+ All Categories
Home > Documents > Chapter 39: Introduction to Quantum...

Chapter 39: Introduction to Quantum...

Date post: 03-Aug-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
54
Chapter 39: Introduction to Quantum Physics You can’t see atoms with light, but you can with electrons because …
Transcript
Page 1: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Chapter 39:Introduction to Quantum Physics

You can’t see atoms with light, but you can with electrons because …

Page 2: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Blackbody Radiation and Planck’s Hypothesis

Thermal vibrations causes charged particles to accelerate, emitting radiation. Blackbody radiation depend only on temperature and not on the material.

Page 3: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Blackbody Radiation: Classical Treatment

/ 2L n

Consider a cubic cavity with length L on each side, inside which electromagnetic radiation due to thermal vibration of the walls are resonating in standing waves. Standing wave requires L to be exact multiples (n: integer) of the half-wavelength.

Allowed frequency is (for each axis) : / (2 )nc L

For a 3D standing wave with nx, ny, and nz, its frequency is

2 22 2 2 2 2

2 2( )4 4x y zc cn n n nL L

Each standing wave is an independent oscillator and, according to equipartition of energy principle, would have an average energy (per degree of freedom) of kT. We are therefore in position to estimate the energy spent in electromagnetic radiation due to thermal motion classically. We just need to find out how many oscillators are allowed in each frequency range!

2

22 24cd n dnL

Page 4: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Rayleigh-Jeans Law and the Ultraviolet Catastrophe

B4

2 ck TI T

In the “phase space”, each non-negative (nx,ny,nz) represents an allowed point, which contains two allowed states for the two possible polarizations of light. In a shell of volume in phase space with radius N and thickness dN, the energy is

24 (1/ 8) (2)BdE k T n dn

3 48 BdE dk TL

Energy density (energy/volume)

Intensity (power/area)

Rayleigh-Jean Law

Page 5: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Actual Experimental Observations

1. The total power of the emitted radiation increases with temperature.

4P AeT2. The peak of the wavelength

distribution shifts to shorter wavelengths as the temperature increases.

3max 2.898 10 m KT

Stefan-Boltzmann

Page 6: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Planck’s Assumption: Quantization of Energy

nE nhf

E hf

Max Planck 346.626 10 J sh

Page 7: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Planck’s Model

3 48 BdE dk TL

Allowed oscillator modes unchanged from classical model. Average energy per oscillator is no longer kT!

3 4 8 PlanckdE dL

/ ( )

/ ( )

B

B

nh k T

nnh k T

n

nh e

e

/ ( )

/ ( )

11

B

B

nh k Th k T

nZ e

e

/ ( )/ ( )

1 2/ ( )( ) 1

BB

B

h k Tnh k T

h k Tn B

dZ h enh ed k T e

/ ( ) 1Bh k T

he

3 /( )5

8( 1)Bhc k T

dE hcL d e

Or, equivalently,

3

3 /( )3

8( 1)Bh k T

dE hL d c e

Page 8: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Planck’s Model

346.626 10 J sh

B

2

/5

21hc k T

hcI Te

Planck’s Constant determined by fitting.

Page 9: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Planck’s Model (Prob. 49)

Total Energy Per Volume:5 43

3 /( ) 330

8 ( )815( )( 1)B

Bh k T

k TE h dL hcc e

Total Intensity:5 4

43 2

2 ( )15

Bk TI T

h c

Stefan-Boltzmann Law

8 2 45.67 10 /W m K

multiply by c/4

Page 10: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Exercise Prob. 51

Derive this3

max 2.898 10 m KT

3 / ( )5

8( 1)Bhc k T

dE hcL d e

By differentiating

Page 11: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Infrared Radiation and the Ear Thermometer

fever

normal

38 C 273 C 1.003237 C 273 C

TT

4fever

normal

38 C 273 C37 C 273 C

1.013

PP

Page 12: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Photoelectric Effect

Stopping Potential

Page 13: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Photoelectric Effectand Energy Conservation

0EK U

0 0 0i s

s i

K e V

e V K

max sK e V

Page 14: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Photoelectric Effectand the Particle Theory of Light

Photoelectric effect should occur at any frequency

No electrons emitted for frequency below fc

Light intensity increases K of photoelectrons increases

Kmax independent of light intensity

No relationship between photoelectron energy and light frequency

Light frequency increases Kmax of photoelectrons increases

Photoelectrons need time to absorb incident radiation before escaping from

the metal

Electrons are emitted from the surface almost instantaneously even at low light

intensities.

