Date post: | 07-May-2015 |
Category: |
Education |
Author: | 4th-international-conference-on-advances-in-energy-research-icaer-2013 |
View: | 103 times |
Download: | 3 times |
1
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
C.Hariharan and M.GovardhanC.Hariharan and M.Govardhan
Thermal Turbomachines Laboratory
Department of Mechanical EngineeringIndian Institute of Technology Madras
Loss in Input Power due to Increase in Clearance between Inlet Duct and Impeller in an
Industrial Centrifugal Blower
2
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Introduction
• Aayder et al. [1]
• Lee [3]
• C Hariharan et al [5]
3
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Problem definition
• In most of the time while design we omit the clearance gap in between suction duct and impeller.
• The area of clearance is only 0.5 to 2% of inlet area.
4
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Design
Specification:
specific work - 24000 m2/s2 Design mass flow rate - 28.5 kg/soperating range - 20 kg/s to 31.5 kg/sSpeed - 3000rpm
5
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Dimension
Impeller:Blades - 15Inlet Diameter - 0.7 mInlet Blade angle - 32o
Exit Blade angle - 48o
Clearance gap - 1mm, 3mm and 5mm
clearance area - 0.6 %, 1.8% and 3%
6
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
Volute :- constant angular momentum
- tongue clearance 5% of impeller exit diameter
- Ratio between volute width and impeller exit width 5.
7
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Fan Assembly with Ratio 5 volute
8
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Numerical simulation
- commercial CFD code CFX 14
simplification-Steady state -Compressible (air ideal gas)
- (3-D) Full fan
9
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
- (3-D)-Mass-Momentum -Energy
- turbulence model (K-Ɛ)
10
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6- Stationary domain
- suction duct- volute
-Rotating domain - impeller
Interface
Frozen Rotor Technique
11
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Meshing
-Suction duct 0.8 million-Impeller 4.5 million-Volute 5.5 million
Y+ < 50 volume expansion factor < 25
Number of nodes in interfaces maintained almost same
12
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Suction duct mesh
13
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Impeller mesh
14
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
Impeller pasage
15
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Volute mesh
16
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Impeller inlet duct mesh
17
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Clearance between impeller and
inlet duct
18
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
Number of nodes in clearance
circumferential 1100radial 10
19
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Results
-Stage performance
-Component performance
20
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stage Pressure raise
21
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in Stage Pressure raise
22
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stage Efficiency
23
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in Stage Efficiency
24
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in Total pressure at impeller
exit
25
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in static pressure at impeller
exit
26
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Increase in input power
27
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Return mass flow rate
28
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Flow angle at inlet to impeller for
design mass flow rate
29
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Flow angle at inlet to impeller for
lowest mass flow rate
30
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Static pressure at impeller exit for
design mass flow rate
31
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Static pressure at impeller exit for
lowest mass flow rate
32
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Total pressure at impeller exit for
design mass flow rate
33
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Total pressure at impeller exit for
lowest mass flow rate
34
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Flow angle at Exit of impeller for
design mass flow rate
35
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Flow angle at Exit of impeller for
lowest mass flow rate
36
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stream lines in impeller for
clearance of (a) 0mm
37
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stream lines in impeller for
clearance of (a) 1mm
38
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stream lines in impeller for
clearance of (a) 3mm
39
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Stream lines in impeller for
clearance of (a) 5mm
40
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Volute Pressure recovery coefficient
41
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in volute Pressure recovery
coefficient
42
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Volute loss coefficient
43
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Volute loss coefficient
44
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in Total pressure at volute
exit
45
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6Change in static pressure at volute
exit
46
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6conclusion
-The overall stage performance at design and off design conditions, especially at higher mass flow rate is not favorable
-Stage efficiency drops considerably as the mass flow is increased and also there is an increase in input power up to 32 kW
-There is a noticeable drop in total and static pressure at exit of impeller
47
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6conclusion
As the clearance increases, the flow is found to be more uniform at the exit of the impeller and also the possibility of flow separation gets reduced at lower mass flow rates especially near the trailing edge of impeller.
The increased pressure recovery and reduced loss at higher clearance has positive effect on volute at all mass flow rates.
48
Ind
ian
In
stit
ute
of
Tech
nolo
gy
M
ad
ras
Ch
en
nai
– 3
6
Thank you