000 100000 1000000

Die

Te

mp

era

ture

(°C

)

Heat Transfer Coefficient (W/m².°C)

T2.1 T2.2 T2.3 T2.4 T2.5 T2.6

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

h=10 000 W/m².°CTA = 50 °CTj =100 °CP = 72 W

Rth,j-amb = 0.69 °C/W

Page 12: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Thermal modelisation: SiC MOSFETHypothesis:

The main contribution to the On-resistance is the drift region

The switching losses are not considered in this model

The theoretical model is close to the datasheet Ron(Tj) characteristic(coefficient of determination R²=0,995)

12

𝑅𝐷𝑅𝐼𝐹𝑇,𝑠𝑝 𝑇𝑗 =𝑊𝐷

𝑞 × 𝑁𝐷 × µ𝑛 𝑇𝑗

µ𝑛 𝑇𝑗 = 1140𝑇𝑗

300

−𝛼

𝑅𝑜𝑛 𝑇𝑗 = 𝑅𝑜𝑛,300𝐾 ×𝑇𝑗

300

𝛼

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 13: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Thermal runaway:

Power dissipated by the SiC MOSFET

𝑃𝑜𝑛 𝑇𝑗 = 𝑅𝑜𝑛 𝑇𝑗 × 𝐼²

= 𝑅𝑜𝑛,300𝐾 ×𝑇𝑗

300

𝛼× 𝐼²

13Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 14: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Thermal runaway:

Power dissipated by the SiC MOSFET

𝑃𝑜𝑛 𝑇𝑗 = 𝑅𝑜𝑛 𝑇𝑗 × 𝐼²

= 𝑅𝑜𝑛,300𝐾 ×𝑇𝑗

300

𝛼× 𝐼²

Heat flow through the cooling system

𝑃𝑡ℎ 𝑇𝑗 =𝑇𝑗−𝑇𝐴

𝑅𝑡ℎ

14Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 15: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Thermal runaway:

Power dissipated by the SiC MOSFET

𝑃𝑜𝑛 𝑇𝑗 = 𝑅𝑜𝑛 𝑇𝑗 × 𝐼²

= 𝑅𝑜𝑛,300𝐾 ×𝑇𝑗

300

𝛼× 𝐼²

Heat flow through the cooling system

𝑃𝑡ℎ 𝑇𝑗 =𝑇𝑗−𝑇𝐴

𝑅𝑡ℎ

Steady-state conditions:

𝛿𝑈 𝑇𝑗 = 𝑃𝑜𝑛 𝑇𝑗 − 𝑃𝑡ℎ 𝑇𝑗 = 0

15

𝜹𝑼 = 𝟎 → 𝑺𝒕𝒂𝒃𝒍𝒆 𝒔𝒕𝒆𝒂𝒅𝒚 − 𝒔𝒕𝒂𝒕𝒆𝜹𝑼 > 𝟎 → 𝑫𝒆𝒗𝒊𝒄𝒆 𝑯𝒆𝒂𝒕𝒊𝒏𝒈𝜹𝑼 < 𝟎 → 𝑫𝒆𝒗𝒊𝒄𝒆 𝑪𝒐𝒐𝒍𝒊𝒏𝒈

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 16: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Thermal runaway:

16

Stable Unstable Stable to Unstablewith ambient temperature

increasing

𝜹𝑼 = 𝟎 → 𝑺𝒕𝒂𝒃𝒍𝒆 𝒔𝒕𝒆𝒂𝒅𝒚 − 𝒔𝒕𝒂𝒕𝒆𝜹𝑼 > 𝟎 → 𝑫𝒆𝒗𝒊𝒄𝒆 𝑯𝒆𝒂𝒕𝒊𝒏𝒈𝜹𝑼 < 𝟎 → 𝑫𝒆𝒗𝒊𝒄𝒆 𝑪𝒐𝒐𝒍𝒊𝒏𝒈

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 17: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETsParalleling of the MOSFETs

Required to increase the current rating of the module

𝑅𝑜𝑛,𝑀𝑜𝑑𝑢𝑙𝑒 =𝑅𝑜𝑛,𝑑𝑖𝑒

𝑁𝑑𝑖𝑒𝑠

Thermal balancing Positive heat coefficient

• 𝑉 = 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

• 𝐼 = 𝐼𝑎 + 𝐼𝑏 + 𝐼𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐼𝑓 𝑅𝑎 ↑ 𝑡ℎ𝑒𝑛 𝐼𝑎 ↓𝐼𝑓 𝐼𝑎 ↓ 𝑡ℎ𝑒𝑛 𝐼𝑏 ↑ 𝑎𝑛𝑑 𝐼𝑐 ↑

