+ All Categories
Home > Documents > 52926489 LTE Technical Principles

52926489 LTE Technical Principles

Date post: 05-Apr-2018
Category:
Upload: sollihin-mohamed
View: 219 times
Download: 0 times
Share this document with a friend

of 99

Transcript
  • 8/2/2019 52926489 LTE Technical Principles

    1/99

    LTE Technical Principles

  • 8/2/2019 52926489 LTE Technical Principles

    2/99

    Agenda

    1. LTE/LTE-A Requirements

    2. E-UTRAN Architecture

    3. LTE Physical Layer functionalities

    4. LTE Higher Layer protocol stacks

    5. LTE A Technologies

  • 8/2/2019 52926489 LTE Technical Principles

    3/99

    3 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE/LTE-A Requirements

    1

  • 8/2/2019 52926489 LTE Technical Principles

    4/99

    4 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Design Objective

    Provide significantly improved power, bandwidth efficiencies, and

    delay in e-UTRA User-plane latency: < 5 ms one way (UE to Core Network)

    Control-plane latency: < 100ms (camped to active), < 50ms (dormant to active)

    Facilitate the convergencewith other networks/technologies

    Reduce transport network cost packet switching system

    Downlink

    100 Mbps peak data rate in 20 MHz

    2x2 MIMO

    User throughput

    3-4x HSDPA (average)

    2-3x HSDPA (5% CDF)

    Spectral Efficiency

    3-4x HSDPA

    Uplink

    50 Mbps peak data rate in 20 MHz

    Assumes one Tx antenna

    User throughput

    2-3x E-DCH (average)

    2-3x E-DCH (5% CDF)

    Spectral Efficiency

    2-3x E-DCH

  • 8/2/2019 52926489 LTE Technical Principles

    5/99

    5 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE/LTE-A Target Performance

    Item LTE Requirement LTE Results LTE-A Requirement

    Peak Data Rate

    DL > 100Mbps

    (5 bps/Hz)

    326.4Mbps(4 layer)

    172.8 Mbps(2 layer)

    1 Gbps

    (30 bps/Hz)

    UL > 50Mbps

    (2.5 bps/Hz)

    86.4 Mbps (64QAM)

    57.6 Mbps (16QAM)

    500 Mbps

    (15 bps/Hz)

    Latency

    C-plane Idle Active < 100msec 51.25 ms + 3 * S1

    delay

    < 50 ms

    Dormant (DRX)

    Active

    < 50msec Much shorter than

    51.25 ms

    < 10 ms

    U-plane < 5msec 4 ms < 5 msec (better

    than LTE)

  • 8/2/2019 52926489 LTE Technical Principles

    6/99

    6 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Delay Budget to achieve 5 ms in UTRA

    UEU-pla

    ne latency components in LTE

  • 8/2/2019 52926489 LTE Technical Principles

    7/997 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Items LTE Requirement Evaluation results LTE-A Requirements

    Average

    Spectrum

    Efficiency

    DL 3-4 UTRA (0.53

    bps/Hz )

    1.56 2.67 bps/Hz 3.5 bps/Hz

    UL 3-4 UTRA (0.332

    bps/Hz)

    0.68 1.03 bps/Hz 1.7 bps/Hz

    Cell Edge

    Spectrum

    Efficiency

    DL 2-3 UTRA (0.02

    bps/Hz)

    0.04 0.08 bps/Hz 0.06-0.1 bps/Hz

    UL 2-3 UTRA (0.009

    bps/Hz)

    0.01-0.052 bps/Hz 0.035-0.6 bps/Hz

    VoIP 300 per 5 MHz

    Average Throughput/Edge Throughput/VoIP Capacity

  • 8/2/2019 52926489 LTE Technical Principles

    8/998 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Coverage

    LTE Target/Requirement Evaluation results LTE-A Requirments

    User throughput and spectrum

    efficiency should be met the

    target in up to 5 km cell range

    Same or somewhat lower

    than that in ISD of 1732 m

    Same as LTE

    Support of very large cell Support for an adjustable random-access-burst length

    for large cell

    Same as LTE

  • 8/2/2019 52926489 LTE Technical Principles

    9/999 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    EnhancedMBMSandNetworkSynchronization

    Item LTE Requirement Evaluation results LTE-A Requirements

    Enhanced MBMS 1 bps/Hz in an urban or

    suburban environment

    D1 3.13 bps/Hz (1619 ISD)

    D2 3.02 bps/Hz (2310 ISD)

    D3 0.99 bps/Hz (1619 ISD)

    D4 3.18 bps/Hz (4375 ISD)

    Better than LTE

    Network

    Synchronization

    Inter-site time

    synchronization should

    be supported providedthese bring sufficient

    benefits

    The benefits of

    synchronised system is

    clarified

    Same as R-8 LTE

  • 8/2/2019 52926489 LTE Technical Principles

    10/99

    10 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    E-UTRAN Architecture

    2

  • 8/2/2019 52926489 LTE Technical Principles

    11/99

    11 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    E-UTRA Architecture

    Objectives for the architecture evolution - Develop a System Tailored todeliver broadband and real time Packet Switched services

    Reduced latency compared with the current UMTS system.

    Fast state transition between dormant and connected mode

    Reduce signalling and call set up time

    Simplify system deployment and operation & maintenance plug & play

    Competitive with other emerging technologies Flat-IP Architecture for e-UTRA

    Scalability to support the high data rates required for LTE

    No single point of failure and load sharing and redistribution capabilities

    Reduced number of nodes for lower transport delay

    Backhaul costs should be minimized

    Simplicity in supporting system plug & play

  • 8/2/2019 52926489 LTE Technical Principles

    12/99

    12 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Outlook of E-UTRA Architecture Evolution

    UMTS NodeB

    GGSN

    S1

    GSN, MM, SM?

    HSS interface,

    UE temp ID

    Security keys

    Encryption

    Headercompress

    ion

    RRC, Cell control,

    Scheduling,

    HARQ

    aGW

    LTE eNB

    SGSN

    MM, SM, HSS interface,

    UE temp ID, Security keys

    RNC

    RRC, Encryption,

    Header Compression,

    Cell control

    Scheduling,

    HARQ

    CN

    RAN

    Iu

    LTE ArchitectureUMTS Architecture

    Principal decisions:

    - No geographical association of

    upper nodes (removes single

    point of failure)

    - Security termination is in the

    upper Node

  • 8/2/2019 52926489 LTE Technical Principles

    13/99

    13 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Network architecture

    IASA

    S5b

    Evolved Packet Core

    Evolved RANS1 SGi

    Op.

    IPServ.(IMS,PSS,

    etc)

    Rx+

    S2

    GERAN

    UTRAN

    Gb

    Iu

    S3

    MMEUPE

    S4

    non 3GPPIP Access

    HSS

    PCRF

    S2

    S7

    S6

    WLAN3GPP IP Access

    * Color codi ng: red indicates new functional element / interface

    3GPPAnchor

    SGSN

    SAEAnchor

    GPRS Core

    S5a

  • 8/2/2019 52926489 LTE Technical Principles

    14/99

    14 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Evolved Packet System (EPS) Architecture: Goals

    The goal of the System Architecture Evolution (SAE) effort in 3GPP is to develop a

    framework for the evolution and migration of current systems to a system whichsupports the following:

    high data rates

    low latency

    packet-optimized (all IP network)

    provides service continuity across heterogeneous access networks

    Must allow co-existence with UMTS/HSPAand GSM/EDGE should be possible tomaintain a packet session in a way that isseamless to the user of a multi-modedevice

    Allows operators to gradually roll out LTE in

    the areas of highest demand first

    Currently being extended to also support EV-

    DO, and WiMAX

    LTE coverage

    UMTS/HSPA

    coverage

    GSM/EDGEcoverage

  • 8/2/2019 52926489 LTE Technical Principles

    15/99

    15 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Evolved Packet System Architecture Overview

    EPS is based upon an end-to-end all-IP architecture

    Every services are delivered over IP

    Clearly delineated control plane & data plane

    Simplified network architecture: from 2 to 1 core

    MME

    PCRF

    SGW PDN GW

    PDSN HA

  • 8/2/2019 52926489 LTE Technical Principles

    16/99

    16 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Evolution to EPS

    A Unified IP-based Always-on, QoS-enabled Network

    Legacy Infrastructure

    RNCHA

    Evolved Packet System

    Radio MobilityIntelligence placed

    in the eNB

    BE to QoS/HAnon-blocking

    1 2 4

    BTS Internet

    Multi-Media

    Services

    PDSN

    Backhaul

    (TDM/ATM)

