+ All Categories
Home > Documents > Unit 2 OFC

Unit 2 OFC

Date post: 04-Jun-2018
Category:
Upload: ajay-bhalerao
View: 224 times
Download: 0 times
Share this document with a friend

of 52

Transcript
  • 8/13/2019 Unit 2 OFC

    1/52

    TransmissionCharacteristicsof

    OpticalFiber

  • 8/13/2019 Unit 2 OFC

    2/52

    TransmissionWindowsinOpticalFiber

    st

    Lowloss

    10Kmrepeaterspacing u mo e erswereuse

    140Mbps

    g erattenuat onShortdistance

  • 8/13/2019 Unit 2 OFC

    3/52

    TransmissionWindowsinOpticalFiber

    nd

    LowlossSilicafibers

    40Kmrepeaterspacing

    Sin lemodeaswellasMultimodefiberswereused

    2.5Gbps

    Comparativelylessattenuationlongdistance

  • 8/13/2019 Unit 2 OFC

    4/52

    TransmissionWindowsinOpticalFiber

    rd

    Lowloss

    90Kmrepeaterspacing

    ng emo ean u mo e erswereuse

    Upto10Gbps

    owestattenuat onlongdistance

  • 8/13/2019 Unit 2 OFC

    5/52

    AttenuationCharacteristicsofanOpticalFiber

  • 8/13/2019 Unit 2 OFC

    6/52

    FiberAttenuation

    Lossorattenuationisalimitingparameterinfiberoptic

    systems

    electricaltransmissionlinesonlywhenlosseswerereducedtoallowsignaltransmissionoverdistancesgreaterthan10km

    Fiberattenuationcanbedescribedbythegeneralrelation:

    PdP =

    whereisthepowerattenuationcoefficientperunitlength

    in ,afterpropagatingalengthLwithinthefiberPoutis

    LPP inout = exp

  • 8/13/2019 Unit 2 OFC

    7/52

    FiberAttenuation

    Attenuat on sconven ent yexpresse ntermso B m

    ( ) log10

    10

    =P

    P

    LkmdB out

    log10 10

    =

    PeP

    L in

    L

    in

    ( ) ( )

    34.4

    log 10

    =

    = eLL

    dBmmW

    mWmWP 10

    1

    10log1010 10 =

    ==

    mWmWdBmP 50110127 1027

    ===

    PowerisoftenexpressedindBm (dBm isdBfrom1mW)

  • 8/13/2019 Unit 2 OFC

    8/52

  • 8/13/2019 Unit 2 OFC

    9/52

  • 8/13/2019 Unit 2 OFC

    10/52

    Attenuation

    Intrinsic

    Extrinsic Duetoscattering

    MicrobendingMacrobending

    Atomicdefects near

    Mie

    Nonlinear

    SRS

    SBS

    CPM

  • 8/13/2019 Unit 2 OFC

    11/52

    Absorption

    Absorption is caused by three different mechanisms:

    1- Impurities in fiber material: from transition metal ions (must

    be in order of ppb) & particularly from OH ions with

    absor tion eaks at wavelen ths 2700 nm 400 nm 950 nm &

    725nm.

    2- Intrinsic absorption (fundamental lower limit): electronica sorpt on an reg on atom c on v rat on an

    (IR region) in basic SiO2.

