+ All Categories
Home > Documents > Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis...

Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis...

Date post: 19-Dec-2015
Category:
View: 226 times
Download: 0 times
Share this document with a friend
Popular Tags:
64
Z. Feng MTU EE4800 CMOS Digital IC Design & Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis Analysis 1. 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng
Transcript
Page 1: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.11

EE4800 CMOS Digital IC Design & Analysis 

Lecture 1 IntroductionZhuo Feng

Page 2: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.22

■ Prof. Zhuo Feng► Office: EERC 513► Phone: 487-3116 ► Email: [email protected]

■ Class Website ► http://www.ece.mtu.edu/~zhuofeng/EE4800Fall2011.html► Check the class website for lecture materials, assignments

and announcements

■ Schedule► TR 12:35pm-13:50pm EERC 227► Office hours: TR 4:30pm – 5:30pm or by appointments

Page 3: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.33

Topics (tentative)■ Introduction■ CMOS circuit and layout ■ MOS transistor device characteristics■ DC and transient responses, delay estimation■ Logical effort■ Power■ SPICE simulation■ Modified Nodal Analysis (MNA)■ Interconnect ■ Combinational circuits■ Sequential circuits■ Design for Testability■ Adders■ SRAM■ Packaging, power and clock distributions

Page 4: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.44

Grading Policy■Homework: 40%■Quizzes 10%■Mid-term Exam: 20%■Final Exam: 30%■Late homework: 50% penalty/day.■Letter Grades:

►A: 85~100; AB: 80~84; B: 75~79; BC: 70~74; C: 65~69; D: 60~64; F: 0~59

Page 5: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.55

Moore’s law in Microprocessors

40048008

80808085 8086

286386

486Pentium® proc

P6

0.001

0.01

0.1

1

10

100

1000

1970 1980 1990 2000 2010Year

Tra

nsis

tors

(M

T) 2X growth in 1.96 years!

Transistors on Lead Microprocessors double every 2 yearsTransistors on Lead Microprocessors double every 2 years

Courtesy, Intel

Page 6: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.66

Die Size Growth

40048008

80808085

8086286

386486Pentium ® proc

P6

1

10

100

1970 1980 1990 2000 2010Year

Die

siz

e (

mm

)

~7% growth per year~2X growth in 10 years

Die size grows by 14% to satisfy Moore’s LawDie size grows by 14% to satisfy Moore’s Law

Courtesy, Intel

Page 7: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.77

Frequency

P6Pentium ® proc

48638628680868085

8080800840040.1

1

10

100

1000

10000

1970 1980 1990 2000 2010Year

Fre

qu

en

cy (

Mh

z)

Lead Microprocessors frequency doubles every 2 yearsLead Microprocessors frequency doubles every 2 years

Doubles every2 years

Courtesy, Intel

Page 8: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.88

Power Dissipation

P6Pentium ®proc

486

3862868086

80858080

80084004

0.1

1

10

100

1971 1974 1978 1985 1992 2000Year

Pow

er

(Watt

s)

Lead Microprocessors power continues to increaseLead Microprocessors power continues to increase

Courtesy, Intel

Page 9: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.99

Why Scaling?

■ Technology shrinks by ~0.7 per generation■ With every generation can integrate 2x more

functions on a chip; chip cost does not increase significantly

■ Cost of a function decreases by 2x■ But …

► How to design chips with more and more functions?► Design engineering population does not double every two

years…

■ Hence, a need for more efficient design methods► Exploit different levels of abstraction

Page 10: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1010

Pentium 4■ Deep pipeline (2001)

► Very fast clock► 256-1024 KB L2$

■ Characteristics► 180 – 65 nm process► 42-125M transistors► 1.4-3.4 GHz► Up to 160 W► 32/64-bit word size► 478-pin PGA

■ Units start to becomeinvisible on this scale

Page 11: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1111

Pentium M■ Pentium III derivative

► Better power efficiency► 1-2 MB L2$

■ Characteristics► 130 – 90 nm process► 140M transistors► 0.9-2.3 GHz► 6-25 W► 32-bit word size► 478-pin PGA

■ Cache dominates chip area

Page 12: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1212

Core2 Duo■ Dual core (2006)