    RNC Bearer mobilitycollapse into

    the SGW

    3

    Backhaultransition

    To IP/Ethernet

    Backhaul

    (IP/Ethernet)

    MCS voice and SGSNpacket mobility

    collapse intothe SGW

    RNC controldistributed into

    the MME/eNB

    SGSN controlcollapse into

    the MME

    CS Core

    PS Core

    5

    CS and PSCollapse into a

    Unified IPbackbone

    Serviceaware and

    mobile awareIP network

    6

    MME

    SGW PDN GWeNB

    PCRF

  • 8/2/2019 52926489 LTE Technical Principles

    17/99

    17 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Functional Implication of the New Mobile Core Architecture

    3GPP Access Non-3GPP Access

    PDSNRNCRNC SGSN/GGSN

    MME

    PCRF

    SGW PDN GW

    User Plane has Many Common Attributes with Fixed

    Broadband

    Broadband capacity

    QoS for multi-service delivery

    Per-user and per-application policies

    Highly available network elements

    Control Plane gained new Mobile-Specific

    Attributes Mobility across networks & operators

    Distributed mobility management

    Massive increase in scalability

    Dynamic policy management

  • 8/2/2019 52926489 LTE Technical Principles

    18/99

    18 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    internet

    eNB

    RB Control

    Connection Mobility Cont .

    eNB Measurement

    Configuration & Provision

    Dynamic Resource

    Allocation (Scheduler )

    PDCP

    PHY

    MME

    S-GW

    S1

    MAC

    Inter Cell RRM

    Radio Admission Control

    RLC

    E-UTRAN EPC

    RRC

    Mobility

    Anchoring

    EPS Bearer Control

    Idle State Mobility

    Handling

    NAS Security

    P-GW

    UE IP address

    allocation

    Packet Filtering

    EPS Architecture: Functional Description of Nodes

    eNB- contains all radioaccess functions

    Radio admission control

    Scheduling of UL and DL data

    Scheduling and transmission of

    paging and system broadcast

    IP header compression (PDCP)

    Outer-ARQ (RLC)

    Mobility Management Entity

    Authentication

    Tracking area list management

    Idle mode UE reachability

    S-GW/PDN-GW selection

    Inter core network node signaling for

    mobility between 2G/3G and LTE

    Bearer management functions

    Serving Gateway

    Local mobility anchor for inter-eNB handovers

    Mobility anchoring for inter-3GPP handovers

    Idle mode DL packet buffering

    Lawful interception

    Packet routing and forwarding

    PDN Gateway

    IP anchor point for bearers

    UE IP address allocation

    Per-user based packet filtering

    Connectivity to packet data network

    Policy

    PCRF

    PolicyDecisions

    Policy & Charging Rules Function

    Network control of Service Data Flow

    (SDF) detection, gating, QoS & flow

    based charging

    Dynamic policy decision on service

    data flow treatment in the PCEF

    (xGW)

    Authorizes QoS resources

  • 8/2/2019 52926489 LTE Technical Principles

    19/99

    19 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    S7c

    Big Picture View of the EPS

    SGi

    GERAN

    UTRAN

    S11

    S3

    S5

    eUTRAN

    HSS

    S4

    S1-U

    S1-MME

    S6a

    SGSN

    IP Network

    Gx

    X2

    AFPCRF

    ServingGateway

    S101

    S12

    PDNGateway

    CDMA/EVDOeRNC

    HSGW

    S2a

    Standards based interfacesfor inter-working with other

    3GPP & non-3GPP networks

    MME

    MME, S-GW & PDN-GW arelogically defined functions !

    New interface / directconnectivity now existsbetween eNBs

    eNB

    eNB

  • 8/2/2019 52926489 LTE Technical Principles

    20/99

    20 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Physical Layer functionalities

    3

  • 8/2/2019 52926489 LTE Technical Principles

    21/99

    21 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Fundamentals

  • 8/2/2019 52926489 LTE Technical Principles

    22/99

    22 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Air Interface Technologies and System design

    Air Interface physical and multiple access technologies:

    DL: OFDMA UL: SC-FDMA

    Frequency- and time-domain link adaptation frequency and timeselective scheduling

    Hybrid ARQ: Incremental Redundancy (Chase combining as a special case)

    Modulation schemes: QPSK, 16QAM. 64QAM for both DL and UL. Frequency reuse: universal reuse and interference mitigation scheme

    Macro diversity for intra-NodeB DL transmission and e-MBMS in SFN

    MIMO Technologies Single-user MIMO, Multi-user MIMO, SDMA,beamforming, and Transmit Diversity

    Radio Resource Allocation distributed (DL only) and localized

  • 8/2/2019 52926489 LTE Technical Principles

    23/99

    23 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    OFDMA/SC-FDMA Characteristics

    OFDMA/SC-FDMA allows spectrum scalability of LTE system operation

    Up to 20 MHz to enable very high data rates

    UEs with Lower bandwidth (low cost) can be operated in the same system

    OFDMA/SC-FDMA characteristic ISI removal with Cyclic Prefix

    CP Useful OFDM symbol time

    OFDM symbol

  • 8/2/2019 52926489 LTE Technical Principles

    24/99

    24 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Downlink

  • 8/2/2019 52926489 LTE Technical Principles

    25/99

    25 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Scalable OFDMA

    The LTE downlink uses scalable OFDMA

    Fixed subcarrier spacing of 15 kHz for unicast

    symbol time fixed at T = 1/15kHz = 66.67 s

    Different UEs are assigned different sets of subcarriers so that they remain orthogonal to eachother (except MU-MIMO)

    Serial toParallel

    IFFT

    bitstreamuser 1

    ...

    Parallelto Serial

    addCP

    Encoding +Interleaving

    + Modulation

    20 MHz: 2048 pt IFFT

    10 MHz: 1024 pt IFFT

    5 MHz: 512 pt IFFT

    Serial toParallel

    bitstreamuser 2 Encoding +

    Interleaving+ Modulation

    No in-cell interference -different users use different

    subcarriers

  • 8/2/2019 52926489 LTE Technical Principles

    26/99

    26 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Physical Channels to Support the LTE Downlink (Unicast)

    eNode-BPhysicalDownlinkSha

    redChannel

    (PDSCH)

    PhysicalDow

    nlinkControl

    Channel(PDCCH)

    PhysicalUpli

    nkControlCh

    annel(PUCCH)

    Carries DL traffic

    DL scheduling grant

    HARQ feedback for DL

    CQI reporting

    PhysicalBroa

    dcastChanne

    l(PBCH)

    Carries basic systembroadcast information

    Synchronizat

    ionChannel

    (SCH)

    Allows mobile to get timing andfrequency sync with the cell

    PhysicalCon

    trolFormatI

    ndicatorCha

    nnel(PCFICH

    )Time span of PDCCH

    PhysicalHAR

    QIndicatorC

    hannel(PHIC

    H)

    HARQ feedbackfor UL

    UE

  • 8/2/2019 52926489 LTE Technical Principles

    27/99

    27 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Mapping of Logical, Transport, Physical Channels

    BCCHPCCH CCCH DCCH DTCH MCCH MTCH

    BCHPCH DL-SCH MCH

    DownlinkLogical channels

    Downlink

    Transport channels

    Downlink

    Physical ChannelsPDSCH PDCCHPBCH PHICHPCFICHSCHDL-RS PMCH

    LTE makes heavy use of shared channels common control, paging, and part of

    broadcast information carried on PDSCHPCCH: paging control channel

    BCCH: broadcast control channel

    CCCH: common control channel

    DCCH: dedicated control channel

    DTCH: dedicated traffic channel

    PCH: paging channel

    BCH: broadcast channel

    DL-SCH: DL shared channel

  • 8/2/2019 52926489 LTE Technical Principles

    28/99

    28 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Channel Structure and Terminology

    t

    f

    Physical Resource Block (PRB)

    = 14 OFDM Symbols x 12

    Subcarrier

    This is the minimum unit of

    allocation in LTE

    first 1..3 OFDM symbols* reserved

    for L1/L2 control signaling

    (PCFICH, PDCCH, PHICH)

    one

    OFDM

    symbol

    Subcarrier

    Resource Element is a

    single subcarrier in an

    OFDM symbol

    Slot (0.5 ms)

    Subframe (1 ms)

    Slot (0.5 ms)

