ECE 546 Lecture 11 MOS Amplifiers - University of Illinois ...

Post on 02-Jan-2022

2 views 0 download

transcript

ECE 546 – Jose Schutt‐Aine 1

ECE 546Lecture 11

MOS AmplifiersSpring 2020

Jose E. Schutt-AineElectrical & Computer Engineering

University of Illinoisjesa@illinois.edu

ECE 546 – Jose Schutt‐Aine 2

• Definitions– Used to increase the amplitude of an input signal to a

desired level– This is a fundamental signal processing function– Must be linear (free of distortion) – Shape of signal

preserved

Amplifiers

( ) ( ),o iv t Av t where A is the voltage gain

vi(t) vo(t)AMP

: ov

i

vVoltage Gain Av

( ) :( )

Lp

I

Load Power PPower Gain AInput Power P

ECE 546 – Jose Schutt‐Aine 3

Amplifiers

: p v iNote A A A

: oi

i

iCurrent Gain Ai

o op

I I

v iAv i

20log VVoltage gain in dB A

20log ICurrent gain in dB A

10log PPower gain in dB A

Expressing gain in dB (decibels)

ECE 546 – Jose Schutt‐Aine 4

Amplifiers

1 1 2 2DCP V I V I

100L

DC

P Power EfficiencyP

Since output associated with the signal is larger than the input signal, power must come from DC supply

DC I L dissipatedP P P P

ECE 546 – Jose Schutt‐Aine 5

Biasing of Amp

( ) ( )I QI IV t V v t

Bias will provide quiescent points for input and output about which variations will take place. Bias maintain amplifier in active region.

( ) ( )o QO oV t V v t

( ) ( )o v Iv t A v to

vI at Q

dvAdv

Amplifier characteristics are determined by bias point

ECE 546 – Jose Schutt‐Aine 6

Small-Signal Model

• What is a small-signal incremental model?

– Equivalent circuit that only accounts for signal level fluctuations about the DC bias operating points

– Fluctuations are assumed to be small enough so as not to drive the devices out of the proper range of operation

– Assumed to be linear

– Derives from superposition principle

ECE 546 – Jose Schutt‐Aine 7

• Bias Characteristics– Operation in saturation region– Stable and predictable drain current

Biasing of MOS Transistors

212D n ox GS T

WI C V VL

ECE 546 – Jose Schutt‐Aine 8

Single-Supply MOS Bias

– Choose R1 and R2 to fix VG– Choose RS and R2 to fix VS– VGS determines ID– Choose RD to fix VD

ECE 546 – Jose Schutt‐Aine 9

Common Source MOSFET Amplifier

Bias is to keep MOS in saturation region

ECE 546 – Jose Schutt‐Aine 10

Small-Signal Equivalent Circuit for MOS (device only)

Common Source MOSFET Amplifier

2'12D n GS T

WI k V VL

2

GS GSQ

D Dm

GS effV V

I IgV V

GS T effwhere V V V /mg is proportional to W L

'2 /m n Dg k W L I

Which leads to

ECE 546 – Jose Schutt‐Aine 11

To calculate rds, account for

21 1

2GS GSQ

DSds

D DPV V ox GS T

Vr WI IC V VL

2'12DP n GS T

WI k V VL

rds, accounts for channel width modulation resistance.

MOSFET Output Impedance

ECE 546 – Jose Schutt‐Aine 12

Midband Frequency Gain

out ds DBMB m

in B g ds D

v r RRA gv R R r R

Incremental model for complete amplifier

ECE 546 – Jose Schutt‐Aine 13

For the circuit shown, k=75 A/V2, VT=1 V, =0(a) Find VDQ, VSQ(b) Find the midband gain

2

1 2

20 5 425

GQ DDRV V V

R R

Example

4 2 GSQ GQ SQ DQV V V I

20.075(9 12 4 )DQ DQ DQI I I

2 24 12 9 13.3 6.33 2.25 0DQ DQ DQ DQ DQI I I I I

2 20.075 4 2 1DQ GSQ T DQI K V V I

ECE 546 – Jose Schutt‐Aine 14

26.33 93.167 0.378 or 5.9532

DQI mA mA

20 10 0.378 16.22DQ DD D DQV V R I V

2 0.378 0.756SQ S DQV R I V

Example (Cont’)

