+ All Categories
Home > Documents > Constellation Shaping for LDPC-Coded APSKcommunity.wvu.edu/~mcvalenti/documents/Hughes2013.pdf ·...

Constellation Shaping for LDPC-Coded APSKcommunity.wvu.edu/~mcvalenti/documents/Hughes2013.pdf ·...

Date post: 04-Nov-2018
Category:
Upload: phungngoc
View: 221 times
Download: 0 times
Share this document with a friend
43
Constellation Shaping for LDPC-Coded APSK Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. Mar. 14, 2013 M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia Univer LDPC Codes Mar. 14, 2013 1 / 41
Transcript

Constellation Shaping for LDPC-Coded APSK

Matthew C. Valenti

Lane Department of Computer Science and Electrical EngineeringWest Virginia University

U.S.A.

Mar. 14, 2013

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 1 / 41

Acknowledgements

I would like to thank:

Xingyu Xiang.

National Science Foundation.

Army Research Lab.

DirecTV.

Hughes Network Systems.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 2 / 41

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 3 / 41

Introduction

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 4 / 41

Introduction

Motivation for this Work

DVB-S2 is a popular system for satellite broadcast and datatransmission, and uses a combination of APSK modulation and LDPCcoding.

Goal of this work is to improve performance of LDPC-coded APSK bycombining the following ideas:

Iterative receiver implementation (a.k.a. BICM-ID).Constellation shaping.LDPC code optimization.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 5 / 41

Introduction

Preview of Our Results

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.210-6

10-5

10-4

10-3

10-2

10-1

Eb/N

0 in dB

BE

R

BICM UniformBICM-ID UniformUniform with optimized3/5 LDPC code (D=4)DVB-S2 2/3 LDPC and(4,2) shaping codeoptimized 9/14 LDPCin shaping system (D=4)

(1)

(2)

(4)

(3)

Baseline system:

32-APSK.R = 3 bits/symbol.AWGN channel.

Performance improvements:1 BICM-ID decoder:

0.3 dB gain.2 Optimized LDPC code’s

degree distribution:0.3 dB gain.

3 Constellation shaping:0.5 dB gain.

4 Both code optimizationand constellation shaping:0.9 dB gain.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 6 / 41

APSK Modulation

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 7 / 41

APSK Modulation

APSK vs. QAM for Nonlinear Channels

Due to the use of TWTA, satellite channels are nonlinear.

QAM constellations become highly distorted.

NonlNonlAmp

linearlinear plifier

APSK maintains distinct rings despite nonlinearity.

NonliAmpl

inear lifier

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 8 / 41

APSK Modulation

Amplitude Phase Shift Keying

DVB-S2 uses the following APSK constellations:

A Companion Guide to DVB-S2

4 DVB-S2 in Detail

4.1 The Modulation Scheme The primary objective of DVB-S2 was to bring 8PSK within reach of consumer-sized satellite dishes and the increase in spectrum efficiency that 8PSK brings. With this work came the acceptance that real world transmission factors should be taken into account for the new system design. Rather than considering only the standard linear channel as with the previous DVB-S and DVB-DSNG specifications, the DVB-S2 specification recognises the following effects:

Phase noise

Non-linear magnitude and phase characteristics of a saturated transponder

The fact that the transponder is power limited

Group delay effects

This work led to the defined constellations to be optimised for the above conditions. The constellations that were chosen are shown below:

I

I

I

I

Q

Q

Q

QQPSK 8PSK

16APSK 32APSK

Figure 1: DVB-S2 Constellations

16APSK and 32APSK were chosen over the more familiar QAM constellations because their round shape makes them more power efficient in the power-limited channel that is a saturated satellite transponder. It is interesting to note that the ratio of the radii of the concentric circles for 16- and 32APSK changes slightly depending upon the FEC that is used in order to achieve maximum performance.