Wave Theory Prediction Observation

Page 15: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Einstein’s Model for the Photoelectric Effect

EREK U T

max

max

0 0K hf

K hf

maxK hf

IDEA: A beam of light is made of particles called photons. Each photon transfers all of its energy (hf) to one electron of the metal

Page 16: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Explanations of Observations

Observation Explanation

No electrons emitted for frequency below fc

Photoelectrons created by absorbing single photon photon energy

Kmax independent of light intensity Kmax = hf – , no dependence on intensity

Light frequency increases Kmax of photoelectrons increases

Kmax linear in f

Electrons are emitted from the surface almost instantaneously even at low light

intensities.

Light energy is in packets; no time needed for electron to acquire energy to

escape metal

Page 17: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Work Function and Cutoff Frequency

/cc

c c hcf h

1240 eV nmhc

maxK hf

cf h

Page 18: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Application of the Photoelectric Effect:The Photomultiplier Tube

Page 19: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

39.41 The Photoelectric Effect for Sodium

Use the graph to find (a) the work function of sodium, (b) the ratio h/e, and (c) the cutoff wavelength.

Page 20: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

39.47 Photoelectric Effect

A light source emitting radiation at frequency 7.00x1014 Hz is incapable of ejecting photoelectrons from a certain metal. In an attempt to use this source to eject photoelectrons, the source is given a velocity toward the metal. (a) When the speed of the light source is equal to 0.280c, photoelectrons just begin to be ejected from the metal. What is the work function of the metal?

Page 21: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Application: Photoemission Spectroscopy

Page 22: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Powerful Light Source

Page 23: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Photoemission Spectroscopy

Page 24: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Compton Effect

Arthur Holly Compton

Page 25: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Compton EquationAssume negligible kinetic energy for the electron initially. Conservation of energy and momentum.

2 2 4 2 2e e e

hc hcm c m c p c

ep p p

2 2 22 ep p p p p

22 2 4 2 2e e ecp cp m c m c p c

2 22 ( )e ep p m c p p p

2 (1 cos ) 2 ( )ep p m c p p

(1 cos )e

hm c

hp

Page 26: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Compton Wavelength and the Compton Shift Equation

0 1 cose

hm c

C 0.002 43 nme

hm c

Page 27: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Nature of Electromagnetic Waves

Is light a wave or particle? Or both?

Page 28: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Wave Properties of Particles

E hf hpc c

h hp mu

Efh

Louis de BroglieA speculation!

Page 29: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Principle of Complementarity

The wave and particle models of either matter or radiation complement each other

Page 30: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Davisson–Germer Experiment

Davisson and Germer

Page 31: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Electron Diffraction

Low-Energy Electron Diffraction (LEED)~ 20 – 200 eV

Page 32: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

LEED: Surface Periodicity

Si(111) 7x7

Si(100) 2x1

NiSi2(111)

“Surface Reconstruction”

Page 33: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Electron Diffraction

Reflective High-Energy Electron Diffraction (RHEED) ~ 5 – 50 keV

Page 34: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Electron Diffraction

RHEED Intensity Oscillations!How many atomic layers have you grown so far?

Page 35: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Example 39.5: Wavelengths for Microscopic and Macroscopic Objects

(A) Calculate the de Broglie wavelength for an electron (me = 9.11 1031 kg) moving at 1.00 107 m/s.

34

1131 7

6.626 10 J s 7.27 10 m9.11 10 kg 1.00 10 m/se

hm u

(B) A rock of mass 50 g is thrown with a speed of 40 m/s. What is its de Broglie wavelength?

3434

3

6.626 10 J s 3.3 10 m50 10 kg 40 m/se

hm u

Page 36: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Electron Microscope

Page 37: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Electron Microscope

Page 38: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

A New Model: The Quantum Particle

Page 39: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

A New Model: The Quantum Particle

1 1 1 2 2 2cos and cosy A k x t y A k x t

1 2 1 1 2 2cos cosy y y A k x t A k x t

cos cos 2cos /2 cos /2a b a b a b

1 1 2 2 1 1 2 2

1 2 1 2

2 cos cos2 2

2 cos cos2 2 2 2

k x t k x t k x t k x ty A

k kky A x t x t

Page 40: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

A New Model: The Quantum Particle

1 2 1 22 cos cos2 2 2 2

k kky A x t x t

Page 41: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Phase and Group Speeds

phasevk

/2coefficient of time variable coefficient of space variable /2g

tvx k k

cosy A kx t

1 2 1 22 cos cos2 2 2 2

k kky A x t x t

gdvdk

g

ddvdk d k

Page 42: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Phase and Group Speeds

