+ All Categories
Home > Documents > Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… ·...

Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… ·...

Date post: 27-Jun-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
55
Cogeneration Rangan Banerjee Dept of Energy Science and Engineering IIT Bombay Presentation at the Training Programme on Demand Side Management - 8 th December 2016, IIT Bombay
Transcript
Page 1: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Cogeneration

Rangan Banerjee

Dept of Energy Science and Engineering

IIT Bombay

Presentation at the Training Programme on Demand Side Management - 8th December 2016, IIT Bombay

Page 2: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Utility options

PROCESSHeat

Electricity

BOILER

Power Plant

Fuel

Fuel

Cogen Plant

Fuel

Electricity

Electricity

HeatHeat

CogenerationSHP

Page 3: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Cogeneration Concept

Boiler 90% Power plant 40%

Where is the scope for improvement?

Cogeneration- Simultaneous generation of heat and power (motive power or electricity) – CHP- Total Energy

Second Law of Thermodynamics –Concept of Exergy

Page 4: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Exergy

Quality of energy- 100 kJ of heat equivalent?

27 °C ambient, 127 °C, 227 °C, 327 °C

Available energy/ Exergy – The exergy of a substance is the maximum work that can be obtained by interacting with the environment and bringing it into complete reversible equilibrium with the environment

ex = v2/2+ g(z-z0)+(h-h0)-T0(s-s0)+exch

Page 5: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Cogeneration Concept

Process boiler , sat steam at 180 °C 90% (1st law eff)

Tu= 180+273 =453 K, T0 = 300 K

II=Qu(1- T0 / Tu)/ Qin (for fuel 1.0)=0.9(1-300/453) =0.3 (30%)

Increase generation temperature to 400 °C and pass through an expansion turbine

Page 6: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Early 19th century Cogeneration plant

Source: Dryden Efficient use of steam

Page 7: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Selection of Cogen Option

Heat/Power Ratio X (Range of values)

Fuel Availability

Costs

Steam Turbine 5.9 ( 3-7)

Gas Turbine 1.5

Combined Cycle 1.2

D.G. Set 0.7

Decre

asin

g X

Page 8: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Load Profiles Selected Buildings

Page 9: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Heat to Power Ratio Selected Buildings

Page 10: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

http://www.renac.de/fileadmin/renac/CHP_ENG_final.pdf

Page 11: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Sample Annual Heating Demand

Ortiga et al, Energy Convers Mgmt, 2011

Page 12: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Ortiga et al, Energy Convers Mgmt, 2011

Sample Annual Cooling Demand

Page 13: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Sample Daily load Profiles

Ortiga et al, Energy Convers Mgmt, 2011

Page 14: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Cogeneration Impact - Example

http://sustainabledevelopment.in/pdf/events/day1/Maria_Paatero_Kaarnakari.pdf

Page 15: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

CHP in Europe

https://setis.ec.europa.eu/system/files/Technology_Information_Sheet_Cogeneration.pdf

Page 16: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Europe Cogeneration Potential

http://www.code-project.eu/wp-content/uploads/2010/02/290110-CODE-European-summary-report.pdf

Page 17: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Evaluation Criteria

Relative Fuel Savings Rf – Fuel savings over separate heat & power generation

Rf = ( Fnc – Fc) / Fnc

Fnc = Fboiler + Fpower plant

Fuel Chargeable to Power (FCP) – The incremental fuel in cogeneration is charged to the power generation.

FCP =( Fc – Fboiler)/ W kg of oil/kWh, kJ/kWh, Nm3 gas/kWh, kg of bagasse/kWh

Page 18: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

LP Steam to Process

ST

HP Steam

Fuel

Air

Water

BOILER

Electricity

Back Pressure Steam Turbine System

Page 19: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Steam Turbine Cogeneration

Configuration X

Boiler

BPT with extraction 10

Back Pressure Turbine (BPT)

Condensing Extraction Turbine 3

Condensing Power Plant 0

Decre

asin

g X

Page 20: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Steam Turbine

Calculations

1

2i

2

h1

h2

h2i

Specific Entropy s

Specific

Enthalpy

is = h1-h2

h1-h2i

Page 21: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Back-Pressure with extraction turbine HP

MP

LP

Page 22: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Condensing Extraction Turbine HP

LP

Page 23: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Gas Turbine Cogeneration

Unfired Heat Recovery Steam Generator (HRSG)

Supplementary Fired (Duct Burners)

Fully Fired HRSG

Steam Injected Gas Turbines (STIG)