Page 7 of 21

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 9 / 41

APSK Modulation

Uncoded BER in AWGN

0 5 10 15 20 2510 6

10 5

10 4

10 3

10 2

10 1

100

Es/No in dB

BER

32APSK16APSK8PSKQPSK

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 10 / 41

APSK Modulation

Symmetric Information Rate of APSK

Performance can beimproved by using errorcontrol coding.

Gains are limited by themodulation-constrainedcapacity.

LDPC codes are capableof approaching capacity. 10 5 0 5 10 15 20 25

0

1

2

3

4

5

6

Es/No in dB

Cap

acity

(bits

per

cha

nnel

use

)

32APSK16APSK8PSKQPSK

Symmetric information rate(assumes uniform input).

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 11 / 41

LDPC Coding

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 12 / 41

LDPC Coding

Single Parity-Check Codes

Consider the following rate R = 5/6 single parity-check code:

c = [1 0 1 0 1︸ ︷︷ ︸u

1︸ ︷︷ ︸parity bit

]

One error in any position may be detected:

c =[1 0 X 0 1 1

]Problem with using an SPC is that it can only detect a single error.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 13 / 41

LDPC Coding

Product Codes

Place data into a k by k rectangular array.Encode each row with a SPC.Encode each column with a SPC.Result is a rate R = k2/(k + 1)2 code.

Example k = 2.

c1 = u1 c2 = u2 c3 = c1 ⊕ c2c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6=

1 0 1

1 1 0

0 1 1

A single error can be corrected by detecting its row and columnlocation

1 0 1

0 1 0

0 1 1

⇒1 0 1

1 1 0

0 1 1

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 14 / 41

LDPC Coding

Linear Codes

c1 = u1 c2 = u2 c3 = c1 ⊕ c2c4 = u3 c5 = u4 c6 = c4 ⊕ c5

c7 = c1 ⊕ c4 c8 = c2 ⊕ c5 c9 = c3 ⊕ c6

The example product code is characterized by the set of fivelinearly-independent equations:

c3 = c1 ⊕ c2 ⇒ c1 ⊕ c2 ⊕ c3 = 0

c6 = c4 ⊕ c5 ⇒ c4 ⊕ c5 ⊕ c6 = 0

c7 = c1 ⊕ c4 ⇒ c1 ⊕ c4 ⊕ c7 = 0

c8 = c2 ⊕ c5 ⇒ c2 ⊕ c5 ⊕ c8 = 0

c9 = c3 ⊕ c6 ⇒ c3 ⊕ c6 ⊕ c9 = 0

In general, it takes (n− k) linearly-independent equations to specify alinear code.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 15 / 41

LDPC Coding

Parity-Check Matrix

The system of equations may be expressed in matrix form as:

cHT = 0

where H is a parity-check matrix.

Example:

c1 ⊕ c2 ⊕ c3 = 0c4 ⊕ c5 ⊕ c6 = 0c1 ⊕ c4 ⊕ c7 = 0c2 ⊕ c5 ⊕ c8 = 0c3 ⊕ c6 ⊕ c9 = 0System of equations

⇔ H =

1 1 1 0 0 0 0 0 00 0 0 1 1 1 0 0 01 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1

Parity-check matrix

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 16 / 41

LDPC Coding

LDPC Codes

An LDPC code is a code with a large, sparse H matrix.A code from MacKay and Neal (1996):

H =

1 1 1 11 1 1 1

1 1 1 11 1 1 11 1 1 1

1 1 1 11 1 1 1

1 1 1 11 1 1 1

The code called a (3, 4) regular code because:

Each column has exactly 3 ones.Each row has exactly 4 ones.

Irregular codes:An irregular LDPC code has columns with different Hamming weights.An irregular code can outperform a regular code.The DVB-S2 LDPC codes are irregular.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 17 / 41

LDPC Coding

Tanner Graphs

The parity-check matrix may be represented by a Tanner graph.Bipartite graph:

Check nodes: Represent the n− k parity-check equations.Variable nodes: Represent the n code bits.