    15 kHz

    PRB

    subframe

    * 2..4 symbols for 1.4 MHz bandwidth only

  • 8/2/2019 52926489 LTE Technical Principles

    29/99

    29 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Maximum Number of Resource Blocks

    frequency

    1.4MHz

    3MHz

    5MHz

    10MHz

    20MHz

    100 PRBs

    50 PRBs

    25 PRBs

    15 PRBs

    6 PRBs

    15MHz

    75 PRBs

    All bandwidthoptions are

    applicable toboth FDD and

    TDD

  • 8/2/2019 52926489 LTE Technical Principles

    30/99

    30 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink Numerology (FDD)

    FFT SizeSampling

    Frequency

    Number ofUsable

    Subcarriers*Occupied BW

    1.4 MHz 128 1.92 MHz 72 1.08 MHz

    3 MHz 256 3.84 MHz 180 2.7 MHz

    5 MHz 512 7.68 MHz 300 4.5 MHz

    10 MHz 1024 15.36 MHz 600 9 MHz

    15 MHz 1536 23.04 MHz 900 13.5 MHz

    20 MHz 2048 30.72 MHz 1200 18 MHz

    FFT sizes chosen

    such that sampling

    rates are a multiple of

    the UMTS chip rate

    (3.84 MHz)

    Eases implementation

    of dual mode

    UMTS/LTE terminals

    *DC subcarrier is not used in the LTE DL. Reason: direct conversion receivers (zero IF) inUE can introduce significant distortion on baseband signal components near 0 Hz

  • 8/2/2019 52926489 LTE Technical Principles

    31/99

    31 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Common Reference Signal (RS) Structure

    Physical Resource Block (PRB)

    f

    Subframe (1 ms)

    Reference Symbol

    Reference signal is staggered inthe time-frequency plane;mobile interpolates to obtain a2-D picture of the channel

  • 8/2/2019 52926489 LTE Technical Principles

    32/99

    32 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Common RS Structure for 1, 2, and 4 Antenna Ports

    R0

    R0

    R0

    0=l 6=l 0=l 6=l

    nn

    aport

    Physical Resource Block

    f

    Resource Element (k,l)

    Reference Symbols

    for this antenna port

    not used for

    transmission

    Antenna Port 0 Antenna Port 1 Antenna Port 2 Antenna Port 3

    OneAntenna

    Port

    TwoAntenna P

    orts

    FourAntenna

    Po

    rts

    RS overhead

    4.8% for 1 Tx

    9.5% for 2 Tx 14.3% for 4 Tx

    In the multi-antenna case, thereis a need for a RS power boost toovercome interference from

    neighbor cell data transmission

    Cell-specific frequency shift ofRS position to avoid RS overlap

  • 8/2/2019 52926489 LTE Technical Principles

    33/99

    33 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Dedicated Signal (RS) Structure in Support of Beamforming

    Physical Resource Block (PRB)

    f

    Subframe (1 ms)

    Common Reference

    Symbol (Antenna Port 1)

    UE can be configured to use adedicated RS for datademodulation

    sent only within those PRBs inwhich data is scheduled forthe UE

    beamforming weights appliedto dedicated RS

    Dedicated Reference

    Symbol

    Common Reference

    Symbol (Antenna Port 0)

  • 8/2/2019 52926489 LTE Technical Principles

    34/99

    34 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    1 ms subframe

    LTE Downlink: PBCH, SCH Location in Time & Frequency

    10ms radio frame contains 10 subframes (20 slots)

    P-SCHPBCH

    0 1 2 3 4 5 6 7 8 9

    innermost 6 PRBs (72

    subcarriers = 1.08

    MHz) same

    structure used for all

    system bandwidths

    f

    slot (0.5 ms)

    subframe (1 ms)

    slot (0.5 ms)

    0 1 2 3 4 5 6 0 1 2 3 4 5 6

    S-SCHPrimary sync channel (P-SCH) and secondary sync

    channel (S-SCH) for cell search

    1.4MHz

    3MHz

    5MHz

    10MHz

    20MHz

    1.08 MHz

  • 8/2/2019 52926489 LTE Technical Principles

    35/99

    35 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Basics of Cell Search

    1. Mobile searches for P-SCH location in time and frequency; givesOFDM symbol boundaries

    5ms period in time, center 72 subcarriers of system bandwidth; 3

    possible sequences

    1. Once P-SCH is acquired, the S-SCH location is known, and S-SCHis scrambled based on P-SCH sequence; S-SCH indicates the10ms radio frame boundaries, and allows the mobile to obtainthe group ID (168 group IDs); P-SCH + S-SCH acquisition givesphysical layer cell ID

    2. Knowledge of the transmission timing and physical layer cell IDallows the mobile to find the position of the downlink referencesymbols (6 possible frequency shifts) as well as the pseudo-random sequence used

    3. Once the downlink reference signal is obtained, the mobile candecode the broadcast channel (PBCH)

    5 ms

    10 ms

    10 ms

    1.08 MHz

    There are 504 unique physical layer cell IDs, organized in 168 groups of 3

  • 8/2/2019 52926489 LTE Technical Principles

    36/99

    36 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Broadcast of System Information

    The Broadcast Control Channel (BCCH) is used to broadcast system information

    needs to be heard over entire cell coverage area

    The BCCH conveys RRC messages called SystemInformation (SI)

    A particular SI carries a number ofSystem Information Blocks (SIBs) that have the same

    scheduling period (i.e. RACH info, power control info, etc.)

    SI-M is a special SI that carries a single SIB the Master Information Block (MIB)

    The dimensioning of broadcast information is critical; hence in LTE, the BCCH issplit into a primary and dynamic component

    Master Broadcast

    carries SI-M; provides fast

    access to the minimumrequired amount of

    information for efficientdiscovery/mobility

    procedures

    Mapped to BCH PBCH

    SI Broadcast

    delivers SIs with semi-staticinformation valid for a longer time

    period; access is not as timecritical

    Mapped to DL-SCH PDSCH

  • 8/2/2019 52926489 LTE Technical Principles

    37/99

    37 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Downlink Shared Channel (DL-SCH)

    DL-SCH transport channel carries scheduled packet data and is mapped

    onto the physical downlink shared channel (PDSCH)

    Transport block CRCattachment

    Code block segmentation and

    code block CRC attachment

    Channel coding

    Rate matching

    Code blockconcatenation

    Bit-level scrambling

    24 bit CRC

    Per-code-block CRC allows power savings indecoder with early termination, also allowsparallel processing of code words in a MIMOSIC receiver

    Modulation

    R=1/3 turbo code from UMTS but withimproved turbo interleaver (QPP) whichallows efficient parallelization to reducelatencySimplified circular buffer rate matching withsub-block interleaving; rate matching is percode block to allow parallel processing of

    multiple code blocks

    Per-user bit level scrambling introduced forinterference randomization

    PDSCH supports QPSK, 16-QAM, and 64-QAM

    Enhancementsintroduced to allowefficient processingfor very high data

    rates

  • 8/2/2019 52926489 LTE Technical Principles

    38/99

    38 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Downlink: Summary of Channels

    Transport Channel Coding scheme Physical Channel Modulation

    DL-SCH Turbo R=1/3 PDSCH QPSK, 16-QAM, 64-QAM

    BCH Convolutional R=1/3 PBCH QPSK

    PCH Turbo R=1/3 PDSCH QPSK

    MCH Turbo R=1/3 PMCH QPSK, 16-QAM, 64-QAM

    Control Information Coding Scheme Physical Channel Modulation

    CFI Block code R=1/16 PCFICH QPSK

    HI Repetition R=1/3 PHICH BPSK

    DCIConvolutional R=1/3

    with repetition/puncturingdepending on CCE aggregation

    level

    PDCCH QPSK

  • 8/2/2019 52926489 LTE Technical Principles

    39/99

    39 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Uplink

  • 8/2/2019 52926489 LTE Technical Principles

    40/99

    40 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Physical Channels to Support LTE Uplink

    eNode-B

    Random access for initial

    access and UL timingalignment

    PhysicalDow

    nlinkControl

    Channel(PD

    CCH)

    PhysicalRan

    domAccessC

    hannel(PRA

    CH)

    PhysicalUplinkSh

    aredChanne

    l(PUSCH)

    PhysicalUpli

    nkControlCh

    annel(PUCC

    H)

    UL scheduling grant

    Traffic and channelsounding reference

    signal

    UL scheduling request fortime synchronized UEs

    PhysicalHARQIndicat

    orChannel(

    PHICH)

    HARQ feedbackUE

  • 8/2/2019 52926489 LTE Technical Principles

    41/99

    41 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Mapping of Logical, Transport, Physical Channels

