+ All Categories
Home > Documents > TLE 6711 G/GL - Infineon Technologies

TLE 6711 G/GL - Infineon Technologies

Date post: 15-Apr-2022
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
25
TLE 6711 G/GL Multifunctional Voltage Regulator and Watchdog Data Sheet, Rev. 3.4, August 2007 Automotive Power
Transcript
Page 1: TLE 6711 G/GL - Infineon Technologies

TLE 6711 G/GLMult i funct ional Vol tage Regulator and Watchdog

Data Sheet, Rev. 3.4, August 2007

Automot ive Power

Page 2: TLE 6711 G/GL - Infineon Technologies

Multifunctional Voltage Regulator and Watchdog

TLE 6711 G

TLE 6711 GL

P/PG-DSO-14-3, -8, -9, -11, 14

P/PG-DSO-20 -1, -6, -7, -9, -14, -15, -17, -18

Features• Step up converter (Boost Voltage)• Boost Over- and Under-Voltage-Lockout• Step down converter (Logic Voltage)• 2% output voltage tolerance• Logic Over- and Under-Voltage-Lockout• Overtemperature Shutdown• Power ON/OFF reset generator• Digital window watchdog• System Enable Output• Ambient operation temperature range

-40 °C to 125 °C• Wide Supply voltage operation range• Very low current consumption• Very small PG-DSO-14-1 SMD package• Green Product (RoHS Compliant)• AEC Qualified

DescriptionThe TLE 6711 G/GL is a multifunctional power supply circuit especially designed for automotive applications.It delivers a programmable step up voltage (Boost) and a precise 5 V fully short circuit protected output voltage (Buck).The TLE 6711 G/GL contains a power on reset feature to start up the system, an integrated digital window watchdog to monitor the connected microcontroller and a system enable output to indicate the microcontroller window watchdog faults.The device is based on Infineon’s power technology SPT® which allows bipolar and CMOS control circuitry to be integrated with DMOS power devices on the same monolithic circuitry.The very small PG-DSO-14-1 SMD packages meet the application requirements.Furthermore, the build-in features like under- and overvoltage lockout for boost- and buck-voltage and the overtemperature shutdown feature increase the reliability of the TLE 6711 G/GL supply system.

Type PackageTLE 6711 G PG-DSO-14-1TLE 6711 GL PG-DSO-20-36

Data Sheet 2 Rev. 3.4, 2007-08-16

Page 3: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Block Diagram

1 Block Diagram

Figure 1 Block Diagram (pinning valid for PG-DSO-14-1)

AEB02949

12

BOFB

ConverterBoost

BOGND

BOI

13

14

10BDS

BuckConverter

8

9

BUO

BOOSTV

7CCV

InternalV

5SEN

WDI3

RO2

OVL11

WindowReset,

andWatchdog

EnableSystem

GND

andOscillator

Generator

ReferenceCurrent1

R

BiasingREFV

BUC6

BoostV

TLE 6711 G

4

Data Sheet 3 Rev. 3.4, 2007-08-16

Page 4: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Pin Configuration

2 Pin Configuration

2.1 Pin Assignment

Figure 2 Pin Configuration PG-DSO-14-1 (top view)

Figure 3 Pin Configuration PG-DSO-20-36 (top view)

R

8

OVL

RO

AEP02960

11121314

BUO76

GND54321

SENVBoost9

10

BOGND

BUC

WDI

BOI

BOFB

BDS

CCV

12

BOI

OVL

SEN

GND

BOFB

BDS

VBOOSTBUC

13

14

15

16

17

18

9

8

7

6

5

4

3

10

2

GND

11

19

1 20

GND

GND

BUO

GND

R

RO

WDI

GND

VCC

GND

GND

Data Sheet 4 Rev. 3.4, 2007-08-16

Page 5: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Pin Configuration

2.2 Pin Definitions and Functions

PinSO-14

PinSO-20

Symbol Function

1 1 R Reference Input; an external resistor from this pin to GND determines the reference current and the oscillator frequency

2 2 RO Reset Output; open drain output from reset comparator with an internal pull-up resistor

3 3 WDI Watchdog Input; input for the watchdog control signal from the controller4 4, 5, 6, 7,

14, 15, 16, 17

GND Ground; analog signal ground

5 8 SEN System Enable Output; open drain output from Watchdog fail-circuit with an internal pull-up resistor

6 9 BUC Buck-Converter Compensation Input; output of internal error amplifier; for loop-compensation connect an external R-C-series combination to GND

7 10 VCC Supply Voltage Output; buck converter output; external blocking capacitor necessary