If Hi,j = 1, then ith check node is connected to jth variable node.Example: For the parity-check matrix:

H =

1 1 1 0 0 0 0 0 00 0 0 1 1 1 0 0 01 0 0 1 0 0 1 0 00 1 0 0 1 0 0 1 00 0 1 0 0 1 0 0 1

The Tanner Graph is:

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 18 / 41

LDPC Coding

Degree Distribution

Edge-perspective degree distributions:

ρi is the fraction of edges touching degree i check nodes.λi is the fraction of edges touching degree i variable nodes.

For example, consider the Tanner graph:

15 edges.All are connected to degree-3 check nodes, so ρ3 = 15/15 = 1.Three are connected to degree-1 variable nodes, so λ1 = 3/15 = 1/5.Twelve are connected to degree-2 variable nodes, so λ2 = 12/15 = 4/5.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 19 / 41

LDPC Coding

DVB-S2 standardized LDPC code

Key features of the DVB-S2 LDPC code:

Variable rate: Rc =kcnc

= {14 ,13 ,

12 ,

35 ,

23 ,

34 ,

45 ,

56 ,

89 ,

910}.

Two lengths: nc = 16, 200 (short) and nc = 64, 800 (long).

Systematic encoding.

Last mc = nc − kc columns of H are a dual diagonal submatrix,making it an extended irregular repeat accumulate (eIRA) code1.

Constant row weight; i.e., check regular.

Variable column weight, with D = 3 different values2.

1M. Yang, W. E. Ryan, and Y. Li, “Design of efficiently encodable moderate-length high-rate irregular LDPC codes,” IEEE

Trans. Commun., vol. 52, pp. 564–571, Apr. 2004.2

Not including the last column, which has a weight of 1.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 20 / 41

Iterative Reception

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 21 / 41

Iterative Reception BICM-ID

Iterative Demodulation and Decoding

Conventional receivers firstdemodulation, then decode.

Performance is improved byiterating between thedemodulator and decoder.

BICM-ID: bit-interleavedmodulation with iterativedecoding.

APSK demodulator

VND

CND

Hard decision

_

Π3

Π1-1

Π3-1

La(z) Π1

y

LDPC  Decoder  

Feedback                LLRs    

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 22 / 41

Iterative Reception BICM-ID

BICM vs. BICM-ID

9.8 10.1 10.4 10.7 11 11.3 11.6 11.9 12.2 12.5 12.8 13.1 13.4 13.710-6

10-5

10-4

10-3

10-2

10-1

100

Es/N0 in dB

BE

R

Rate 4 BICM (4by5 LDPC)Rate 4 BICM-ID (4by5 LDPC)Rate 3.75 BICM (3by4 LDPC)Rate 3.75 BICM-ID (3by4 LDPC)Rate 3 BICM (3by5 LDPC)Rate 3 BICM-ID (3by5 LDPC)

Curves show performance of 32APSK in AWGN.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 23 / 41

LDPC Degree Optimization

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 24 / 41

LDPC Degree Optimization

EXIT charts

The convergence threshold is the SNR value in which the bit error rate ofan LDPC-coded system starts dropping sharply.

The value of the threshold depends on the degree distribution.

EXIT charts3

Predict the convergence threshold.

Can be used to identify goodcandidate degree distributions.

However, because it is just aprediction, the candidate codes stillneed to be simulated to determinewhich is best. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11

0.4

0.5

0.6

0.7

0.8

0.9

1

IA,VND

, IE,CND

I E,V

ND

, IA

,CN

D

VND, DVB-S2 standard LDPC code with rate 3/5CND, all nodes degree 11

Figure : EXIT chart for the uniformsystem at Eb/N0 = 4.93 dB.