    CCCH DCCH DTCH

    RACH UL-SCH

    UplinkLogical channels

    Uplink

    Transport channels

    UplinkPhysical Channels

    PUSCH PUCCHPRACH

    CCCH: common control channel

    DCCH: dedicated control channel

    DTCH: dedicated traffic channel

    RACH: random access channel

    UL-SCH: UL shared channel

    PUSCH: physical UL shared channel

    PUCCH: physical UL control channel

    PRACH: physical random access channel

  • 8/2/2019 52926489 LTE Technical Principles

    42/99

    42 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Multiple Access Scheme

    To facilitate efficient power amplifier design in the UE, 3GPP chose singlecarrier frequency domain multiple access (SC-FDMA) in favor of OFDMA for

    uplink multiple access

    SC-FDMA improves the peak-to-average power ratio (PAPR) compared to OFDM

    ~4 dB improvement for QPSK, ~2 dB improvement for 16-QAM

    Reduced power amplifier cost for mobile

    Reduced power amplifier back-off

    improved coverage

    N o d e B

    U E C

    U E B

    U E A

    U E A T r a n s m i t T i m i n g

    U E B T r a n s m i t T i m i n g

    U E C T r a n s m i t T i m i

    SC-FDMA is still an orthogonal multiple access

    scheme

    UEs are orthogonal in frequency

    Synchronous in the time domain through the useof timing advance (TA) signaling

    Only need to be synchronous within a fraction of theCP length

    TA command sent as a MAC control element with 0.52 s timing resolution

  • 8/2/2019 52926489 LTE Technical Principles

    43/99

    43 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: DFT-SOFDMA-1

    DFT spreading of modulation symbols reduces PAPR, but also leads to the

    possibility of inter-symbol interference (ISI) In OFDM, each modulation symbols sees a single 15 kHz subcarrier (flat channel)

    In DFT-SOFDM, each modulation symbol sees a wider bandwidth (i.e. m x 180KHz) if channel is frequency selective within allocated bandwidth the we get ISI

    Equalization is required in the SC-FDMA receiver

    Simple one-tap frequency domain equalization facilitated by use of CP

    f = 15 kHz

    OFDMA

    +1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1

    SC-FDMA

    +1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1

    DFT spreading

  • 8/2/2019 52926489 LTE Technical Principles

    44/99

    44 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: DFT-SOFDM Transmitter and Receiver Chain

    SP...

    IFFT

    bitstream .

    .. PS D/A

    A/DSP..

    .

    FFT..

    .

    PS

    add CP RFTx

    RFRx

    removeCP

    Encoding +Interleaving

    + Modulation

    Demod +de-

    interleave+ decode

    ... DFT

    IDFT..

    .

    Equalizer..

    .

    Subcarrier mapping

    Subcarrier demapping

  • 8/2/2019 52926489 LTE Technical Principles

    45/99

    45 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink Numerology

    Same numerology

    between uplink anddownlink

    FFT SizeSampling

    Frequency

    Number ofUsable

    Subcarriers

    Occupied

    BW

    1.4 MHz 128 1.92 MHz 72 1.08 MHz

    3 MHz 256 3.84 MHz 180 2.7 MHz

    5 MHz 512 7.68 MHz 300 4.5 MHz

    10 MHz 1024 15.36 MHz 600 9 MHz

    15 MHz 1536 23.04 MHz 900 13.5 MHz

    20 MHz 2048 30.72 MHz 1200 18 MHz

  • 8/2/2019 52926489 LTE Technical Principles

    46/99

    46 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    1. Data demodulation reference signal (DM-RS)

    Sent with each packet transmission in order to demodulate data Occupies center SC-FDMA symbol of the slot

    Possibility to signal different sequences (cyclic shift of base CAZAC sequence) foruse with MU-MIMO

    1. Sounding reference signal (SRS)

    Used to sound uplink channel to support frequency selective scheduling

    Channel sensitive scheduling in both time and frequency

    SRS parameters are UE specific and configured semi-statically

    SC-FDMA symbol position (one symbol in subframe used for SRS)

    Periodicity: {2, 5, 10, 20, 40, 80, 160, 320} ms

    Bandwidth: narrowband or wideband (does not include PUCCH region) Frequency hopping

    SRS is not sent when there is a scheduling request (SR) or CQI to be sent on PUCCH(to avoid multi-carrier transmission)

    LTE Uplink: Reference Signals-1

  • 8/2/2019 52926489 LTE Technical Principles

    47/99

    47 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Reference Signals-2

    DM-RS transmitted only over bandwidthallocated to UE

    SRS can be transmitted over a widebandwidth to allow channel qualityestimation by the eNB uplink scheduler

    Cyclic shift orthogonal sequences used to

    separate out different UEs SRS (8 possible

    shifts)

    Repetition factor (RPF) = 2 creates twofrequency combs for increased multiplexing

    capability

    UE 1

    UE 2

    UE 3

    Slot =0.5ms

    Slot =0.5ms

    SRS

    DM-RSUE 1

    DM-RSUE 2

    DM-RSUE 3

    Rules for SRS transmission

    SRS only spans PUSCH bandwidth

    SRS is not transmitted at the same time as

    CQI or Scheduling Request (SR) on PUCCH

    Shortened ACK/NACK format is used on

    PUCCH to allow transmission of SRS while

    maintaining single-carrier transmission

  • 8/2/2019 52926489 LTE Technical Principles

    48/99

    48 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Uplink Shared Channel (UL-SCH)

    UL-SCH transport channel carries scheduled packet data and is mapped

    onto the physical uplink shared channel(PUSCH)

    Transport block CRCattachment

    Code block segmentation andcode block CRC attachment

    Channel coding

    Rate matching

    Code blockconcatenation

    Bit-level scrambling

    24 bit CRC

    Per-code-block CRC allows power savings indecoder with early termination

    Modulation

    R=1/3 turbo code with improved turbointerleaver (QPP) which allows efficientparallelization to reduce latency

    sub-block interleaving; rate matching is percode block to allow parallel processing ofmultiple code blocks

    Per-user bit level scrambling introduced forinterference randomization

    PUSCH supports QPSK and 16-QAM; 64-QAM isoptional

    Enhancementsintroduced to allowefficient processingfor very high data

    rates

    control MUXACK/NACK

    CQI/PMI Mux control when needed; data is rate matchedaround CQI/PMI, but ACK/NACK punctures outdata (kept indep. from RM to maintain turn-around)

  • 8/2/2019 52926489 LTE Technical Principles

    49/99

    49 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Physical Uplink Control Channel (PUCCH)

    PUCCH carries ACK/NACKand CQI to support the downlink, as well as schedulingrequests (SR) for the uplink

    PRBs targets on two extreme ends of the frequency band are configured by RRC

    Number of PUCCH PRBs reserved semi-statically based on required amount of control

    PUCCH is never transmitted simultaneously with PUSCH, in order to maintain single-carrier transmission

    If ACK/NACK or CQI needs to be sent when there is PUSCH transmission, it must be multiplexed

    together with PUSCH

    resource 1

    resource 0

    0.5ms slot

    resource 0

    resource 1

    0.5ms slot

    System

    BW

    resource 2 resource 3

    resource 2resource 3

    PUCCHPUSCH

  • 8/2/2019 52926489 LTE Technical Principles

    50/99

    50 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: PUCCH Format 1a/1b for ACK/NACK

    1 bit for SIMO (format 1a: BPSK), 2 bits for MIMO (format 1b: QPSK)

    ACK/NACK is repeated 8 times and spread with length 12 CAZAC sequence in frequency

    CDM of ACK/NACK from different UEs by using different cyclic shifts of CAZAC sequence To further increase multiplexing capability, block-wise spreading via wi is added over each slot

    Example: Use 6 cyclic shifts and 3 orthogonal RS covers gives 18 multiplexedUEs per resource

    PUCCH resource index for ACK/NACK Tx lowest CCE for PDCCH in DL scheduling grant

    If SRS is transmitted in the same subframe, a shortenedACK/NACK format is used where the

    ACK/NACK symbol corresponding to the SRS location is punctured

    CAZAC ACK/NACK

    w1w0 w2 w3

    IFFT IFFT IFFT IFFT

    Reference symbols

    Orthogonal cover

    0.5ms slot

    resource 1

    resource 0

    resource 0

    resource 1

    0.5ms slot

    resource 2 resource 3

    resource 2resource 3

    PUSCH

    0.5ms slot

    copy

  • 8/2/2019 52926489 LTE Technical Principles

    51/99

    51 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: PUCCH Format 1 for Scheduling Request