22h f hf E

2

2h hk p

g

d dEvd k dp

221

2 2pE mum

2 1 2

2 2gdE d pv p udp dp m m

g

ddvdk d k

Page 43: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Double-Slit Experiment Revisited

sind m

Page 44: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Double-Slit Experiment Revisited

Page 45: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Uncertainty Principle

If a measurement of the position of a particle is made with uncertainty x and a simultaneous

measurement of its x component of momentum is made with uncertainty px, the product of the two

uncertainties can never be smaller than /2:

2xx p

Page 46: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

The Uncertainty Principle

/p h

2xx p

2E t

Time-Energy Uncertainty

Page 47: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Wave Packets Out Of Plane Waves

For a wave packet with wave vectors confined to a region k about a point in reciprocal space, the spatial spread of the wave packet is of the order

1|| kr

To show this we construct a specific wave packet at t=0 in one dimension, using Gaussian distribution

The Fourier transform of this wave packet also has the Gaussian form:

])(exp[)(4

)(exp2

)()( 002

0

24

2

xkkikkxxk

)](exp[)(

)(exp

)(2)( 002

20

4 2 xxkixxx

xx

Integrate by parts to get

Page 48: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Spreads In Real- and k-Space

For this “best case scenario”, 2

)( kx

Gaussian Distribution

202

( )1( ) exp42

x xf x

2xx

1

k x

Page 49: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Time Evolution of a Gaussian 1D Wave Packet

At t=0, a Gaussian wave packet centered at x0 is expressed as

)exp(])(exp[)(4

)(exp2

)(00

20

24

2

kxixkkikkxdkx

)](exp[)(

)(exp)(

2)0,( 002

204 2 xxki

xxx

xx

Since each k component is an eigenstate of the free electron Hamiltonian, with the eigenvalue , the time dependence of the mixed state as specified by the above initial boundary condition can be written down, in the absence of external field, as

)2

exp(])(exp[)(4

)(exp2

)(),(2

002

0

24

2

mtkikxixkkikkxdkxtx

mk 2/22

Page 50: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Motion Of 1D Wave Packets

Carrying out the integration in k-space, we get

Once we constructed a wave packet, the motion of the wave packet under the influence of external disturbances can be regarded as how electrons would react. This allows us to think of electrons with somewhat defined r and k coordinates. The dynamics of electrons (between collisions) can then be predicted to follow the time dependence of states in both of these coordinates.

)](exp[)}({

])/[(exp)}({

2),( 002

2004 2 xxki

txmtkxx

txtx

]2

exp[)(arg2

exp)}({

])/[()}0({

2exp20

2

2

200

2 mtkitxi

txmtkxx

xit

ieRarg

0 /w packetv k m demo

Page 51: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Electrons and Holes

Group Material Electron me Hole mh

IVSi (300K) 1.08 0.56

Ge 0.55 0.37

III-VGaAs 0.067 0.45

InSb 0.013 0.6

II-VIZnO 0.29 1.21

ZnSe 0.17 1.44

Page 52: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Prob. 48

A woman on a ladder (H: initial height) drops small pellets toward a point target on the floor. Show that, according to the uncertainty principle, the average miss distance must be at least

1/41/22 2f

Hxm g

Page 53: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Example 39.6:Locating an Electron

The speed of an electron is measured to be 5.00 103 m/s to an accuracy of 0.003 00%. Find the minimum uncertainty in determining the position of this electron.

x x xp m v mfv

34

31 3

4

1.055 10 J s2 2 9.11 10 kg 0.0000300 5.00 10 m/s

3.86 10 m 0.386 mm

x

xmfv

Page 54: Chapter 39: Introduction to Quantum Physicsacademic.brooklyn.cuny.edu/physics/tung/phys3100S21/vg39.pdfexp 2 0 2 2 2 0 0 2 m i k t x t i x t x x k t m x it arg Rei vkm w packet 0

Example 39.6:Locating an Electron

Atoms have quantized energy levels similar to those of Planck’s oscillators, although the energy levels of an atom are usually not evenly spaced. When an atom makes a transition between states separated in energy by E, energy is emitted in the form of a photon of frequency f = E/h. Although an excited atom can radiate at any time from t = 0 to t = , the average time interval after excitation during which an atom radiates is called the lifetime . If = 1.0 108 s, use the uncertainty principle to compute the line width f produced by this finite lifetime.

EE hf E h f fh

1 1 /2 1 12 2 4 4

hfh t h t t

6

8

1 8.0 10 Hz4 1.0 10 s

f


Recommended