Adnan Alam (1)

Post on 14-Apr-2018

235 views 0 download

transcript

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 1/54

1

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 2/54

Fabrication of Nano porous

membrane for Ultra filtration

Supervised by: Dr. M. Mujahid

 ADNAN ALAM

MS MATERIAL AND SURFACE

ENGINEERING

REG#2011-NUST-MS PhD-MS-E-02

2

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 3/54

Contents

Phase Inversion Process

Membrane Fabrication

SEM Results AFM Results

FT-IR Results

XRD Results

De-Ionized water Flux Results

Future Work

3

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 4/54

Phase Inversion Process

Liquid Liquid Phase Inversion

Mass transfer takes place, i.e. the

solvent from the polymer solutiondiffuses into the precipitation bath,

whereas the non-solvent diffuses into

the polymer solution. Thus, solution

composition is changed which takes to

a de-mixing process.

4

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 5/54

 

5

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 6/54

Pore Formation Mechanism

The polymer solution in solvent results inhomogenous polymer-solvent solution.

When this solution in exposed in

precipitation bath containing non-solvent,exchange between solvent and non-

solvent takes place.

Solvent leaves polymer solution creatingvoids while non-solvent diffuses in

polymer, precipitating it into membrane

structure. 6

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 7/54

Membrane Modules

UF membrane modules are

Tubular  Hollow-fiber 

Spiral wound configurations

Flat sheet

7

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 8/54

Materials for Membrane

Polymer (Cellulose Acetate)

Pore gen (Chitosan)

Solvent (Formic Acid)

Non-solvent (Water)

8

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 9/54

Limitations of Cellulose Acetate

Membrane

Thermal stability

Poor film making properties Mechanical properties

9

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 10/54

Improvement in CA by Chitosan

Hydrophilic properties increase

Mechanical strength and mechanical

toughness increase

 Anti bacterial activity

Excellent film forming ability

Chitosan non-toxic Chitosan as crosslinking agent

10

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 11/54

BLEND RATIO

Cellulose Acetate: Chitosan: Formic Acid

10 : 3 : 150

Cellulose Acetate =1gm

Chitosan = 0.3 gm

Formic Acid = 15 ml

11

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 12/54

Cellulose acetate based

membrane 

12

Cellulose acetate (CA) and Chitosan 

Formic Acid 

Constant stirring 

De-aeration 

casting on glass

Solvent Evaporation 

Non-solvent addition 

Membrane drying 

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 13/54

Casting & Blending

13

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 14/54

 Solution To Avoid Membrane

Shrinkage

Method # 1 Method # 2

1. Membrane immersion

in aqueous isopropylalcohol solution for 24

hrs.

2. Immersion in a mixture

of isopropyl alcohol andhexane solution for 24

hrs.

3. Immersion in pure

Hexane and than dryingin desiccators.

Drying in desiccators

keeping membranestretched.

14

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 15/54

SEM RESULTS(Air dried

membrane)

15

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 16/54

SEM RESULTS(Air dried

membrane)

16

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 17/54

Cont… 

17

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 18/54

Cont… 

18

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 19/54

(Solvent dried membrane)

19

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 20/54

Cont… 

20

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 21/54

Cont… 

21

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 22/54

Cont… 

22

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 23/54

Cont… 

23

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 24/54

Cont… 

24

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 25/54

Cont… 

25

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 26/54

SEM Conclusions

Membrane is porous

Uniform distribution of pores

Pore size ranges in UF limits (10-

100nm)

Reproducibility of results

26

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 27/54

 AFM (Air dried membrane)

27

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 28/54

28

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 29/54

29

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 30/54

30

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 31/54

 AFM (Solvent dried

membrane)

31

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 32/54

32

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 33/54

33

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 34/54

34

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 35/54

Conclusions of AFM

Pore diameter confirmation

Surface Roughness Presence

35

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 36/54

Comparison of AFM & SEM

36

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 37/54

Structure Of Cellulose Acetate

37

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 38/54

Structure Of Chitosan

38

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 39/54

FT-IR

39

0 500 1000 1500 2000 2500 3000 3500 4000 4500

-10

0

10

20

30

40

50

60

70

80

   T  r  a  n  s  m   i   t   t  a  n  c  e   %

Wave number(cm-1)

cellulose acetate

0 500 1000 1500 2000 2500 3000 3500 4000 4500

30

35

40

45

50

   T  r  a  n  s  m   i   t   t  a  n  c  e   %

wave number(cm-1)

Chitosan

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 40/54

40

500 1000 1500 2000 2500 3000 3500 4000

0

20

40

60

80

100

    T   r   a   n   s   m    i    t    t   a   n   c   e    %

wave number (cm-1

membrane

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 41/54

Comparison

41

500 1000 1500 2000 2500 3000 3500 4000

-10

0

10

20

30

40

50

60

70

80

90

100

    T   r   a   n   s   m    i    t    t   a   n   c   e    %

Wave number (cm-1)

cellulose acetate

membrane

Chitosan

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 42/54

Conclusion Of FT-IR

42

The absorption peaks in FTIR spectrum of cellulose

acetate is attributed to the vibrations of the acetate group

at

1790 cm-1 (C=O),

1370 cm-1 (C-CH3),

and 1045 cm-1 (C-O-C).