    3- Radiation defects

  • 8/13/2019 Unit 2 OFC

    12/52

  • 8/13/2019 Unit 2 OFC

    13/52

  • 8/13/2019 Unit 2 OFC

    14/52

  • 8/13/2019 Unit 2 OFC

    15/52

  • 8/13/2019 Unit 2 OFC

    16/52

  • 8/13/2019 Unit 2 OFC

    17/52

  • 8/13/2019 Unit 2 OFC

    18/52

  • 8/13/2019 Unit 2 OFC

    19/52

  • 8/13/2019 Unit 2 OFC

    20/52

  • 8/13/2019 Unit 2 OFC

    21/52

    ExternalLosses

    Bendingloss

    Radiationlossatbendsintheo ticalfiber

    InsignificantunlessR

  • 8/13/2019 Unit 2 OFC

    22/52

  • 8/13/2019 Unit 2 OFC

    23/52

    B n in l Macrobendin

    Microbending

    cladding

    core

    23

  • 8/13/2019 Unit 2 OFC

    24/52

  • 8/13/2019 Unit 2 OFC

    25/52

    Transmission medium erformance

    z=0 z=L

    Attenuation

    z=0 z=L

    Dispersion

  • 8/13/2019 Unit 2 OFC

    26/52

  • 8/13/2019 Unit 2 OFC

    27/52

    Dispersionofthetransmitted

    opticalsignalcausesdistortionfor

    transmissionsalongopticalfibers. Indigitalsystems,thedispersion

    mec anismscausea roa ening

    ofthetransmittedpulsesasthey

    travelalongthefiber. Thisreducesthefiberbandwidth

    andcancauseintersymbol

    interference(ISI).

  • 8/13/2019 Unit 2 OFC

    28/52

    Dispersion

    Dis ersivemedium:velocit of ro a ationdependsonfrequency

    Dispersioncausestemporalpulsespreading

    Pulseoverlapresultsinindistinguishabledata Intersymbolinterference(ISI)

  • 8/13/2019 Unit 2 OFC

    29/52

  • 8/13/2019 Unit 2 OFC

    30/52

    Di r i n m h ni mIntermodal Intramodal / Chromatic

    materialAtomicresonances Electronic

    1

    resonances

    multimode fiber! 1010 1011 1012 1013 1014 1015 1016 1017(Hz)

    wavegu e

  • 8/13/2019 Unit 2 OFC

    31/52

    Higherordermodeshavealongerpathlength Longerpathlengthhasalongerpropagationtime

    TemporalpulseseparationL=

    vgisusedasthepropagationspeedfortheraystotake

    gv

  • 8/13/2019 Unit 2 OFC

    32/52

    In rm l i r i nL

    n1 c

    X

    2

    n

    Lc

    L

    T1

    min

    distance

    ===2

    cos nc =

    n1

    1max

    nLT=

    1

    t

    2

    2

    1

    nc

    Ln

    c

    =

    [ ]kmnscn

    LNA

    c

    nLn

    c

    n

    n

    LnTTT s /

    2 1

    2

    1

    2

    1minmax

    ==

  • 8/13/2019 Unit 2 OFC

    33/52

    1/Ts

    Ts/2 Ts/2 time

    dttpdttp

    sT

    T

    ii )(1)(2

    ==

    s

    2

    rms pulsebroadeningduetointermodaldispersion

    1

    0

    2

    1

    12

    mmeanzero

    mm

    T

    s

    s

    =

    =

    ( )1 22

    2

    2

    2

    NALT

    dtT

    tm

    s

    sTs

    ==

    =

    34)(

    32

    223

    1

    2

    1

    1

    cnNAL

    cLn

    cn

    s

    s

    ==

  • 8/13/2019 Unit 2 OFC

    34/52

    Dispersionhaslesseffectinsinglemodefibers

    BL = 20 MHz.km

    BL = 1 GHz.km

    = .

    2

    =TB

  • 8/13/2019 Unit 2 OFC

    35/52

    e.g.AMMGIFiberexhibitstotalpulsebroadeningof0.1soveradistanceof15Km.Estimate:

    1. Max.possiblebandwidthonthelinkassumingnoISI

    .

    3. Bopt.L productforthefiber.

    1) 5MHz

    2) 6.67ms/Km

    3) 75MHz.Km

  • 8/13/2019 Unit 2 OFC

    36/52

    Duetothedispersion,thereispulsebroadening

    BisthebitrateandTthebitduration.