8 11 BUO Buck Converter Output; source of the integrated power-DMOS9 12 VBOOST Boost Converter Input; input supply voltage of the IC; coming from the boost

converter output voltage; buck converter input voltage10 13 BDS Buck Driver Supply Input; voltage to drive the buck converter powerstage11 18 OVL Boost Status Output; open drain output from boost PWM comparator12 19 BOFB Boost Converter Feedback Input; connect boost voltage divider to this pin;

internal reference is the boost feedback threshold VBOFBTH

13 – BOGND Boost-Ground; power signal ground; source of boost converter power-DMOS14 20 BOI Boost Converter Input; drain of the integrated buck converter power-DMOS

Data Sheet 5 Rev. 3.4, 2007-08-16

Page 6: TLE 6711 G/GL - Infineon Technologies

TLE 6711

General Product Characteristics

3 General Product Characteristics

3.1 Absolute Maximum Ratings

Attention: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation.

Absolute Maximum Ratings 1)

Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)

1) Not subject to production test, specified by design.

Pos. Parameter Symbol Limit Values Unit ConditionsMin. Max.

Voltages3.1.1 Boost input voltage VBOI -0.3 46 V –3.1.2 Boost output voltage VBOOST -0.3 46 V –3.1.3 Boost feedback voltage VBOFB -0.3 46 V –3.1.4 Buck output voltage VBUO -1 46 V –3.1.5 Buck driver supply voltage VBDS -0.3 48 V 0 °C < Tj ≤ 150 °C3.1.6 47 V -40 °C ≤ Tj ≤ 0 °C3.1.7 Buck compensation input voltage VBUC -0.3 6.8 V –3.1.8 Logic supply voltage VCC -0.3 6.8 V –3.1.9 Reset output voltage VRO -0.3 6.8 V –3.1.10 System Enable output voltage VSEN -0.3 6.8 V –3.1.11 Current reference voltage VR -0.3 6.8 V –3.1.12 Watchdog input voltage VWDI -0.3 6.8 V –3.1.13 OVL output voltage VOVL -0.3 6.8 V –Temperatures3.1.14 Junction Temperature Tj -40 150 °C –3.1.15 Storage Temperature Tstg -50 150 °C –ESD Susceptibility3.1.16 All pins to GND VHBM -2 2 kV Human Body

Model; R = 1.5 kΩ; C = 100 pF

Data Sheet 6 Rev. 3.4, 2007-08-16

Page 7: TLE 6711 G/GL - Infineon Technologies

TLE 6711

General Product Characteristics

3.2 Operating Range

Note: In the operating range, the functions given in the circuit description are fulfilled.

Pos. Parameter Symbol Limit Values Unit ConditionsMin. Max.

3.2.1 Boost input voltage VBOI -0.3 40 V –3.2.2 Boost input voltage;

(normal operation)VBOOST 5 35 V VBOOST increasing

3.2.3 Boost input voltage; (normal operation)

VBOOST 4.5 36 V VBOOST decreasing

3.2.4 Boost input voltage VBOOST -0.3 4.5 V Boost- and Buck-Converter OFF

3.2.5 Boost feedback voltage VBOFB 0 3.0 V –3.2.6 Buck output voltage VBUO -0.6 40 V –3.2.7 Buck driver supply voltage VBDS -0.3 48 V 0 °C < Tj ≤ 150 °C3.2.8 47 V -40 °C ≤ Tj ≤ 0 °C3.2.9 Buck compensation input voltage VBUC 0 3.0 V –3.2.10 Logic supply voltage VCC 4.00 6.25 V –3.2.11 Reset output voltage VRO -0.3 VCC + 0.3 V –3.2.12 System Enable output voltage VSEN -0.3 VCC + 0.3 V –3.2.13 Watchdog input voltage VWDI 0 VCC + 0.3 V –3.2.14 Current reference voltage VR 0 3.0 V –3.2.15 Junction temperature Tj -40 150 °C –Thermal Resistance3.2.16 Junction ambient

PG-DSO-14-1Rthj-a – 120 K/W –

3.2.17 Junction ambientPG-DSO-20-36

Rthj-a – 65 K/W –

Data Sheet 7 Rev. 3.4, 2007-08-16

Page 8: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

4 Circuit DescriptionBelow some important sections of the TLE 6711 G/GL are described in more detail.

4.1 Power On ResetIn order to avoid any system failure, a sequence of several conditions has to be passed. In case of VCC power down (VCC < VRT for t > tRR) a logic LOW signal is generated at the pin RO to reset an external microcontroller. When the level of VCC reaches the reset threshold VRT, the signal at RO remains LOW for the Power-up reset delay time tRD before switching to HIGH. If VCC drops below the reset threshold VRT for a time extending the reset reaction time tRR, the reset circuit is activated and a power down sequence of period tRD is initiated. The reset reaction time tRR avoids wrong triggering caused by short “glitches” on the VCC-line.