    On/Off keying based on ACK/NACK design

    Two sequences: length 4 + length 3

    Compatibility with ACK/NACK transmission from different UE

    SR resource on PUCCH is configured via RRC (time multiplexing and sequence #)

    SR and ACK/NACK from same user can be multiplexed

    If SR needs to be sent, then ACK/NACK is transmitted using the assigned SR PUCCH resource

    SR and CQI from same user cannot be multiplexed

    SR and SRS is cannot be sent in the same subframe (SRS is dropped)

    Sequence 1

    Sequence 2

    resource 1

    resource 0

    resource 0

    resource 1

    0.5ms slot

    resource 2 resource 3

    resource 2resource 3

    PUSCH

    0.5ms slot

    copy

  • 8/2/2019 52926489 LTE Technical Principles

    52/99

    52 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: PUCCH Format 2 for CQI/PMI/RI

    20 coded bits per subframe (10 symbols) with QPSK modulation CDM of UEs by spreading each symbol with a length 12 CAZAC sequence in frequency

    CQI/PMI/RI PUCCH resources assigned via RRC ACK/NACK can be multiplexed with CQI (format 2a/2b); drop CQI when SR is transmitted

    SRS not sent in same subframe as CQI (SRS dropped): higher layer config should try to avoid

    resource 1

    resource 0

    resource 0

    resource 1

    resource 2 resource 3

    resource 2resource 3

    PUSCH

    CAZAC

    IFFTIFFT IFFTIFFTIFFTIFFT IFFTIFFT IFFTIFFT

    CQI

    0.5ms slot

    RS

    IFFTIFFT IFFTIFFTIFFTIFFT IFFTIFFT IFFTIFFT

    0.5ms slot

  • 8/2/2019 52926489 LTE Technical Principles

    53/99

    53 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Random Access Channel-1

    The random access channel (RACH) is used during initial access, handoff, or when uplinksynchronization is lost

    UE sends a RACH preamble on physical random access preamble (PRACH)

    UE first obtains downlink timing from SCH, then sends RACH preamble (non-synchronized)

    eNB detects timing preamble and sends a timing advance command to time synchronize UE

    Gap time reflects the timing uncertainty due to

    round trip propagation delay

    CP is used to allow frequency domain processing,

    and must cover the round trip propagation delay

    as well as the delay spread

    Formats #2 and #3 offer a 2 x 0.8ms preamble

    repetition to improve detection performance in

    poor channel conditions

    fRA = 1/0.8ms = 1.25 kHz sensitivity to dopplershift from high speed UEs (greater than ~120 km/hr)

    Root sequence length = 839; different signatures

    are generated by first using different cyclic shifts

    of a single root sequence (orthogonal), and then

    using additional root sequences as needed (low

    cross-correlation)

    CP Zadoff-Chu (ZC) Sequence

    Tcp Tseq Tgap

    RA slot

    Format RA slot Tcp Tseq Tgap Max cell size

    #0 1 ms ~0.1 ms 0.8 ms ~0.1 ms ~15 km

    #1 2 ms ~0.68 ms 0.8 ms ~0.5 ms ~75km

    #2 2 ms ~0.2 ms 1.6 ms ~0.2 ms ~30 km

    #3 3 ms ~0.68 ms 1.6 ms ~0.7 ms ~100 km

    Max cell size (m) = 3E8 * Tgap/2

  • 8/2/2019 52926489 LTE Technical Principles

    54/99

    54 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Random Access Channel-2

    PRACH sent in reserved time-frequency zone; configured semi-statically

    PRACH resource = 6 PRBs (1.08 MHz); at most one PRACH resource per subframe

    PRACH resource contains 64 preamble sequences (6 bits)

    preambles can all be orthogonal for small cell sizes (different cyclic shifts of root ZC seq.)

    not orthogonal for larger cell sizes (need to use different root ZC sequences)

    PRACH access slots can occur every 1, 2, 5, 10, or 20ms

    20ms option can only be used in synchronized networks

    10ms max for non-synchronized networks so that UE does not need to obtain the SFN fromthe target cell BCH in handover scenario (radio frame timing provided by the SCH)

    freqSched

    uled

    Data

    1 ms

    6 PRBs = 1.08 MHz

    PRACHopportunities

    PRACH cycle

  • 8/2/2019 52926489 LTE Technical Principles

    55/99

    55 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Contention Based Random Access Procedure

    1. PRACH preamble: 6 bits (64 signatures) consistingof 5 bits random ID + 1 bit info

    2. RA response generated by MAC on DL-SCH usingRA-RNTI on associated PDCCH

    RA-RNTI tied to time/freq resource of PRACH

    Semi-synchronous, no HARQ

    Contains RA preamble identifier, timing alignment

    info, initial uplink grant

    1. First scheduled UL transmission on UL-SCH

    Uses HARQ

    For initial access, contains RRC connection request

    carried on CCCH, NAS UE identifier but no NAS

    message

    1. Contention resolution on DL-SCH

    Generated by RRC and carried on CCCH

    UE eN

    Random Access Preamble1

    Random Access Response

    Scheduled Transmission3

    Contention Resolution

  • 8/2/2019 52926489 LTE Technical Principles

    56/99

    56 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Non-Contention Based Random Access Procedure

    0. eNB assigns non-contention RA preamble toUE. Signaled by:

    HO command generated by target eNB via

    source eNB for handover

    MAC signaling for DL data arrival

    1. RA preamble transmission by UE on

    assigned non-contention preamble

    2. RA response on DL-SCH

    Non-contention based random access

    improves access time

  • 8/2/2019 52926489 LTE Technical Principles

    57/99

    57 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Power Control-1

    Open-loop power control is the baseline uplink power

    control method in LTE (compensation for path loss andfading)

    Open-loop PC is needed to constrain the dynamic range

    between signals received from different UEs

    Unlike CDMA, there is no in-cell interference to combat;

    rather,fading is exploited by rate control

    In classic open-loop PC:

    1. eNB broadcasts the total uplink interference level (Itot )

    and the SINR target ( nominal ) together as Ponominal (dBm) =

    nominal (dB) + Itot (dBm)

    2. UE estimates path loss + shadowing (PL) on the downlink

    by measuring downlink reference signal

    3. UE sets its transmit PSD (power per PRB) in order to

    achieve the broadcast SINR target. In dB scale:

    TxPSD(dBm) = PL(dB) + Ponominal (dBm)

    DLRe

    feren

    ceSig

    nal

    BCH:

    Po_nom

    inal

    In classic open-loop PC, allUEs achieve the same target

    SINR

    UEs near interior of celltransmit at reduced PSD poor spectral efficiency

  • 8/2/2019 52926489 LTE Technical Principles

    58/99

    58 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Power Control-2

    Fractional power control is introduced to allow a more

    flexible trade-off between spectral efficiency and celledge rates

    TxPSD(dBm) = PL(dB) + Ponominal (dB)

    Fractional compensation factor < 1 is introduced so

    that only a fraction of the path loss is compensated

    Target SINR is now a function of the UEs path loss targetSINR increases with decreasing path loss. In dB scale, we have

    TargetSINR(dBm) = nominal (dB) + (1- )PL(dB)

    With =1, we have classic open-loop PC

    As we reduce , the range of target SINRs increases between

    UEs, and we can achieve higher spectral efficiency at theexpense of cell edge rate

    DLRe

    feren

    ceSignal

    BCH:

    Po_nom

    inal,

    TargetSINR

  • 8/2/2019 52926489 LTE Technical Principles

    59/99

    59 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Power Control-3

    Additional user-specific power offsets can be sent via

    RRC signaling; can be used to correct open-loop errors(i.e. PA errors), or to allow proprietary methods tocreate a power profile

    TxPSD(dBm) = PL(dB) + Ponominal (dB) +Pouser (dB)

    DLRe

    feren

    ceSig

    nal

    BCH:

    Po_nom

    inal,

    RRC:Po

    _user

    Aperiodic fast power control is made possible by additionally allowing a dynamicadjustment of the UE transmit PSD with 1 or 2 bit power control commands, caneither be accumulated adjustment or absolute. PC command sent via:

    UL scheduling grant (DCI Format 0): 2 bit TPC command

    Absolute: {-4, -1, +1, +4} dB

    Accumulated: {-1, 0, +1, +3} dB

    On separate power control channel (DCI Format 3/3A)

    Format 3: 2 bits representing {-1, 0, +1, +3} dB

    Format 3A: 1 bit representing {-1, +1} dB

    TxPSD(dBm)

    =

    PL(dB)

    + Ponominal (dB)

    +Po

    user (dB)+ f(

    )