    Togetanorderofmagnitudeofthedispersioneffect,oneusesthefollowingcriteria:thepulsebroadeningTmustbelessthanthepulsewidthT.

    1=< TT

    B1 0 0 1 1 1* 1 1

    uecer a n vaa1 0 0 1 1 0 1 1

  • 8/13/2019 Unit 2 OFC

    37/52

    Dispersion has two origins

    Intramodal orchromaticdispersion:describesthepulse

    broadeningduetothefinitespectrallinewidthofthesources

    andoccursinalltypesoffibers:

    thecladdingchangewithwavelength)

    Waveguidedispersion(Echangeswithwavelength) Profiledispersion(indexprofilechangeswithwavelength)

    Intermodaldispersion:describesthepulsebroadeningduetothepropagationdelaydifferencesbetweenthepropagation

    modes in multimode fibers.

  • 8/13/2019 Unit 2 OFC

    38/52

    The group velocity is given by:

    d

    d

    g =

    d

    l

    l

    == g

    v udepend both on frequency & the propagation

  • 8/13/2019 Unit 2 OFC

    39/52

    Materialdispersion

    Itoccurswhenthephasevelocityofaplane

    wave ro a atin inthedielectricmedium

    variesnonlinearlywithwavelength.nd

    2

    n

    cv

    d

    p

    ==

    2

    N

    c

    d

    dv

    g

    g ==

    dnn

    cdvdelayGroup

    g

    g

    g

    =

    ====

    11

    Ld

    dnncdelaydispersionmaterial

    dc

    m

    =

    11

    1

  • 8/13/2019 Unit 2 OFC

    40/52

    Pulsebroadeningduetomaterialdispersion

    12

    ndL

    m =c

    2

    Lc

    =

    2

    1

    d

    Materialdispersionparameter

    Kmnmpsd

    nd

    cM = /21

    2

  • 8/13/2019 Unit 2 OFC

    41/52

    Materialdispersiontendstobecome0

    atlongerwavelengths

    200

    150

    dispersion

    50

    50

    00.6 0.8 1 1.2 1.3 1.4 1.6 1.8 2

    100

  • 8/13/2019 Unit 2 OFC

    42/52

    ChromaticdispersionandIntermodal dispersion

    22nCT

  • 8/13/2019 Unit 2 OFC

    43/52

    Polarization Mode dispersionIntensity

    zOutput light pulse

    t

    ore

    n // x

    1y

    E

    Ex

    x

    Ey= Pulse spread

    x y

    E

    t

    Input light pulse

    Su ose that the core refractive index has different values alon two ortho onal

    directions corresponding to electric field oscillation direction (polarizations). We cantakexandyaxes along these directions. An input light will travel along the fiber withExandEypolarizations having different group velocities and hence arrive at the output at

    1999 S.O. Kasap,Optoelectronics (Prentice Hall)

  • 8/13/2019 Unit 2 OFC

    44/52

    Temporal changes in a narrow optical pulse that is subjected to Kerr nonlinearity in

    .

    Innn 20+= Kerr nonlinearity in fiber, where I is the intensity of.

  • 8/13/2019 Unit 2 OFC

    45/52

  • 8/13/2019 Unit 2 OFC

    46/52

  • 8/13/2019 Unit 2 OFC

    47/52

  • 8/13/2019 Unit 2 OFC

    48/52

  • 8/13/2019 Unit 2 OFC

    49/52

  • 8/13/2019 Unit 2 OFC

    50/52

  • 8/13/2019 Unit 2 OFC

    51/52

    Di r i nfl n fi r

    40

    Dm SiO21.55

    0

    20

    D(ps/nm/km)

    Dtot DFF

    \

    -20

    w

    n(r)

    -40

    1.2 1.3 1.4 1.5 1.6

    wavelength (m)

    51

    rW-fiber

  • 8/13/2019 Unit 2 OFC

    52/52


Recommended