Figure 4 Reset Function

4.2 Watchdog OperationThe watchdog uses one hundred of the oscillator’s clock signal period as a timebase, defined as the watchdog cycle time tCYL. After power-on, the reset output signal at the RO pin (microcontroller reset) is kept LOW for the reset delay time tRD, i.e. 64 cycles. With the LOW to HIGH transition of the signal at RO the device starts the closed window time tCW = 32 cycles. A trigger signal within this window is interpreted as a pretrigger failure according to the figures shown below. After the closed window the open window with the duration tOW is started. The open window lasts at minimum until the trigger process has occurred, at maximum tOW is 32 cycles. A HIGH to LOW transition of the watchdog trigger signal on pin WDI is taken by a trigger. To avoid wrong triggering due to parasitic glitches two HIGH samples followed by two LOW samples (sample period tCYL) are decoded as a valid trigger. If a trigger signal appears at the watchdog input pin WDI during the open window or a power up/down occurs, the watchdog window signal is reset and a new closed window follows. A reset is generated (RO goes LOW) if there is no trigger pulse during the open window or if a pretrigger occurs during the closed window. This reset happens after 64 cycles after the latest valid closed window start time and lasts for further 64 cycles. The triggering is correct also, if the first three samples (two HIGH one LOW) of the trigger pulse at pin WDI are inside the closed window and only the fourth sample (the second LOW sample) is taken in the open window. In addition to the microcontroller reset signal RO the device generates a system enable signal at pin SEN. If RO

AET02950

L

HRO

VCC

Invalid

RTVtyp. 4.65 V

< RRt < RDt

Start-Up ON Delay

InvalidInvalid

ON Delay

Started Stopped

RDt RRt RDt t

t

Power Start-Up Normal Failed N Failed Normal

1 V

ON Delay

Data Sheet 8 Rev. 3.4, 2007-08-16

Page 9: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

is HIGH the system enable goes active HIGH with the first valid watchdog trigger pulse at pin WDI. The SEN output goes LOW immediately if a pretrigger, a missing trigger or a power down reset occurs.

Figure 5 Window Watchdog Definitions 1

Figure 6 Window Watchdog Definitions 2

t CWmax= tCW (1+∆ )

closed window open window

tCW=32*tCYL

definition

fOSC=fOSCmax

reset start delay time after windowwatchdog timeout

reset duration time after windowwatchdog time-out

tSR = 64*tCYL

tOW=32*tCYL

tWDR = 64*tCYL

TWD = 128*tCYL

t OWmin

fOSC=fOSCmin

definition

worst case

t WD

Example with:

tCYL=1ms∆=10% (oscillator deviation)

t(CW+OW)min=(tCW+tOW)*(1-∆)==(32+32)x0,9= 57,6ms

tCWmax= tCW(1+∆)=32*1,1=35,2ms

t EOW = end of open windowtECW

t (CW+OW)min= ( tCW+ tOW ) (1 - ∆)

AET02952

Watchdogtrigger signal

Valid

Not valid

Indifferent

= Watchdog decoder sample point

ECWt

Closed window

WDI

WDI

WDI

Open window

EOWt

Open window Closed window

Data Sheet 9 Rev. 3.4, 2007-08-16

Page 10: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

Figure 7 Window Watchdog Function

AED02945

CCV

VRT

t

t

RO

a) Perfect Triggering after Power on Reset

WDWI

t

t

WDI

SEN

CW OW CW OW CW CW

RDt = 64 Cycles

32 Cycles

32 Cycles

System Failed System Enable System Failed

RO

t

b) Incorrect Triggering

WDWI

t

WDI

tSEN

t

= 64 CyclestSR = 64 CyclesSRtWDRt = 64 Cycles

= 128 CyclesWDT

32 Cycles

CW OW CW OW CW CWOW OW

1) 2) 3)4)

Pretrigger1)

Incorrect trigger duration within watchdog 2)

HIGHt < 2 CyclesIncorrect trigger duration within watchdog

< 2 CyclesLOWt3)

Missing trigger4)

Legend: WDWI = Internal Watchdog WindowOW = Open Window (trigger signal at WDI)

= Closed Window (trigger signal at WDI)CWx = Sample Point

xx

xx

xx

xx

xx

xx

xx

xx x xx

x xx

x

x

xx

xx

open window OW:

open window OW:

1t

t

t2 t3

Data Sheet 10 Rev. 3.4, 2007-08-16

Page 11: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

4.3 Boost ConverterThe TLE 6711 G/GL contains a fully integrated boost converter (except the boost-diode), which provides a supply voltage for an energy reserve e.g. an airbag firing system. The regulated boost output voltage VBOOST is programmable by a divider network (external resistors) providing the feedback voltage for the boost feedback pin BOFB. The energy which is stored in the external electrolytic capacitor at VBOOST guarantees accurate airbag firing, even if the battery is disconnected by a car crash.The boost inductance LBO (typ. 100 µH) is PWM-switched by an integrated current limited power DMOS transistor with a programmable (external resistor RR) frequency. An internal bandgap reference provides a temperature independent, on chip trimmed reference voltage for the regulation loop. An error amplifier compares the reference voltage with the boost feedback signal VBOFB from the external divider network (determination of the output boost voltage VBOOST).Application note for programming the output voltage at pin VBOOST:

(1)

With a PWM (Pulse Width Modulation) comparator the output of the error amplifier is compared to a periodic linear ramp, provided by a sawtooth signal of the oscillator connected to pin R. A logic signal with variable pulse width is generated. It passes through the logic circuits (sets the output latch PWM-FF) and driver circuits to the power switching DMOS. The Schmitt-trigger output resets the output flip-flop PWM-FF by NOR 2. The PWM signal is gated by the NAND 2 to guarantee a dominant reset.

Figure 8 Boost Converter Block Diagram

Figure 8 shows the most important waveforms during operation; for low, medium and high loads up to overload condition. The output transistor is switched off immediately if the overcurrent comparator detects an overcurrent level at the power DMOS or if the sense output switches to low induced by a VBOOST undervoltage command.

VBOOST VBOFBTHRBO1 RBO2+( )RBO2

-------------------------------------×=

AEB02946

Pin 1R

Vmint fr t rt t

Oscillator

Vmax

Vlowtrt rf t

high

Schmitt-trigger 1

Ramp V

tClock

Error-Ramp

Error-Signal

PWMCOMP

+-

Error-Ramp

Error-SignalH when

<

=V

GND

2.8 VREF

Error

-+

AMP

Pin 12BOFB

PullupI

µA10

=

GND

COMP

+-

UV

4 VthUVV

BoostV

GND

thOV38 VV=

COMPOV

-+

NOR 1

1

&OV atL when

BoostVNAND 3

L when > 175 ˚CTj

H when Overcurrent

H when < 4 VBoostV

H when > 175 ˚CjT

Vor OV at Boost

NAND1

&

&

Error-FF

&

R Q

S Q

L when Error

NOR 2

1ErrorH when

ErrorGate

UnlockDetector

NAND 2

&

QR &

S Q

&

PWM-FFH =OFF

H =ON1

INV

D-MOSPower

GateDriver

+

COMP

-

OC VthOC18 mV

=

Sense14.5 mR

Ω

Pin 13BOGND

H when Outputcurrent > 1.2 A

OVLPin 11

GND

BOIPin 14

Boost StatusLow if BatteryDisconnected

Data Sheet 11 Rev. 3.4, 2007-08-16

Page 12: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

The TLE 6711 G/GL is also protected against several boost loop errors: In case of a feedback interruption a pull-up current source (IFB typ. 0.4 µA), integrated at pin BOFB pulls the voltage at the feedback pin BOFB above the reference voltage. The boost output is switched off by the high error voltage which controls the PWM-Comparator at a zero duty cycle. In the case of a resistive loop error caused by leakage currents to ground, the boost output voltage would increase to very high values. In order to protect the VBOOST input as well as the external load against catastrophic failures, an overvoltage protection is provided which switches the output transistor off as soon as the voltage at pin VBOOSTexceeds the internal fixed overvoltage threshold VBOOVOFF = typ. 37 V.

Application NoteA short circuit from VBOOST to ground will not destroy the IC, however, it may damage the external boost diode or the boost inductance if there is no overcurrent limitation in that path.

Figure 9 Most Important Waveforms of the Boost Converter Circuit

AED02672

t

CV

ErrorVand

VCV

CPV

tLH

OCLK

PWM

LH

t

t

IBOI

BOLII

DBOI

tBOIV

t

BOOSTV

SV

Overcurrent Threshold Exceeded

Controlled by theLoad-Current Increasing with Time;

Error Voltage

Overcurrent CompControlled by the Error Amp

Data Sheet 12 Rev. 3.4, 2007-08-16

Page 13: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

4.3.1 Boost Status Output OVLFor supervision of the Boost output voltage an open drain DMOS output is used. The output is high impedance in normal operation and low during the warning.The OVL goes LOW if the PWM comparator output (see Figure 8) remains HIGH for clock time period. This occurs when the Error-Signal falls below the minimum value of the Error-Ramp, this mean that Boost voltage falls below a certain threshold voltage.The OVL output used as a warning for insufficient Boost voltage.