The FTIR spectrum of Chitosan is characterized by

absorption bands at 3352 (-OH stretching),

2878 cm-1 (-CH3 stretching),1560 (N-H bending),

1404 cm-1 (-OH bending),

1077 cm-1 (C-O bending),

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 43/54

Cont… 

43

 All prominent peaks in both cellulose acetate and

Chitosan are present in membrane spectrum,

also broad hydroxyl peak in cellulose acetate

become narrow and shift in Position.

Therefore, these changes in the IR spectra

suggested that there is homogenous blending

between Chitosan and cellulose acetate inmembrane.

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 44/54

XRD

44

10 15 20 25 30 35 40

0

50

100

150

200

250

300

         I       n         t       e       n       s         i         t       y

Thetea

Cellulose acteate

10 15 20 25 30 35 40

0

100

200

300

400

500

600

           I        n           t        e        n

        s           i           t        y

Thetea

Chitosan

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 45/54

45

10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

         I       n         t       e       n       s         i         t       y

Thetea

Membrane

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 46/54

46

10 15 20 25 30 35 40

0

100

200

300

400

500

          i        n          t        e        n        s          i          t        y

Thetea

Membrane

Cellulose acteat

Chitosan

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 47/54

Conclusions of XRD

XRD pattern of Chitosan exhibited characteristiccrystalline reflections at approximately 21 θ .

Cellulose acetate XRD spectrum indicates an obvious

 broad peak at 22 θ and this peak verified that Celluloseacetate had denser semi crystalline structure.

In XRD spectrum of membrane, both above mentioned

characteristics peaks of Chitosan and cellulose acetateshifts their position along with intensity. This change

clearly confirms successful blending of both Chitosan

and cellulose acetate in membrane

47

P it C fi ti b Fl

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 48/54

Porosity Confirmation by Flux

Rate

Water flux was measured by

Jw = Q/A . ∆t 

Where

Q: Amount of permeate

 A: Area of membrane

∆t: Time of sampling 

48

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 49/54

0.01 10.3 0.0103 0.00422 2.440758 0.01666666 146.445556

0.02 24.5 0.0245 0.00422 5.805687 0.01666666 348.341372

0.03 41.1 0.0411 0.00422 9.739336 0.01666666 584.360423

0.04 48 0.048 0.00422 11.37441 0.01666666 682.464728

0.05 74.9 0.0749 0.00422 17.74882 0.01666666 1064.92934

49

0

200

400

600

800

1000

1200

0.01 0.02 0.03 0.04 0.05

   f   l  u  x   (   L   /  m   2   h  r   )

Pressure(bar)

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 50/54

50

0.01 10.1 0.0101 0.00422 2.393365 0.01666666 143.601953

0.02 23.9 0.0239 0.00422 5.663507 0.01666666 339.810562

0.03 40.7 0.0407 0.00422 9.64455 0.01666666 578.673217

0.04 54.7 0.0547 0.00422 12.96209 0.01666666 777.72543

0.05 76.3 0.0763 0.00422 18.08057 0.01666666 1084.83456

0

200

400

600

800

1000

1200

0.01 0.02 0.03 0.04 0.05

   f   l  u  x   (   L   /  m   2   h  r   )

Pressure(bar)

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 51/54

51

0.01 17.8 0.0178 0.00422 4.218009 0.01666666 253.08067

0.02 24.9 0.0249 0.00422 5.900474 0.01666666 354.028578

0.03 31.3 0.0313 0.00422 7.417062 0.01666666 445.023875

0.04 37.4 0.0374 0.00422 8.862559 0.01666666 531.753767

0.05 44 0.044 0.00422 10.42654 0.01666666 625.592667

0

200

400

600

800

0.01 0.02 0.03 0.04 0.05

   f   l  u  x   (   L   /  m   2   h  r   )

Pressure(bar)

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 52/54

52

0

200

400

600

800

1000

1200

0 0.01 0.02 0.03 0.04 0.05 0.06

flux(L/m2 hr) 11feb

flux(L/m2 hr) 13 feb

flux(L/m2 hr) 14feb

F

l

u

x

R

a

t

e

Pressure (bar)

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 53/54

Future Work

Optimization of the process by varyingthe Chitosan content.

Waste water treatment/ proteinrejection and results analysis

53

7/27/2019 Adnan Alam (1)

http://slidepdf.com/reader/full/adnan-alam-1 54/54