► 1-2 MB L2$ / core■ Characteristics

► 65-45 nm process► 291M transistors► 1.6-3+ GHz► 65 W► 32/64 bit word size► 775 pin LGA

■ Much better performance/power efficiency

Page 13: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1313

Core i7■ Quad core (& more)

► Pentium-style architecture► 2 MB L3$ / core

■ Characteristics► 45-32 nm process► 731M transistors► 2.66-3.33+ GHz► Up to 130 W► 32/64 bit word size► 1366-pin LGA► Multithreading

■ On-die memory controller

Page 14: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1414

Atom■ Low power CPU for netbooks

► Pentium-style architecture► 512KB+ L2$

■ Characteristics► 45-32 nm process► 47M transistors► 0.8-1.8+ GHz► 1.4-13 W► 32/64-bit word size► 441-pin FCBGA

■ Low voltage (0.7 – 1.1 V) operation► Excellent performance/power

Page 15: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1515

Design Abstraction Levels

n+n+S

GD

+

DEVICE

CIRCUIT

GATE

MODULE

SYSTEM

Page 16: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1616

Design Metrics■How to evaluate performance of a

digital circuit (gate, block, …)?►Cost►Reliability►Scalability►Speed (delay, operating frequency) ►Power dissipation►Energy to perform a function

Page 17: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1717

Cost of Integrated Circuits■ NRE (non-recurrent engineering) costs

►design time and effort, mask generation►one-time cost factor

■ Recurrent costs►silicon processing, packaging, test►proportional to volume►proportional to chip area

Page 18: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1818

Cost per Transistor

0.00000010.0000001

0.0000010.000001

0.000010.00001

0.00010.0001

0.0010.001

0.010.01

0.10.111

19821982 19851985 19881988 19911991 19941994 19971997 20002000 20032003 20062006 20092009 20122012

cost: cost: ¢-per-¢-per-transistortransistor

Fabrication capital cost per transistor (Moore’s law)

Page 19: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.1919

Silicon Lattice■ Transistors are built on a silicon substrate■ Silicon is a Group IV material■ Forms crystal lattice with bonds to four

neighbors

Si SiSi

Si SiSi

Si SiSi

Page 20: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2020

Dopants■ Silicon is a semiconductor■ Pure silicon has no free carriers and conducts

poorly■ Adding dopants increases the conductivity■ Group V: extra electron (n-type)■ Group III: missing electron, called hole (p-type)

As SiSi

Si SiSi

Si SiSi

B SiSi

Si SiSi

Si SiSi

-

+

+

-

N-typeN-type P-typeP-type

Page 21: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2121

P-N Junctions■ A junction between p-type and n-type

semiconductor forms a diode.■ Current flows only in one direction

p-type n-type

anode cathode

Current flow directionCurrent flow direction

Electron flow directionElectron flow direction

Page 22: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2222

NMOS Transistor■ Four terminals: gate, source, drain, body■ Gate – oxide – body stack looks like a capacitor

► Gate and body are conductors

► SiO2 (oxide) is a very good insulator

► Called metal – oxide – semiconductor (MOS) capacitor► Even though gate is no longer made of metal

Substrate, body or bulkSubstrate, body or bulk

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+Body

Page 23: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2323

NMOS Operation■ Body is commonly tied to ground (0 V)■ When the gate is at a low voltage:

► P-type body is at low voltage► Source-body and drain-body diodes are OFF► No current flows, transistor is OFF

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+D

0

S

Page 24: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2424

NMOS Operation Cont.■ When the gate is at a high voltage:

► Positive charge on gate of MOS capacitor► Negative charge attracted to body► Inverts a channel under gate to n-type► Now current can flow through n-type silicon from source

through channel to drain, transistor is ON

n+

p

GateSource Drain

bulk Si

SiO2

Polysilicon

n+D

1

S

Page 25: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2525

PMOS Transistor■ Similar, but doping and voltages reversed

► Body tied to high voltage (VDD)

► Gate low: transistor ON► Gate high: transistor OFF► Bubble indicates inverted behavior

SiO2

n

GateSource Drain

bulk Si

Polysilicon

p+ p+

Page 26: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2626

Power Supply Voltage■ GND = 0 V

■ In 1980’s, VDD = 5V

■ VDD has decreased in modern processes► High VDD would damage modern tiny transistors