𝑻𝒋 ↑ ⟹ 𝑹𝒐𝒏 ↑ ⟹ 𝑰𝒅𝒊𝒆 ↓ ⟹ 𝑷𝒅𝒊𝒆 ↓ ⟹ 𝑻𝒋 ↓

17Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

V Ra Rb Rc

I

Ia Ib Ic

02/02/2017

Page 18: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Paralleling the MOSFETs

Ideal case: Rth,die = 0,13 °C/W

18

Tj max

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

Tj Calculation for 2 dies ignoring the Ron (Tj) variations:

𝑅𝑜𝑛 = 40 𝑚Ω

𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = 200 𝐴 ⟹ 𝐼𝑑𝑖𝑒 =200

2= 100 𝐴

𝑃𝑑𝑖𝑒 = 𝐼𝑑𝑖𝑒2 × 𝑅𝑜𝑛 =

200

2

2× 0.04 = 400 𝑊

∆𝑇 = 𝑃𝑑𝑖𝑒 × 𝑅𝑡ℎ = 52 °𝐶

𝑻𝒋 = 𝑻𝑨 + ∆𝑻 = 𝟗𝟐 °𝑪

Thermal Runaway

02/02/2017

Page 19: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Paralleling the MOSFETs

Realistic case: Rth,die = 0,69 °C/W

19

Tj max

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

Tj Calculation for 5 dies ignoring the Ron (Tj) variations:

𝑅𝑜𝑛 = 40 𝑚Ω

𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = 200 𝐴 ⟹ 𝐼𝑑𝑖𝑒 =200

5= 40 𝐴

𝑃𝑑𝑖𝑒 = 𝐼𝑑𝑖𝑒2 × 𝑅𝑜𝑛 =

200

5

2× 0.04 = 64 𝑊

∆𝑇 = 𝑃𝑑𝑖𝑒 × 𝑅𝑡ℎ = 44 °𝐶

𝑻𝒋 = 𝑻𝑨 + ∆𝑻 = 𝟖𝟒 °𝑪

160 °C

02/02/2017

Page 20: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thermal behavior of SiC MOSFETs

Paralleling the MOSFETs

Worst case: Rth,die = 0,88 °C/W

20

Tj max

Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student

Tj Calculation for 8 dies ignoring the Ron (Tj) variations:

𝑅𝑜𝑛 = 40 𝑚Ω

𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = 200 𝐴 ⟹ 𝐼𝑑𝑖𝑒 =200

8= 25 𝐴

𝑃𝑑𝑖𝑒 = 𝐼𝑑𝑖𝑒2 × 𝑅𝑜𝑛 =

200

8

2× 0.04 = 25 𝑊

∆𝑇 = 𝑃𝑑𝑖𝑒 × 𝑅𝑡ℎ = 22 °𝐶

𝑻𝒋 = 𝑻𝑨 + ∆𝑻 = 𝟔𝟐 °𝑪

125 °C

02/02/2017

Page 21: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Economic AnalysisParameters

3300V 40mΩ die, engineering sample 330$ per unit (Source: PowerAmerica)

3300V 40mΩ die, volume production 140$ per unit (Source: CREE commercial roadmap)

Wind electricity price 13 c€/kWh for the 1st 10 years 3 c€/kWh after

Trade-off: More dies in parallel: Lower losses, more electricity produced but higher

invesment Fewer dies in parallel: More losses but lower invesment

Increasing the cooling performances is equivalent to increase die count

21Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 22: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Economic Analysis

22Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Rth =0.5 °C/W

Page 23: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Conclusions

SiC Dies can operate at high (>150°C) junction temperature but <100°C is preferable for better efficiency

Actual number of dies to be used is a trade-off between numberof dies and energy savings

Better cooling allows for fewer dies to be used. We’re interested in more efficient cooling techniques!

23Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 24: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Acknowledgement

This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissementsd’Avenir” Program (ANE-ITE-002-01)

SuperGrid Institute

24Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017

Page 25: Thermal Management Optimization of a 5 MW Power … › hal-01473614 › file...Converter Power Module 6 • Enclosure / case • Terminals • Encapsulant • Wire bonding • Die

Thank you for your attention

Q&A

[email protected]

http://www.supergrid-institute.com/

25Thermal Management Optimization of a 5 MW Power Electronic Converter – Hugo REYNES – Ph.D Student 02/02/2017


Recommended