Combined Cycle

Page 24: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

C GT

GAS TURBINE BASED COGEN

CC

WHRB

Steam to Process

Suppl Fuel

Fuel

Stack

Air

Feed water

Power

Page 25: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

T-S Diagram for Brayton cycle

3

2i2

T

s

4i4

P1

P2

supQ

rejQ1

Page 26: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Brayton cycle calculations

)( 23sup TTCmQ P

)( 14 TTCmQ Prej

1

sup

sup 11

p

rej

rQ

QQ

iT

T

pr

T

iT

4

31

1

2

1

2

P

Prp

Page 27: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

12

12)(

TT

TT icompis

i

TisTT

TT

43

43)(

Component efficiencies

Page 28: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Simple back-pressure turbine with reducing and surplus valves

Source: D.M.E. DIAMANT, TOTAL ENERGY

Page 29: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

C GT

GAS TURBINE BASED COGEN

CC

WHRB

Steam to Process

Suppl Fuel

Fuel

Stack

Air

Feed water

Power

Page 30: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Schematic of a recuperated micro-turbine based cogeneration unit

(Oniovwona and Ugursal)

Page 31: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Electrical output

Energy InputDiesel

engine

Stack loss

Coolant loss

Surface heat

loss

Alternator

4%

24%

34%

3%

35%

Sankey diagram for diesel engine

Page 32: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Source: J. H. HORLOCK

Page 33: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Source: J. H. HORLOCK

Page 34: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Typical packaged internal combustion engine based (spark

ignited)

cogeneration system (Oniovwona and Ugursal)

Page 35: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

http://www.renac.de/fileadmin/renac/CHP_ENG_final.pdf

Residential Micro-CHP

Page 36: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Indian Installation: 1 MRPL, Mangalore

45 MW Cogen plant

3 Boilers-Each 40 TPH @ 103 kg/cm2g, 510C, oil fired

2 STG -Each 22.5 MW Condensing

Fuel: LSHS/ Visbreaker oil/LDO

Steam: HP40kg/cm2, MP

16kg/cm2, LP 4kg/cm2

Page 37: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Indian Installation: 2

RPL, Hazira

60 MW Cogen plant

2 GTGs

2 Fired HRSG - Each 125 TPH @ 115 kg/cm2g, 515C

Fuel: Natural Gas / HSD

Power: 60 MW

Steam: 115 kg/cm2g, 515 C

Page 38: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Indian Installation: 3

Tata Chemicals , Babrala

40 MW Cogen plant

2 GTGs

2 Fired HRSG - Each 98 TPH @ 115 kg/cm2g, 515C

Fuel: Naphtha/ Natural Gas

Power: 40 MW

Steam: HP-115kg/cm2g, 515C MP-40 kg/cm2g, 380C

LP- 3.5kg/cm2g, 180C

Page 39: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Source: J. H. HORLOCK

Page 40: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Costa et al (2007)

Page 41: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Operating Strategy

Standalone/ Isolated

Grid Interconnection Parallel with Grid – Only Buying from grid

Buying and Selling to Grid

Thermal Load Following

Electrical Load Following

Maximum Cogeneration

Page 42: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Part-load Characteristics

42

Page 43: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power
Page 44: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

0.5T/hr

Feed water

Process

Process

2 ata

~

STEAM

TURBINE

2.5 MW

6 ata

BAGASSE

58 T/hr 22 ata

330o C

4.5T/hr 27T/hr

26T/hr

Schematic of typical 2500 tcd Sugar factory

Flashed

Condensate

PRDS

PRDS

MILLING

0.5T/hr

FEED

WATER

BOILER

Page 45: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Options

A- Replace mill turbines by motors + power turbine by efficient power turbine

B- New Boiler 43 ata 480 C + additional TG

C- HP Boiler 65 ata 480 C + additional TG

D – C+ replace mill turbines with motor

E – similar to D but with condensing extraction turbine

Page 46: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Feed water

Con

dens

er

2 ata

PROCESS

75 TPH, 65

ata, 480O

C

Process

Process

4.5 TPH

~

6 ata

BAGASSE (Alternate fuel)

2 ata

BFP

13 MW

BOILER

1.0 MW

Mill

drives

9.5 MW

Power export

2.5 MW

Captive

load

PROCESS

PROPOSED PLANT CONFIGURATION: OPTION 2

STEAM

TURBINE

CONDENSER

ESS

Page 47: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Comparison of Options