► Lower VDD saves power

■ VDD = 3.3, 2.5, 1.8, 1.5, 1.2, 1.0, …

Page 27: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2727

Transistors as Switches■ We can view MOS transistors as electrically

controlled switches■ Voltage at gate controls path from source to

drain

g

s

d

g = 0

s

d

g = 1

s

d

g

s

d

s

d

s

d

nMOS

pMOS

OFF ON

ON OFF

Page 28: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2828

CMOS Inverter

A Y

0

1

VDD

A Y

GNDA Y

Page 29: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.2929

CMOS Inverter

A Y

0

1 0

VDD

A=1 Y=0

GND

ON

OFF

A Y

Page 30: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3030

CMOS Inverter

A Y

0 1

1 0

VDD

A=0 Y=1

GND

OFF

ON

A Y

Page 31: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3131

CMOS NAND Gate

A B Y

0 0

0 1

1 0

1 1

A

B

Y

Page 32: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3232

CMOS NAND Gate

A B Y

0 0 1

0 1

1 0

1 1

A=0

B=0

Y=1

OFF

ON ON

OFF

Page 33: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3333

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0

1 1

A=0

B=1

Y=1

OFF

OFF ON

ON

Page 34: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3434

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1

A=1

B=0

Y=1

ON

ON OFF

OFF

Page 35: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3535

CMOS NAND Gate

A B Y

0 0 1

0 1 1

1 0 1

1 1 0

A=1

B=1

Y=0

ON

OFF OFF

ON

Page 36: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3636

CMOS NOR Gate

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

A

BY

Page 37: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3737

3-input NAND Gate■ Y pulls low if ALL inputs are 1■ Y pulls high if ANY input is 0

A

B

Y

C

Page 38: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3838

CMOS Fabrication■ CMOS transistors are fabricated on silicon wafer

■ Lithography process similar to printing press

■ On each step, different materials are deposited or etched

■ Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Page 39: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.3939

Inverter Cross-section■ Typically use P-type substrate for NMOS

transistors■ Requires N-well for body of PMOS transistors

► Silicon dioxide (SiO2) prevents metal from shorting to other layers

inputinput

n+

p substrate

p+

n well

A

YGND VDD

n+ p+

SiO2

n+ diffusion

p+ diffusion

polysilicon

metal1

nMOS transistor pMOS transistor

Page 40: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4040

Well and Substrate Taps■ P-type substrate (body) must be tied to GND

■ N-well is tied to VDD

■ Use heavily doped well and substrate contacts ( taps)

► Establish a good ohmic contact providing low resistance for bidirectional current flow

n+

p substrate

p+

n well

A

YGND VDD

n+p+

substrate tapwell tap

n+ p+

Page 41: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4141

Inverter Mask Set■ Transistors and wires are defined by masks

► Inverter can be obtained using six masks: n-well, polysilicon, n+ diffusion, p+ diffusion, contacts and metal

■ Cross-section taken along dashed line

GND VDD

Y

A

substrate tap well tapnMOS transistor pMOS transistor

Page 42: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4242

■ Six masks► n-well

► Polysilicon

► N+ diffusion► P+ diffusion► Contact

► Metal

Detailed Mask Views

Metal

Polysilicon

Contact

n+ Diffusion

p+ Diffusion

n well

Page 43: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4343

Fabrication■ Chips are built in huge factories called fabs■ Contain clean rooms as large as football fields

Courtesy of InternationalBusiness Machines (IBM) Corporation. Unauthorized use not permitted.

Page 44: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4444

Fabrication Steps■ Start with blank wafer■ Build inverter from the bottom up■ First step will be to form the n-well

► Cover wafer with protective layer of SiO2 (oxide)

► Remove layer where n-well should be built► Implant or diffuse n dopants into exposed wafer