16.22DQV V

0.756SQV V

reject since voltage drop across RD willbe too large0.378DQI mA

ECE 546 – Jose Schutt‐Aine 15

0.337 10 3.37MB m DA g R

Example (Cont’)

'2 4 0.075 0.378 0.337m n DQWg k IL

3.37MBA

ECE 546 – Jose Schutt‐Aine 16

Low-Pass Circuit

In frequency domain:1

1i

oVV

j CRj C

11 1

i oo v

i

V VV Aj RC V j RC

2

1 11 1 /vA

j RC jf f

16

ECE 546 – Jose Schutt‐Aine 17

21 1

2 2f

RC

2 time constantRC

Low-Pass Circuit

17

ECE 546 – Jose Schutt‐Aine 18

High-Pass Circuit

1 11i i

oV R VV

Rj C j RC

2

1 11 1 /1

2

ov

i

VAV jf fj

fRC

21

2f

RC

18

ECE 546 – Jose Schutt‐Aine 19

Model for general Amplifying Element

Cc1 and Cc2 are coupling capacitors (large) F

19

Cin and Cout are parasitic capacitors (small) pF

ECE 546 – Jose Schutt‐Aine 20

Midband Frequencies

- Coupling capacitors are short circuits

- Parasitic capacitors are open circuits

out in LMB

in g in out L

v R RA Av R R R R

20

ECE 546 – Jose Schutt‐Aine 21

Low Frequency Model- Coupling capacitors are present- Parasitic capacitors are open circuits

1

1

1

1 1 ( )in in in c in

abc g in

g inc

v R v j C Rvj C R RR R

j C

1

1

( )1 ( )

c g ininab in

g in c g in

j C R RRv vR R j C R R

21

ECE 546 – Jose Schutt‐Aine 22

22 Dm n ox eff n ox D

eff

W W Ig C V C IL L V

MOSFET High-Frequency Model

2 2mb m mF sb

g g gV

1/ds A DD

r V II

23gs ox ov oxC WLC WL C

gd ov oxC WL C

1

sbosb

SB

o

CCVV

1

dbodb

DB

o

CCVV

22

ECE 546 – Jose Schutt‐Aine 23

CS - Three Frequency Bands

ECE 546 – Jose Schutt‐Aine 24

o m gs gd gsI g V sC V

Unity-Gain Frequency fTfT is defined as the frequency at which the short-circuit current gain of the common source configuration becomes unity

(neglect sCgdVgs since Cgd is small)

o m gsI g V i

gsgs gd

IVs C C

o m

i gs gd

I gI s C C

s jDefine:

24

ECE 546 – Jose Schutt‐Aine 25

For s=j, magnitude of current gain becomes unity at

2m m

T Tgs gd gs gd

g gfC C C C

fT ~ 100 MHz for 5-m CMOS, fT ~ several GHz for 0.13m CMOS

Calculating fT

25

ECE 546 – Jose Schutt‐Aine 2626

CS - High-Frequency Response

ECE 546 – Jose Schutt‐Aine 27

ii

1GR

DD

1GR

gg

1GR

dsds

1gr

'i D m gdo

' ' 2 'i i g gs gd gd D i g gd m D gd gs D

G R g sCvv G G s C C sC R G G sC g R s C C R

CS – Miller Effect – Exact Analysis

'D D ds

D ds

1R R || rG g

27

ECE 546 – Jose Schutt‐Aine 28

2 ' 'gd gs D gd m D gs ms C C R sC g R or sC g

We neglect the terms in s2 since

'

i D m gdo' '

i i g gs gd m D gd D i g

G R g sCvv G G s C C 1 g R C R G G

ii

1RG

If we multiply through by

CS – Miller Effect – Exact Analysis

28

Miller

ECE 546 – Jose Schutt‐Aine 29

'D m gdo

' 'i i g i gs gd m D gd D s g

R g sCvv 1 R G s R C C 1 g R C R 1 R G

i g

H ' 'i gs gd m D gd D i g

1 R Gf

2 R C C 1 g R C R 1 R G

From which we extract the 3-dB frequency point

CS – Miller Effect – Exact Analysis

29

ECE 546 – Jose Schutt‐Aine 30

H ' 'i gs gd m D gd D

1f2 R C C 1 g R C R

H 'gd D

1f2 C R

If Gg is negligible

If Ri =0

CS – Miller Effect – Exact Analysis

30

ECE 546 – Jose Schutt‐Aine 31

1 2

1 2

...( )