4.4 Buck ConverterA stabilized logic supply voltage (typ. 5 V) for general purpose is realized in the system by a buck converter. An external buck-inductance LBU is PWM switched by a high side DMOS power transistor with the programmed frequency (pin R).The buck regulator supply is given by the boost converter output VBOOST, in case of a battery power-down the stored energy of the boost converter capacitor is used.Like the boost converter, the buck converter uses the temperature compensated bandgap reference voltage (typ. 2.8 V) for its regulation loop. This reference voltage is connected to the non-inverting input of the error amplifier and an internal voltage divider supplies the inverting input. Therefore the output voltage VCC is fixed due to the internal resistor ratio to typ. 5.0 V. The output of the error amplifier goes to the inverting input of the PWM comparator as well as to the buck compensation output BUC. When the error amplifier output voltage exceeds the sawtooth voltage the output power MOS-transistor is switched on. So the duration of the output transistor conduction phase depends on the VCC level. A logic signal PWM with variable pulse width is generated.

Figure 10 Buck Converter Block Diagram

AEB02947

-+

= thOVV

VCC3R39.7k Ω

VCC410.3kR

Ω

GNDBUCPin 6

Pin 7CCV

1.2 V

VCC

2.8 VV

-+

ΩVCC1

ΩVCC2

28kR

22kR

GND

= REF

CCV

ErrorAMP

RProt1

Ω200

COMPPWM

+-

Error-Signal

rt tf tr

maxV

minVt

Pin 1R

Vhigh

lowVt tr f tr t

Error-Ramp

Oscillator Schmitt-trigger 1

H when Error-Signal<Error-Ramp

&

&

R

S

Q

Q

L when> 175 ˚CjT

Clock

Error-FF

NOR 1

1

H when OV at VCC

L when Overcurrent

Output StageOFF when H

OFF when H

OVCOMP

&

S

NAND 2&

Q

Q&RPWM-FF

1

INV

OFF ON

GateDriver

PowerD-MOS

BoostDriverSupply

BDSPin 10

Pin 8BUO

COMPUV

+-

H when UV at BoostV

=

GND

thUV4 VV

GND

H = H =

OCCOMP

+-

=

18 mVthOCV

L when Overcurrent

Pin 9BoostV

R18 m

SenseΩ

GND

Ramp

Data Sheet 13 Rev. 3.4, 2007-08-16

Page 14: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

External loop compensation is required for converter stability, and is formed by connecting a compensation resistor-capacitor series-network (RBUC, CBUC) between pin BUC and GND.In the case of overload or short-circuit at VCC (the output current exceeds the buck overcurrent threshold IBUOC) the DMOS output transistor is switched off by the overcurrent comparator immediately. The pulse width is then controlled by the overcurrent comparator as seen before in the boost description.In order to protect the VCC input as well as the external load against catastrophic failures, an overvoltage protection is provided which switches the output transistor off as soon as the voltage at pin VCC exceeds the internal fixed overvoltage threshold VBUOVOFF = typ. 6.0 V.

Figure 11 Most Important Waveforms of the Buck Converter Circuit

AED02673

t

CV

ErrorVand

VCV

CPV

tLH

OCLK

PWM

LH

t

t

IBUO

BULII

DBUI

tBUOV

t

BOOSTV

CC5V

Overcurrent Threshold Exceeded

Controlled by theLoad-Current Increasing with Time;

Error Voltage

Overcurrent CompControlled by the Error Amp

Data Sheet 14 Rev. 3.4, 2007-08-16

Page 15: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

4.5 Electrical CharacteristicsNote: The listed characteristics are ensured over the operating range of the integrated circuit. Typical

characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at TA = 25 °C and the given supply voltage.

Electrical Characteristics: Current Consumption VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.1 Current consumption;

see application circuitIBoost – 1.5 4 mA ICC = 0 mA;

IBoLoad = 0 mA4.5.2 Current consumption;

see application circuitIBoost – 5 10 mA ICC = 200 mA;

IBoLoad = 50 mA

Electrical Characteristics: Under- and Over-Voltage Lockout at VBOOST VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.3 UV ON voltage;

boost and buck conv. ONVBOUVON 4.0 4.5 5.0 V VBOOST increasing

4.5.4 UV OFF voltage; boost and buck conv. OFF

VBOUVOFF 3.5 4.0 4.5 V VBOOST decreasing

4.5.5 UV Hysteresis voltage VBOUVHY 0.2 0.5 1.0 V HY = ON - OFF4.5.6 OV OFF voltage; boost conv. OFF VBOOVOFF 34 37 40 V VBOOST increasing4.5.7 OV ON voltage; boost conv. ON VBOOVON 30 33 36 V VBOOST decreasing4.5.8 OV Hysteresis voltage VBOUVHY 1.5 4 10 V HY = OFF - ON