  • 8/2/2019 52926489 LTE Technical Principles

    60/99

    60 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Uplink: Power Control-4

    DLRe

    feren

    ceSig

    nal

    BCH:Po_

    nomi

    nal,

    , _TF

    RRC:Po

    _user

    The UE transmit PSD can optionally be made

    dependent on the MCS level assigned, through useof TFwhich specifies power offsets as a function of

    the MCS level assigned by the scheduler

    TxPSD(dBm) = PL(dB) + Ponominal (dB)+Pouser (dB)

    + f( ) + TF

    The UEs total power scales with the number ofassigned PRBs (M)

    TxPower(dBm) = min( Pmax (dBm), TxPSD(dBm) + 10log10(M) )

    SRS follows PUSCH power control with a configurable power offset

    Separate power control parameters for PUSCH and PUCCH

  • 8/2/2019 52926489 LTE Technical Principles

    61/99

    61 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    MIMO

  • 8/2/2019 52926489 LTE Technical Principles

    62/99

    62 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Multiple Antenna Techniques

    Spatial Multiplexing (SM) SU-MIMO

    Multiple data streams sent to the same user (max 2 codewords)

    Significant throughput gains for UEs in high SINR conditions

    Spatial Division Multiple Access (SDMA) or Beamforming

    Different data streams sent to different users on same resource

    Improves throughput even in low SINR conditions (cell-edge)

    Works even for single antenna mobiles

    User-specific RS (dedicated RS) supported to facilitatebeamforming; used for demodulation of PDSCH

    Transmit Diversity

    Improves reliability on a single data stream; space-frequencyblock coding (SFBC), cyclic delay diversity (CDD)

    Fall back scheme if channel conditions do not allow SM; useful toimprove reliability on common control channels

  • 8/2/2019 52926489 LTE Technical Principles

    63/99

    63 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    MIMO Support is Different in Downlink and Uplink

    Downlink MIMO

    Supports Spatial Multiplexing, MU-MIMO, and Transmit Diversity

    Uplink MIMO

    Initial release of LTE will only support MU-MIMO with a single PA at the

    UE desire to avoid multiple PAs at UE

    Cyclic-shift orthogonal pilots used in the uplink

    to facilitate MU-MIMO operation

  • 8/2/2019 52926489 LTE Technical Principles

    64/99

    64 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    DL Spatial Multiplexing Modes for Low and High Speeds

    UE indicates best combo of CQI/PMI/RI for max throughput (i.e. high-rank/low-MCS vs. low-rank/high MCS)

    Closed-loop SM is ideally suited for low speed scenarios when the CQI/PMI/RI feedback is accurate

    Open-loop SM provides robustness in high speed scenarios when the feedback is not accurate

    M Tx N Rx

    VMIMO

    HHH

    RIHVUH =

    UHSelect# codewords

    Modulation+ coding

    PMICQI

    Modulation+ coding

    Demod +decode

    demod +decode

    precoding

    Layermapping

    Closed-Loop SM Open-Loop SM

    CQI separate CQI for each codeword fed back one value fed back applicable over all layers

    PMI PMI feedback from UE based on instantaneous channel

    state

    no feedback from UE, fixed precoding at eNB with

    large delay CDD to improve robustness

    RI based on SINR and instantaneous channel matrix rankRI=1 corresponds to closed loop TxDiv (CLTD)

    typically based only on SINR

    RI=1 corresponds to open loop TxDiv (SFBC)

  • 8/2/2019 52926489 LTE Technical Principles

    65/99

    65 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Multi-codeword SM and Layer Mapping

    LTE allows multi-codeword (MCW) SM in which the streams are encoded independentlyrather than jointly as in single codeword SM

    Advantages: MCS can be adjusted on each stream independently to improve throughput, allows for SIC receiver

    Disadvantages: Increased feedback as ACK/NACK as CQI are needed per codeword

    A maximum of 2 codewords is supported, even when a rank-3 or rank-4 transmission isused in the case of 4x4 MIMO. Mapping of codewords to layers (e.g. streams) as below:

    Precoding

    (2x4)

    CW#1

    Precoding

    (1x4)

    CW#1

    CW#2

    Precoding

    (4x4)

    CW#1

    CW#2

    S/P

    S/P

    Precoding

    (3x4)

    CW#1

    CW#2 S/P

    Rank-1

    Rank-3

    Rank-2

    Rank-4layers

    Precoding

    (2x4)CW#n S/P

    Rank-2(useful for ReTx)

    A single codeword can be

    mapped to 2 layers only in the

    case of 4 Tx antennas (for

    efficient retransmission of a

    codeword mapped to 2 layers in

    the previous transmission)

  • 8/2/2019 52926489 LTE Technical Principles

    66/99

    66 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Codebook Based Precoding-1

    Precoding vectors/matrices specified for 2 and 4 transmit antennas: 4 codebook entriesfor 2 Tx antennas, 16 codebook entries for 4 Tx antennas

    Precoding vector for one codeword

    Precoding matrix for two codewords

    2 Tx antennas 4Tx antennasThis entry is only

    used for open loopSM

  • 8/2/2019 52926489 LTE Technical Principles

    67/99

    67 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Codebook Based Precoding-2

    Codebook entries support a variety of antenna spacings & configurations

    Network can configure the UE to only consider a subset of the codebookentries

    -100 -80 -60 -40 -20 0 20 40 60 80 1000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    Angle (deg)

    Gain

    4 Antennas, /2 spacing

    index 0

    index 1

    index 3index 4

    index 5

    index 6

    index 7

    Example: 4 antennas withhalf-wavelength spacing

    Codebook entries

    0,1,3,4,5,6,7 with 1 layer

    form a set of fixed beams

  • 8/2/2019 52926489 LTE Technical Principles

    68/99

  • 8/2/2019 52926489 LTE Technical Principles

    69/99

  • 8/2/2019 52926489 LTE Technical Principles

    70/99

    70 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    MBMS

  • 8/2/2019 52926489 LTE Technical Principles

    71/99

    71 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Inter-Cell Interference Mitigation

    Principle - coordinate the transmission power and limit the inter-cellinterference

    Interference Mitigation coordination-

    Static inter-cell coordination strategy provision in advance

    Semi-static S1/X2 signaling for inter-cell dynamic coordination

    Inter-cell interference Mitigation schemes

    Inter-cell interference-cancellation/suppression Spatial suppression by means of multiple antennas at the UE

    Interference cancellation based on detection/subtraction of the inter-cellinterference

    Inter-cell interference mitigation/coordination by means of

    Intelligent scheduling based on priority allocation of sub-frame/sub-carrierallocation, frequency scheduling, power levels coupled to sub-band priorities,soft reuse: power levels coupled to groups of sub-bands etc.

    Power control open loop

  • 8/2/2019 52926489 LTE Technical Principles

    72/99

    72 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Multicast/Broadcast in a Single Frequency Network (MBSFN)

    Synchronized transmission from multiple cells on same set of subcarriers

    Appears as extra multipath at the terminal, as long as signal components fromdifferent cells arrive within the CP length

    Extended CP lengths used in broadcast to account for propagation delayfrom different cells

    Signals from different cells combine coherently over the air

    Macro-Diversity gains exploited in OFDMA system

    Scheduler coordinates broadcast frames through RRM coordination

    Data Synchronization

  • 8/2/2019 52926489 LTE Technical Principles

    73/99

    73 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Evolved Multimedia Broadcast Multicast Service (MBMS)

    E-MBMS can be used in synchronous or asynchronous networks, and can either be on astand-alone E-MBMS carrier or multiplexed with unicast traffic

    Subframes reserved for broadcast are reserved periodically in time

    TDM of broadcast and unicast subframes (FDM is not allowed)

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Broa

    dcas

    t

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Broa

    dc

    as

    t

    Un

    icas

    t

    Un

    icas

    ttime

    1ms subframe

    With E-MBMS, multiple users receive the same information using the same radioresources much more efficient approach for delivering common content

    Examples: television broadcasts, news updates, sports scores, etc.