...m

H mm

s Z s Z s ZF s a

s P s P s P

Transfer Function Representation

Z1, Z2,…Zm are the zeros of the transfer function

P1, P2,…Pm are the poles of the transfer function

In general, the transfer function of an amplifier can be expressed as

31

s is a complex number s = + j

ECE 546 – Jose Schutt‐Aine 32

•Designer is interested in midband operation•However needs to know upper 3‐dB frequency• In many cases some conditions are met:Zeros are infinity or at very high frequenciesOne of the poles (P1) is at much lower frequency than other poles (dominant pole)

• If the conditions are met then FH(s) can be approximated by:

11

1( ) and we have1 /H H P

P

F ss

( ) ( )M HA s A F s3dB Frequency Determination

ECE 546 – Jose Schutt‐Aine 33

If the lowest frequency pole is at least 4 times away from the nearest pole or zero, it is a dominant pole

If there is no dominant pole, the 3‐dB frequency Hcan be approximated by:

2 2 2 21 2 1 2

1 1 1 11/ ... 2 ...HP P Z Z

3dB Frequency Determination

ECE 546 – Jose Schutt‐Aine 34

21 2

21 2

1 ...( )1 ...

nn

H nn

a s a s a sF sb s b s b s

The coefficients a and b are related to the frequencies of the zeros and poles respectively.  

Open-Circuit Time Constants

b1 can be obtained by summing the individual time constants of the circuit using the open-circuit time constant method

34

11 2

1 1 1...p p pn

b

ECE 546 – Jose Schutt‐Aine 35

Open-Circuit Time Constant Method• The time constant of each capacitor in the circuit is evaluated. It is the product of the capacitance and the resistance seen across its terminals with:All other internal capacitors open circuitedAll independent voltage sources short circuitedAll independent current sources opened

• The value of b1 is computed by summing the individual time constants

11

n

i ioi

b C R

ECE 546 – Jose Schutt‐Aine 36

• An approximation can be made by using the value of b1 to determine the 3dB upper frequency point H

• If the zeros are not dominant and if one of the poles P1 is dominant, then

11

1

P

b

1

1 1H

i ioi

b C R

Assuming that the 3‐dB frequency will be approximately equal to P1

Open-Circuit Time Constant Method

ECE 546 – Jose Schutt‐Aine 37

• The poles of a multistage amplifier are difficult to obtain analytically

• An approximate value for the 3dB upper frequency point 3dB can be obtained by assigning an open circuit time constant io to each capacitor Ci

Bandwidth of Multistage Amplifier

ECE 546 – Jose Schutt‐Aine 38

• The time constant io is the product of the capacitance and the resistance seen across its terminals with:All other internal capacitors open circuitedAll independent voltage sources short circuitedAll independent current sources opened

• The upper 3dB frequency point 3dB is then found by using :

31

dBio

Bandwidth of Multistage Amplifier

MOSFET amplifier has Rsig= 100 k, Cgs=Cgd= 1 pF, gm = 4 mA/V and RL’ =3.33 k. Find midband voltage gain and 3-dB frequency.

MOSFET Amp Bandwidth

' 420 4 3.33 10.8420 100

o inM m L

sig in sig

V RA g RV R R

ECE 546 – Jose Schutt‐Aine 40

|| 420 ||100 80.8gs in sigR R R k k k

12 31 10 80.8 10 80.8gs gs gsC R ns

MOSFET Amp AnalysisTo determine the 3‐dB frequency, we first evaluate the time constant associated with Cgs.  First, we determine the resistance Rgs seen by Cgs. The capacitance Cgd is removed and Vsig is short‐circuited

The time constant associated with Cgs is

ECE 546 – Jose Schutt‐Aine 41

gs gsx

in sig

V VI

R R '

gs xV I R

'gs x

x m gsL

V VI g V

R

' ' ' 'x

gd L m Lx

VR R R g R RI

The resistance Rgd seen by Cgd is found by setting Cgs = 0 and short‐circuiting Vsig

MOSFET Amp Analysis

' ||in sigR R R

ECE 546 – Jose Schutt‐Aine 42

12 61 10 1.16 10 1160gd gd gdC R ns

9

1 1 806 /80.8 1160 10H

gs gd

krad s

128.32

HHf kHz

MOSFET Amp Analysis

The open‐circuit time constant of  Cgd is

The upper 3‐dB frequency H can now be determined from