Electrical Characteristics: Over-Voltage Lockout at VCC VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.9 OV OFF voltage; buck conv. OFF VBUOVOFF 5.5 6.0 6.5 V VCC increasing4.5.10 OV ON voltage; buck conv. ON VBUOVON 5.25 5.75 6.25 V VCC decreasing4.5.11 OV Hysteresis voltage VBUOVHY 0.10 0.25 0.50 V HY = OFF - ON

Data Sheet 15 Rev. 3.4, 2007-08-16

Page 16: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

Electrical Characteristics: Boost-Converter; BOI, BOFB and VBOOST VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.12 Boost voltage;

see application circuitVBOOST 24.0 27.5 31.0 V 5 mA < IBOOST <

100 mA; Tj = 25 °C;8 V < VBatt < 16 V

4.5.13 Boost Voltage; see application circuit

VBOOST 23 – 32 V 5 mA < IBOOST < 100 mA;8 V < VBatt < 16 V

4.5.14 Efficiency; see. appl. circuit η – 80 – % IBOOST = 100 mA4.5.15 Power-Stage ON resistance RBOON – 0.6 0.75 Ω Tj = 25 °C;

IBOI = 1 A4.5.16 Power-Stage ON resistance RBOON – – 1.4 Ω IBOI = 1 A4.5.17 Boost overcurrent threshold IBOOC 1.0 1.3 1.8 A –4.5.18 Feedback threshold voltage VBOFBTH 2.55 2.7 2.85 V VBOI = 12 V;

IBOOST = 25 mA4.5.19 Feedback input current IFB -2 -0.4 0 µA 2 V < VBOFB < 4 V

Electrical Characteristics: Buck-Converter; BUO, BDS, BUC and VCC VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.20 Logic supply voltage VCC 4.9 – 5.1 V 1 mA < ICC <

250 mA; see. appl. circuit

4.5.21 Efficiency; see. appl. circuit η – 85 – % ICC = 250 mA;VBoost = 25 V

4.5.22 Power-Stage ON resistance RBUON – 0.38 0.5 Ω Tj = 25 °C;IBUO = 1 A

4.5.23 Power-Stage ON resistance RBUON – – 1.0 Ω IBUO = 1 A4.5.24 Buck overcurrent threshold IBUOC 0.7 0.95 1.2 A –4.5.25 Input current on pin VCC ICC – 0.2 0.5 mA VCC = 5 V4.5.26 Buck Gate supply voltage;

VBGS = VBDS - VBOOST

VBGS 5 – 10 V –

Data Sheet 16 Rev. 3.4, 2007-08-16

Page 17: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

Electrical Characteristics: Reference Input; R (Oscillator; Timebase for Boost- and Buck-Converter, Reset and Watchdog) VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.27 Voltage on pin R VR 1.3 1.4 1.5 V –4.5.28 Oscillator frequency fOSC 85 95 105 kHz Tj = 25 °C4.5.29 Oscillator frequency fOSC 75 – 115 kHz –4.5.30 Cycle time for watchdog and reset

timingtCYL – 1.05 – ms tCYL = 100/fOSC

Electrical Characteristics: Reset Generator; RO VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.31 Reset threshold;

VCC decreasing/increasingVRT 4.50 4.65 4.75 V VRO H to L or L to H

transition;VRO remains low down to VCC > 1 V

4.5.32 Reset low voltage VROL – 0.2 0.4 V IROL = 2 mA;2.5 V < VCC < VRT

4.5.33 Reset low voltage VROL – 0.2 0.4 V IROL = 0.2 mA;1 V < VCC < VRT

4.5.34 Reset high voltage VROH VCC - 0.1

– VCC + 0.1

V IROH = 0 mA

4.5.35 Reset pull-up current IRO – 240 – µA 0 V < VRO < 4 V4.5.36 Reset Reaction time tRR 50 100 150 µs VCC < VRT

4.5.37 Power-up reset delay time tRD – 64 – tCYL VCC ≥ 4.8 V

Electrical Characteristics: Watchdog Generator; WDI VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.38 H-input voltage threshold VWDIH – – 0.7 ×

VCC

V –

4.5.39 L-input voltage threshold VWDIL 0.3 × VCC

– – V –

4.5.40 Watchdog period TWD – 128 – tCYL VCC ≥ 4.8 V4.5.41 Start of reset;

after watchdog time-outtSR – 64 – tCYL VCC ≥ 4.8 V

Data Sheet 17 Rev. 3.4, 2007-08-16

Page 18: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Circuit Description

4.5.42 Reset duration; after watchdog time-out

tWDR – 64 – tCYL VCC ≥ 4.8 V

4.5.43 Open window time tOW – 32 – tCYL VCC ≥ 4.8 V4.5.44 Closed window time tCW – 32 – tCYL VCC ≥ 4.8 V4.5.45 Window watchdog trigger time tWD – 46.4 – tCYL VCC ≥ 4.8 V