    Broadcast: every user receives content

    Multicast: only users with a subscriptions receive content

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

    Un

    icas

    t

  • 8/2/2019 52926489 LTE Technical Principles

    74/99

    74 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Multicast Broadcast on a Single Frequency Network (MBSFN)

    MBSFN refers to a mode of E-MBMS where synchronized transmission of the samecontent from multiple cells on same set of subcarriers takes place

    Appears as extra multipath at the mobile, as long as signal components from different cells arrivewithin the CP length diversity gains exploited for free with over the air combining

    An extended CP length is used for broadcast subframes to account for propagation delay from

    different cells

    CP length extended from 4.7 s to 16.6 s (increased CP overhead)

    6 OFDM symbols per slot for broadcast (instead of 7 for unicast)

  • 8/2/2019 52926489 LTE Technical Principles

    75/99

    75 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    MBSFN for Larger Cells (7.5 kHz Subcarrier Spacing)

    To handle even larger cells with additional propagation delay, a second extended CP of

    33 s is defined OFDM symbol time is doubled from 66.6 s to 133 s, so that the extended CP

    overhead will not be excessive

    Increased symbol time means subcarrier spacing reduces from 15 kHz to 7.5 kHz

    Increased sensitivity to high doppler

    The 7.5 kHz mode can only be used as a stand-alone E-MBMS carrier, cannot be

    multiplexed with unicast traffic

    16.6 s4.7 s 33.3 s

    66.6 s 66.6 s 133.3 s

    Unicastsubframe

    (7% CP overhead)

    Broadcastsubframe

    (25% CP overhead)

  • 8/2/2019 52926489 LTE Technical Principles

    76/99

    76 | Titre de la prsentation | Mois 2008 Alcatel-Lucent , d.r., XXXXX2008

    LTE Higher Layer protocol stacks

    4

    LTE P t l M d l

  • 8/2/2019 52926489 LTE Technical Principles

    77/99

    77 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Protocol Model

    Vertical Planes

    User Plane

    Control Plane

    - RRC terminated in eNBBroadcast, Paging, RRC

    connection management, RBcontrol, Mobility functions, UEmeasurement reporting andcontrol

    - BMC layer is not needed in E-UTRAN,since MBMS is used to broadcast- RLC/MAC layer (terminated in eNB):

    Scheduling, ARQ, HARQ

    - PDCP layer (moved now to eNB):

    Header Compression (ROHC),Ciphering, Integrity protection

    eNB

    PHY

    UE

    PHY

    MAC

    RLC

    MAC

    SAE Gate

    PDCPPDCP

    RLC

    eNB

    PHY

    UE

    PHY

    MAC

    RLC

    MAC

    MME

    RLC

    NAS NAS

    RRC RRC

    L 2 St t f DL i NB

  • 8/2/2019 52926489 LTE Technical Principles

    78/99

    78 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Layer 2 Structure for DL in eNB

    Segm.ARQ

    Multiplexing UE1

    Segm.ARQ

    ...

    HARQ

    Multiplexing UEn

    HARQ

    BCCH PCCH

    Scheduling / Priority Handling

    Logical Channels

    Transport Channels

    MAC

    RLC Segm.ARQ

    Segm.ARQ

    PDCP

    ROHC ROHC ROHC ROHC

    Radio Bearers

    Security Security Security Security

    ...

    LTE MAC

  • 8/2/2019 52926489 LTE Technical Principles

    79/99

    79 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE MAC

    Mapping between logical and transport channels

    BCCHPCCH CCCH DCCH DTCH MCCH MTCH

    BCHPCH SCHRACH MCH

    Logical

    channels

    Transport

    channels

    Main differences with UTRAN Rel6

    mapping:

    - Absence of CTCH ( no FACH)- Dedicated transport channels arenot supported- New shared channels: UL-SCH andDL-SCH

    B

    CH

    BCCH

    P

    CH

    PCCH

    CCCH

    DCCH

    DTCH

    CTCH

    MBMSCH s

    FA

    CH

    D

    CH

    CCCH

    DCCH

    DTCH

    RA

    CH

    D

    CH

    HS-DSCH

    E-DCH

    Rel.6

    MAC functionalities:- E-UTRAN MAC functions similar toUTRAN apart from the absence offunctions related to dedicatedtransport channels-Reduction of different MAC entities(e.g. MAC-d not needed due to the

    absence of dedicated transportchannels)

    RLC Services and Functions

  • 8/2/2019 52926489 LTE Technical Principles

    80/99

    80 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    RLC Services and Functions

    AM, UM and TM transfer modes

    Error Correction through ARQ

    Segmentation/concatenation of SDUs according to the size of the TB

    When necessary, re-segmentation of PDUs that need to be retransmitted

    The number of nested re-segmentations is not limited

    In-sequence delivery of upper layer PDUs except at HO in the Uplink

    Flow Control between eNB and UE (FFS)

    Other

    Duplicate Detection

    Protocol error detection and recovery

    SDU discard

    Reset

    RRC States

  • 8/2/2019 52926489 LTE Technical Principles

    81/99

    81 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    RRC States

    RRC_CONNECTED(UE has an E-UTRAN-RRC connection; UE has context in E-UTRAN; E-UTRAN

    knows the cell which the UE belongs to; Network can transmit and/or receive data

    to/from UE; Network controlled mobility (handover); Neighbour cell

    measurements)

    RRC_IDLE(UE specific DRX configured by NAS, Broadcast of system information, Paging,

    Cell re-selection mobility, The UE shall have been allocated an id which uniquely

    identifies the UE in a tracking area, No RRC context stored in the eNB)

    No RRC states (Cell_DCH,Cell_FACH, Cell_PCH, URA_PCH)in Connected Mode and only twomacro RRC states

  • 8/2/2019 52926489 LTE Technical Principles

    82/99

    82 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    PDCP Services and Functions

    Header compression and decompression: ROHC only

    Transfer of user data

    In-sequence delivery of upper layer PDUs at HO in the uplink

    Security

    Ciphering termination is still under discussion in 3GPP

    Integrity protection of control plane data (NAS signalling);

    PDCP header is 1 or 2 bytes

    1 byte header used to optimize VoIP

    PDCPIntegrity

    Protection

    Ciphering Ciphering Ciphering

    User Plane

    NAS Data

    Contro l Plane

    NAS Signalling

    ROHC ROHC

    Ciphering

    PDCP SDU (after compression)PDCP header

    PDCP PDU

    HARQ

  • 8/2/2019 52926489 LTE Technical Principles

    83/99

    83 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    HARQ

    N-process Stop-And-Wait HARQ is used

    The HARQ is based on ACK/NACKs

    In the downlink:

    Asynchronous retransmissions with adaptive transmission parameters are

    supported

    In the uplink:

    HARQ is based on synchronous retransmissions

    The HARQ transmits and retransmits interval 8 ms

    HARQ/ARQ i i

  • 8/2/2019 52926489 LTE Technical Principles

    84/99

    84 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    HARQ/ARQinteractions

    Multiplexing

    ...

    HARQ

    RACH

    Scheduling/ Priority Handling

    Transport Channels

    Logical Channels

    MA C

    R LC

    PDCP

    Se gm.AR Q

    Se gm.AR Q

    Logical Channels

    Radio Bearers

    R OHC ROHC

    SAE Bearers

    C ip he rin g C ip he rin g

    Possible because RLC and MAC are co-located (unlike in HSPA Rel6)

    In HARQ assisted ARQ operation, ARQ uses knowledge obtained from the

    HARQ about the transmission/reception status of a TB:

    If maximum HARQ retransmission limit is

    reached the ARQ is notified and

    retransmission can be initiated

    If the HARQ receiver is able to detect a

    NACK to ACK error it is FFS if the

    transmitting ARQ entities are notified

    If the HARQ receiver is able to detect TBtransmission failure it is FFS if the receiving

    ARQ entities are notified

  • 8/2/2019 52926489 LTE Technical Principles

    85/99

    85 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE A Technologies

    5

    LTE-A Technologies

  • 8/2/2019 52926489 LTE Technical Principles

    86/99

    86 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE-A Technologies

    Support Wider BW Carrier Aggregation

    UL Access Scheme SC-FDMA vs. OFDMA

    MIMO extension DL up to 8x8 and UL up to 4x4

    CoMP (Coordinated Multi-Point Tx/Rx)

    Network MIMO

    Coordinate MIMO

    Macro Diversity Combining

    Relay L1/L2/L3 Relay

    MBMS enhancement non-SFN MBMS operation

    Mobility enhancement soft handover

    Support of Wider BW Carrier Aggregation

  • 8/2/2019 52926489 LTE Technical Principles

    87/99

    87 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Support of Wider BW Carrier Aggregation

    Support of contiguous and Non-contiguous carrier aggregation

    Multiple component carriers with each component carrier up to 20 MHz BW

    100 kHz channel raster as it is defined in R-8 & Asymmetrical UL/DL Alloc.