Case Output Export kWh export /tc

A 5.4 MW 1.9 MW 18

B 7.5 MW+M 5.0 MW 48

C 6.8 MW+M 4.3 MW 41

D 10.7 MW 7.2 MW 69

E 13 MW 9.5 MW 91

Page 48: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Optimal Cogeneration Strategy

Decisions Grid Electricity Bought/Sold

Equipment Mass Flow rates

Electric/Steam Drive

Constraints Equipment Characteristics – Min/Max

Process Steam & Electricity Loads

Grid Interconnection

Objective Function Minimise annual operating cost (Maximise

revenue)

Page 49: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Cogeneration

Process Steam, Electricity load vary with time

Optimal Strategy depends on grid interconnection(parallel- only buying, buying/selling) and electricity,fuel prices

For given equipment configuration, optimal operating strategy can be determined

GT/ST/Diesel Engine – Part load characteristics – Non Linear

Illustrative example for petrochemical plant- shows variation in flat/TOU optimal.

Page 50: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

LP Steam 5. 5 b, 180 oC

Gas turbine -1

Boiler

ST

PRDS-1

PRDS-3

Condenser

Deaerator

Process Load

Process Load

40 T/h

G

1

G

4

Process Load,

60 MW

BUS

Grid

7.52 MW

SHP Steam 100 bar,500o C

HP Steam 41b,400 oC

Fuel, LSHS

9.64 T/h

WHRB-1

Supp. Firing

LSHS 5.6 T/h

Stack

20 MW

Process Load,125 T/h

Process Load,150 T/h

MP Steam 20b, 300 oC

PRDS-2

Gas turbine -2

G

1

WHRB-2

Supp. Firing

LSHS 5.6 T/h

20 MW

Fuel, HSD

5.9 T/h

136 T/h

136 T/h

131.7 T/h12.5

MW

76.2 T/h60.6 T/h

117.1

T/h

40 T/h 49.5 T/h 16.2 T/h

20 T/h

40 T/h

53.4 T/h

Make up water,357 T/h

Page 51: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Import Power from Grid with Cogeneration for a Petrochemical Plant

11 MW

17.6

21.6

00

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time hours

Imp

ort p

ow

er M

W

flat tariff TOU tariff

peak

period

demand

Page 52: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Export power to the grid with Cogeneration for a Petrochemical Plant

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time hours

Exp

ort P

ow

er M

W

flat tariff TOU tariff

9.7 MW

Peak

period

demand

Page 53: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

CHP Potential in IndiaMajor Industries Potential (MW)

Caustic soda 394

Cement 78-100

Cotton textile 506

Iron & steel 362

Manmade fibers 144

Breweries 250-400

Coke oven

batteries

200

Commercial

sector

175-350

Distilleries 2900

Major Industries Potential (MW)

Fertilizer 850-1000

Petrochemical 250-500

Rice mills 1000

Solvent extraction 220-350

Sponge iron 225

Tyre plants 160-200

Paper & pulp 850

Refineries 232

Sugar 5200

Sulphuric acid 74-125

Recent estimates indicate 20,000 MW

Page 54: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

Summing Up Cogeneration, Tri-generation, Polygeneration–more efficient than separate heat and power

Even in industries with cogen – Retrofits for additional power generation

Grid Agreement –Parallel, Buying/Selling

Optimal operating strategy – can result in significant savings

Significant potential in process industries, large commercial

Can be significant for DSM and DR

Page 55: Cogeneration - DSMdsm-india.org/wp-content/.../2016/12/CoGeneration_DSM16_Prof.-Ba… · Cogeneration, Tri-generation, Polygeneration –more efficient than separate heat and power

References J Raghu Ram, R.Banerjee, Applied Thermal Engineering, Vol 23, p 1567-

1575, 2003

S. Khurana, R.Banerjee, U.N.Gaitonde, Applied Thermal Engineering, Vol 22, p 485-494, 2002

S.Ashok, R.Banerjee, IEEE Trans on Power Systems, Vol 18, May 2003, p931-937

Horlock, Cogeneration-CHP-thermodynamics and economics, Pergamon Press, 1997

R.M.E. Diamant, Total Energy, 1970

YP Abbi,R K Bhogra,TERI Env Monitor,v10, 1994

p19-25

Onovwiona, Ugursal, ‘Residential Cogeneration systems: review of the current technology’, Applied Thermal Engineering, Vol 27, Issues 5-6,p 848-861, 2007.

A. Costa,J . Paris, M.Towers, T.Browne, Energy, 32, 2007, pp 474-481


Recommended