Electrical Characteristics: System Enable Output; SEN VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.46 Enable low voltage VSENL – 0.2 0.4 V ISENL = 2 mA;

2.5 V < VCC < VRT

4.5.47 Enable low voltage VSENL – 0.2 0.4 V ISENL = 0.2 mA;1 V < VCC < VRT

4.5.48 Enable high voltage VSENH VCC - 0.1

– VCC + 0.1

V ISENH = 0 mA

4.5.49 Enable pull-up current ISEN – 240 – µA 0 V < VSEN < 4 V

Electrical Characteristics: Boost Status Output; OVL VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.50 Enable low voltage VOVLL – 0.2 0.4 V IOVLL = 1 mA;

2.5 V < VCC < VRT

4.5.51 Boost feedback threshold voltage VOVLTH 2.3 2.45 2.6 V See application circuit

Electrical Characteristics: Thermal Shutdown (Boost and Buck-Converter OFF) VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.4.5.52 Thermal shutdown junction

temperatureTjSD 150 175 200 °C –

4.5.53 Thermal switch-on junction temperature

TjSO 120 – 170 °C –

4.5.54 Temperature hysteresis ∆T – 30 – K –

Electrical Characteristics: Watchdog Generator; WDI (cont’d)VCC = 4.75 V to 5.25 V; VBoost = 8 V to 35 V, Tj = -40 °C to +150 °C, RR = 47 kΩ; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)Pos. Parameter Symbol Limit Values Unit Conditions

Min. Typ. Max.

Data Sheet 18 Rev. 3.4, 2007-08-16

Page 19: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Application Information

5 Application InformationNote: The following information is given as a hint for the implementation of the device only and shall not be

regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 12 shows the application circuit of the TLE 6711 G/GL with the suggested external parts.

Figure 12 Application Circuit (pinning valid for PG-DSO-14-1)

AEB02948

12

BOFB

ConverterBoost

BOGND

BOI

13

14

10 BDS

BuckConverter

8

9

BUO

BOOSTV

7 CCV

InternalV

5 SEN

WDI3

RO2

OVL11

WindowReset

andWatchdog

EnableSystem

GND

andOscillator

Generator

ReferenceCurrent1R

BiasingREFV

BUC 6

BoostV

BO

VBattLC

10 µFC220 nF36 V

ZD1 S

D1 2L100 µH DBO

BOOST

C220 nF

BO2R

BO1RBO1C

4700 µFBO2

V

D

Ω100 k

10 kΩ

10 nFBO1C

10 nFCBOT

BOLoadI

BUCR47 kΩ

470CBUC

47 kΩRR

4

C220 nF

CBU1100 µF

BU2

BUL

BU

220 µH

D

10 kΩ

SystemEnable

TriggerWatchdog

OutputReset

StatusBoost

VCC

TLE 6711 G

Output

Input

Output

nF

Device Type Supplier Remarks

B82442-A1104

Infineon

220 µH; 0.24 A; 2.72

D1

D2

DBO

DBU

L BO

L BU B82442-H1224

-

BAW78B

BAW78C

BAW78C

Infineon

Infineon

-

EPCOS

EPCOS

100 µH; 0.25 A; 1.28

Schottky; 100 V; 1 A

200 V; 1 A; SOT-89

200 V; 1 A; SOT-89

100 V; 1 A; SOT-89

Ω

Ω

Schottky; 40 V; 1 AmultipleSS14BOD

100 µH; 1.2 A; 0.28 ΩCoilcraftDo3316P-104L BO

220 µH; 0.8 A; 0.61 ΩDo3316P-224BUL Coilcraft

Data Sheet 19 Rev. 3.4, 2007-08-16

Page 20: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Diagrams: Oscillator and Boost/Buck-Converter Performance

6 Diagrams: Oscillator and Boost/Buck-Converter PerformanceIn the following the behaviour of the Boost/Buck-converter and the oscillator is shown.