    Reduced subcarriers between the component carriers

    HARQ process one TB and one HARQ per component carrier

    DL Control Signaling one per component or one for all

    UL Control Signaling Associated with HARQ design

    Guard band

    = 2.6925 MHz

    Frequency

    18.015 MHz 18.015 MHz

    18.3 MHz 18.3 MHz

    18.015 MHz

    19 sub-carriers

    (285 kHz)

    19 sub-carriers

    (285 kHz)Total bandwidth

    = 60 MHz

    100-kHz channel raster

    LTE-Advanced: MAC function per component carrier

  • 8/2/2019 52926489 LTE Technical Principles

    88/99

    88 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    LTE Advanced: MAC function per component carrier

    TB Mapping -MAC to physical layer mapping and control signaling for carrieraggregation

    Single Transport Block per antenna per component carrier Minimizing control signaling overhead Ack/Nak

    Backward compatible to possibly support Rel-8 UE at each component carrier

    Channelcoding

    Modulation

    RB mapping

    Component carrier 1 Component carrier 2

    20MHz 20MHz

    transport block

    Channelcoding

    Modulation

    RB mapping

    transport block

    UL Transmission Scheme

  • 8/2/2019 52926489 LTE Technical Principles

    89/99

    89 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    UL Transmission Scheme

    OFDMA vs N x SC-FDMA

    OFDMA has the performance advantage with diversity gain with the use of MLD decoding

    N x SC-FDMA minimizing the Cubic matrix (PAPR) with comparable performance with

    the use of interference cancellation

    Agreed UL Transmission scheme

    PUSCH transmission (MIMO and non-MIMO) uses DFT-precoding

    On top of Rel-8 operation:

    Control-data decoupling (simultaneous PUCCH and PUSCH transmission) supported in addition toTDM type multiplexing

    Non-contiguous data transmission with single DFT per component carrier (CL-DFT-S-OFDM)

    FFS: Resource allocation based on Rel-8 DL schemes (allocation type 0 and/or 1)

    FFS: At most one new DCI format for non-MIMO

    MIMO Configurations for MIMO extension and CoMP

  • 8/2/2019 52926489 LTE Technical Principles

    90/99

    90 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    MIMO Configurations for MIMO extension and CoMP

    MIMO

    Single base Multiple bases(Network MIMO)

    Co-locatedantennas

    Distributedantennas

    (RRH)

    Non-coherent(Magnitude only)

    Coherent(Magnitude/phase)

    MacroscopicMIMO

    SU-MIMO

    MU-MIMO

    Beamforming

    CollaborativeMIMO

    -SU MIMO

    -MU MIMO

    CoherentNetwork

    MIMO

    -SU MIMO

    -MU MIMO

    SU-MIMO,

    MU-MIMO

    Beamforming

    MIMO Evolution for MIMO extension and CoMP

  • 8/2/2019 52926489 LTE Technical Principles

    91/99

    91 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Extended Precoding

    Combinations of Beamforming and Diversity Transmission

    Beamforming for Multi-User Transmission (SDMA), based on closely spaced antennaelements (0.5 lambda)

    Optimized codebooks for CoMP and MIMO extension

    Download codebooks reduce the number of stored codebook and entry expansion

    Global codebook or Coordinate local codebooks for CoMP

    Antenna Configuration - For up to 8 antenna elements in a 4x2 X-pol.

    configuration ( compact housing)

    MIMO channelBase-

    station

    data stream 1/2

    data stream 3

    MS 1

    MS 2

    Multiuser MIMO and scheduling for enhanced feedback mechanisms

  • 8/2/2019 52926489 LTE Technical Principles

    92/99

    92 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Multiuser MIMO and scheduling for enhanced feedback mechanisms

    MU-MIMO enhancement

    Principle of MU-MIMO beamforming to each user with minimizing cross-interference

    DL Scheduler computation of pairing

    UE feedback CQI/PMI + best companion PMI/CQI

    A

    C

    B

    D

    Beam-

    forming

    Userdata

    streams

    User

    selection

    Channel state feedback

    1 Users estimate channel and itscompanion with quantizedfeedback.

    2 Base combine feedback fromusers and calculates beam weight

    to maximize sum rate whileaddressing fairness.

    3 Data is transmitted.

    MU-MIMO 1

    2

    3

    1

    2

    3

    Collaborative/Network MIMO overview

  • 8/2/2019 52926489 LTE Technical Principles

    93/99

    93 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Collaborative/Network MIMO overview

    Coordinate transmission and

    reception of signals amongmultiple bases.

    Reduces intercellinterference and improvescell-edge performance andoverall throughput.

    Collaborative MIMO: shareuser data and long-termnoncoherent channelinformation.

    Coherent network MIMO:share user data and short-term coherent channelinformation.

    Key technologies in Multi-mode Adaptive MIMO

  • 8/2/2019 52926489 LTE Technical Principles

    94/99

    94 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    Key technologies in Multi mode Adaptive MIMO

    Cellular system

    Collaborative/Network

    MIMO MU-MIMO

    SU-MIMO

    SU-MIMOenhancement

    Closed-loop MIMO

    Iterative MIMO receiver

    MU-MIMO optimization

    MU precoding algorithm

    Trade-off design of scheduler

    between complexity and

    performance

    Collaborative/NetworkMIMO/Beam

    Coordination

    Implementation of multi-

    BS collaboration with

    channel information

    Multi-dimension adaptationAdaptation strategyMulti-variable channelmeasurementLow-rate feedback mechanism

    MulticastAnchor

    Relay Technologies

  • 8/2/2019 52926489 LTE Technical Principles

    95/99

    95 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    y g

    Types of Relay

    L1 Relay repeater or Amplify-and-forward

    L2 Relay decode-and-forwardL3 Relay IP packet forwarding

    Characteristic of Relay associated with eNode B

    Transparent Relay same Physical cell ID as eNB

    Non-transparent Relay separate Physical cell ID as eNB

    Design Issues in L2/L3 Relays

  • 8/2/2019 52926489 LTE Technical Principles

    96/99

    96 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    g y

    L3 Relay Type 1 Relay agreed in LTE-A

    TDM backhauling using MBSFN subframe to support Rel-8 UEs

    Reducing the complexity

    L2 Relay Design issues

    Benefit of L2 Relay in system performance - Early termination gain

    Timing of HARQ operation in DL and UL

    Resource coordination

    Scheduling coordination between eNB and Relay Node

    PDCCH Tx between eNB and Relay Node for DL Coordinated Relay

    Interference mitigation with Relay Node

    Power allocation and interference management from neighboring cell and Relay

    RS design and UE Channel Estimation

    Channel vector from RS with/o Relay Tx at different subframe

    L3 Relay Use Cases

  • 8/2/2019 52926489 LTE Technical Principles

    97/99

    97 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    y

    Characteristics of L3 Relay

    Separate Physical Cell ID Backhauling through LTE-A air interface

    Relay Node has complete eNode B functions cell search, RACH, broadcast, DL/UL control, RRC control signaling, mobility management

    etc.

    Inband Backhauling Assumption of static radio link for backhauling for performance gain Data transport/Control signaling of combination support of S1 & X2 interface.

    Possible use of Macro eNode B to Home eNode B interface

    Cost effective alternatives comparing to another eNB or RRH

    Use Cases for L3 Relay with inband backhauling extended coverage

    Remote rural area, isolation area (costly wireline backhaul)

    Remote island with reachable distance (under sea backhaul)

    Wireless PBX for corporate or small enterprise business (no leasing trunk)

    Historical districts (no allowance of new wiring) Wireless home eNB (no wireline backhauling)

    Moving objects - Train/Bus/Airplane (No cost effective alternatives)

    Temporary coverage Olympics, special events, emergency events

    L2 Relay Use Cases

  • 8/2/2019 52926489 LTE Technical Principles

    98/99

    98 | Titre de la prsentation | Mois 2008 Alcatel-Lucent 2008, d.r., XXXXX

    y

    Characteristics of L2 Relay

    Same Physical Cell ID with donor eNB -

    Simplified RF/Baseband functions to enhance the cell edge throughput Transparent Backhauling Relay Node is considered an UE to the eNB with coordination of

    Tx/Rx and control signaling.

    Cost effective alternatives comparing to RRH

    Use Cases

    Enhancement of Cell edge coverage Remove the coverage hole

    Extended coverage at indoor environment - overcome bad RF reception

    Improving cell edge throughput Enhanced the penetration in high rise building

    Hot spot area

    Campus environments

    Large Corporate

    Bus/Train stops and Airports

    Meeting/conference rooms

    Tunnels/Bridge/stadium

  • 8/2/2019 52926489 LTE Technical Principles

    99/99

    www.alcatel-lucent.comwww.alcatel-lucent.com


Recommended