► Strip off SiO2

p substrate

Page 45: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4545

Oxidation■ Grow SiO2 on top of Si wafer

►900 – 1200 Celcius with H2O or O2 in oxidation furnace

p substrate

SiO2

Page 46: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4646

Photoresist■ Spin on photoresist

►Photoresist is a light-sensitive organic polymer►Softens where exposed to light

p substrate

SiO2

Photoresist

Page 47: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4747

■ Expose photoresist through n-well mask

■ Strip off exposed photoresist

Lithography

p substrate

SiO2

Photoresist

Page 48: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4848

Etch■ Etch oxide with hydrofluoric acid (HF)■ Only attacks oxide where resist has been

exposed

p substrate

SiO2

Photoresist

Page 49: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.4949

Strip Photoresist■ Strip off remaining photoresist

►Use mixture of acids called piranha etch

■ Necessary so resist doesn’t melt in next step

p substrate

SiO2

Page 50: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5050

N-well■ N-well is formed with diffusion or ion

implantation■ Diffusion

► Place wafer in furnace with arsenic gas► Heat until As atoms diffuse into exposed Si

■ Ion Implantation► Blast wafer with beam of As ions

► Ions blocked by SiO2, only enter exposed Si

n well

SiO2

Page 51: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5151

Strip Oxide■ Strip off the remaining oxide using HF■ Back to bare wafer with n-well■ Subsequent steps involve similar series of

steps

p substraten well

Page 52: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5252

Polysilicon■ Deposit very thin layer of gate oxide (SiO2)

► < 20 Å (6-7 atomic layers)

■ Chemical Vapor Deposition (CVD) of silicon layer► Place wafer in furnace with Silane gas (SiH4)

► Forms many small crystals called polysilicon► Heavily doped to be good conductor

Thin gate oxidePolysilicon

p substraten well

Page 53: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5353

Polysilicon Patterning■ Use same lithography process to pattern

polysilicon

Polysilicon

p substrate

Thin gate oxidePolysilicon

n well

Page 54: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5454

Self-Aligned Process■ Use oxide and masking to expose where n+

dopants should be diffused or implanted■ N-diffusion forms NMOS source, drain, and n-

well contact

p substraten well

Page 55: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5555

N-diffusion■ Pattern oxide and form n+ regions■ Self-aligned process where gate blocks diffusion■ Polysilicon is better than metal for self-aligned gates

because it doesn’t melt during later processing

p substraten well

n+ Diffusion

Page 56: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5656

N-diffusion cont.■ Historically dopants were diffused■ Usually ion implantation today■ But regions are still called diffusion

n wellp substrate

n+n+ n+

Page 57: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5757

N-diffusion cont.■ Strip off oxide to complete patterning step

n wellp substrate

n+n+ n+

Page 58: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5858

P-Diffusion■ Similar set of steps form p+ diffusion regions

for pMOS source and drain and substrate contact

p+ Diffusion

p substraten well

n+n+ n+p+p+p+

Page 59: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.5959

Contacts■ Now we need to wire together the devices■ Cover chip with thick field oxide■ Etch oxide where contact cuts are needed

p substrate

Thick field oxide

n well

n+n+ n+p+p+p+

Contact

Page 60: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.6060

Metallization■ Sputter on aluminum over whole wafer■ Pattern to remove excess metal, leaving wires

p substrate

Metal

Thick field oxide

n well

n+n+ n+p+p+p+

Metal

Page 61: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.6161

Layout■ Chips are specified with set of masks■ Minimum dimensions of masks determine

transistor size (and hence speed, cost, and power)

■ Feature size f = distance between source and drain

► Set by minimum width of polysilicon

■ Feature size improves 30% every 3 years or so

■ Normalize for feature size when describing design rules

■ Express rules in terms of = f/2► E.g. = 0.3 m in 0.6 m process

Page 62: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.6262

Simplified Design Rules■ Conservative rules to get you started

Page 63: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.6363

Inverter Layout■ Transistor dimensions specified as Width /

Length► Minimum size is 4 / 2sometimes called 1 unit► In f = 0.6 m process, this is 1.2 m wide, 0.6 m long

Page 64: Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 1.1 EE4800 CMOS Digital IC Design & Analysis Lecture 1 Introduction Zhuo Feng.

Z. Feng MTU EE4800 CMOS Digital IC Design & AnalysisZ. Feng MTU EE4800 CMOS Digital IC Design & Analysis1.1.6464

Summary■ MOS Transistors are stack of gate, oxide, silicon■ Can be viewed as electrically controlled switches■ Build logic gates out of switches■ Draw masks to specify layout of transistors■ Now you know everything necessary to start

designing schematics and layout for a simple chip!


Recommended