Oscillator Frequency Deviation vs. Junction Temperature

Current Consumption vs. Junction Temperature

Boost Feedback Current vs. Junction Temperature

Efficiency Buck vs. Load

AED02938

jT

-15

∆fOSC

-10

-5

0

5

kHz10

-50 -25 0 25 50 75 100 ˚C 150

jT = 25 ˚CReferred to fOSCat

AED02940

jT

0.5

1

1.5

2

2.5

mA3

-50 -25 0 25 50 75 100 ˚C 150

Boost I

Boost ONBuck ON

BO boostI = 0 mA= 0 mACCI

AED02939

jT

-700

-600

-500

-400

-300

nA-200

-50 -25 0 25 50 75 100 ˚C 150

FBI

AED02942

η

LOADI50 150 250mA

65

70

75

80

85

%90

RT, HT

CT

Data Sheet 20 Rev. 3.4, 2007-08-16

Page 21: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Diagrams: Oscillator and Boost/Buck-Converter Performance

Efficiency Buck vs. Boost Voltage

Efficiency Boost vs. Input Voltage

Oscillator Frequency vs. Resistor from R to GND

Boost Output Voltage vs. Load

AED02941

BoostV

655

η

15 25 V 30

70

75

80

85

90

%

95

VCC = 5 V

LoadI = 120 mA

80 mA

40 mA

AED02943

η

BattV8

70V

75

80

85

90

%95

10 12 14 16

RT CT

HT

IBoost = 60 mA

AED02982

R5

10

20

50

100

200

500

1000

OSCf

R

10 20 50 100 200 k 1000Ω

jT = 25 ˚C@

kHz

AED02944

LOADI20

26mA

27

28

29

30

V31

40 60 80 100

BoostV

RTHTCT

Data Sheet 21 Rev. 3.4, 2007-08-16

Page 22: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Diagrams: Oscillator and Boost/Buck-Converter Performance

Boost and Logic Output Voltage vs. Junction Temperature

Boost and Buck ON Resistance vs. Junction Temperature

Boost and Buck Overcurrent Threshold vs. Junction Temperature

AED02983

-50

= 50 mA

BoostV

jT

BoostI

-25 0 25 50 75 100 ˚C 1504.950

4.975

5.000

5.025

V

26

27

28

29

30V

VCC

= 250 mAICC

AED02984

-50

= 1 A

jT

BOII

-25 0 25 50 75 100 ˚C 1500

100

200

300

600

700

800

1000

ONR

400

500

RBOON @

= 1 ABUONR I@ BUO

AED02985

-50

jT-25 0 25 50 75 100 ˚C 150

0.8

IBOOC (Boost-Converter)

IOC

0.9

1

1.1

1.2

1.3

1.4

A

(Buck-Converter)IBUOC

Data Sheet 22 Rev. 3.4, 2007-08-16

Page 23: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Package Outlines

7 Package Outlines

Figure 13 PG-DSO-14-1 (Plastic Dual Small Outline Package)

Figure 14 PG-DSO-20-36 (Plastic Dual Small Outline Package)

Green Product (RoHS compliant)To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

1) Does not include plastic or metal protrusion of 0.15 max. per side2) Lead width can be 0.61 max. in dambar area

-0.28.75 1)

0.64

0.19

+0.0

6

Index Marking

1.27

+0.100.410.1

1

14

2)

7

14x

8

0.17

5

(1.4

7)

±0.0

7±0.26

0.35 x 45˚

-0.2

1.75

MA

X.

41)

±0.25

8˚M

AX

.

-0.06 0.2 M A BM0.2 C

C

B

A

GPS01230 Dimensions in mm

GPS05094

1.27

0.2 20x0.35+0.15 2)

12.8 1)-0.2

1 10

1120

2.65

MA

X.

2.45

20x0.1

-0.2

0.2 -

0.1

Index Marking

1) Does not include plastic or metal protrusion of 0.15 max. per side2) Does not include dambar protrusion of 0.05 max. per side

0.35 x 45˚

-0.21)7.6

8˚ M

AX

.

±0.310.3

0.4+0.8

0.23

+0.0

9

Dimensions in mm

Data Sheet 23 Rev. 3.4, 2007-08-16

Page 24: TLE 6711 G/GL - Infineon Technologies

TLE 6711

Revision History

8 Revision History

Revision Date Changes3.4 2007-08-16 Initial version of RoHS-compliant derivate of TLE 6711.

Page 2: AEC certified statement added.Page 2 and Page 23: RoHS compliance statement and Green product feature added.Page 2 and Page 23: Packages changed to RoHS compliant version.Disclaimer updated.

3.3 2006-03-16 Page 9: Figure 5 corrected, TWD = 128 tCYL.Page 19: Figure 12 corrected, Inductor type EPCOS B82442-H1224.

Data Sheet 24 Rev. 3.4, 2007-08-16

Page 25: TLE 6711 G/GL - Infineon Technologies

Edition 2007-08-16Published by Infineon Technologies AG 81726 Munich, Germany© 2007 Infineon Technologies AG All Rights Reserved.

Legal DisclaimerThe information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WarningsDue to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.


Recommended