3S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,”

IEEE Trans. Commun., vol. 52, pp. 670–678, Apr. 2004.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 25 / 41

LDPC Degree Optimization

Optimal Degree Distributions

Degree distributions for uniform 32-APSK.The DVB-S2 standard rate Rc = 3/5 LDPC code has degreedistributions:

λ2 = 0.182

λ3 = 0.273

λ12 = 0.545

The optimized degree distributions with D = 3 are:λ2 = 0.182

λ4 = 0.473

λ19 = 0.345

The optimized degree distributions with D = 4 are:λ2 = 0.182

λ3 = 0.066

λ4 = 0.402

λ25 = 0.351

All codes are check regular with ρ11 = 1.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 26 / 41

LDPC Degree Optimization

BER with Optimized Degree Distributions

4.8 4.9 5 5.1 5.2 5.3 5.4 5.55.5

10-6

10-5

10-4

10-3

10-2

10-1

Eb/N

0 in dB

BE

RBICM-ID UniformUniform with optimized3/5 LDPC code (D=3)Uniform with optimized3/5 LDPC code (D=4)

BER of 32-APSK in AWGN at rate R=3 bits/symbol.

Comparison of standard vs. optimized LDPC codes.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 27 / 41

Constellation Shaping

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 28 / 41

Constellation Shaping

Constellation Shaping

The energy efficiency can be improved by transmitting lower-energy signalsmore frequently than higher-energy signals.

-2 -1 0 1 2-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure : Uniform 32APSK vs. shaped32APSK. Both constellations have the sameenergy.

-10 0 10 20 300

1

2

3

4

5

Es/No (dB)m

utua

l inf

orm

atio

n

11.211.411.611.8 12

3.8

3.9

4

uniformshaping g=1

Figure : The capacity of shaped 32APSK isabout 0.3 dB better than uniform 32APSK.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 29 / 41

Constellation Shaping

Shaping Through Signal Set Partitioning

Partition the constellation into twoequal-sized sub-constellations.

Use a shaping bit to select betweenthe two sub-constellations.

The lower-energy sub-constellation isselected more frequently than thehigher-energy sub-constellation.Requires the shaping bit to beencoded so that it is not uniform.

The remaining bits select from amongthe M/2 symbols in the selectedsub-constellation with equalprobabability.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 30 / 41

Constellation Shaping

Shaping Encoder

The shaping encoder maps ks bits to a ns bit shaping codeword.

Code is designed with the goal of having more zeros than ones.

Example (ks = 3, ns = 5) code:

3 input data bits 5 output codeword bits0 0 0 0 0 0 0 00 0 1 0 0 0 0 10 1 0 0 0 0 1 00 1 1 0 0 1 0 01 0 0 0 1 0 0 01 0 1 1 0 0 0 01 1 0 0 0 0 1 11 1 1 1 0 1 0 0

p0 = 31/40 is the probability of 0.

p1 = 9/40 is the probability of 1.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 31 / 41

Constellation Shaping

Shaping Operation

0 1 1 0 0 1 0 0ENC 0   0   1   0   0

0   1   0   1   0

Channel Encoder P/S

00010

1   1   1   0   0

0   1   1   0   1

1   1   0   1   0bit (LSB)th5

Here, the (5, 3) shaping code is used as an example.

The P/S block segments groups of 23 bits.

Three bits delivered to the shaping encoder.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 32 / 41

Constellation Shaping

Shaping Operation

0 1 1 0 0 1 0 0ENC

01001

0   0   1   0   0

0   1   0   1   0

Channel Encoder P/S 1   1   1   0   0

0   1   1   0   1

1   1   0   1   0bit (LSB)th5

Here, the (5, 3) shaping code is used as an example.

The P/S block segments groups of 23 bits.

Three bits delivered to the shaping encoder.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 32 / 41

Constellation Shaping

Shaping Operation

0 1 1 0 0 1 0 0ENC 0   0   1   0   0

0   1   0   1   0

Channel Encoder P/S

10110

1   1   1   0   0

0   1   1   0   1

1   1   0   1   0bit (LSB)th5

Here, the (5, 3) shaping code is used as an example.

The P/S block segments groups of 23 bits.

Three bits delivered to the shaping encoder.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 32 / 41

Constellation Shaping

Receiver Implementation

Demodulator    +    Shaping Decoder

S/PAPSK P/Sydemodulator

shapingdecoder

2-1

decoder

2S/PP/S

La(z)

FeedFeed

Hard d i i

LDPC Decoder

SCND

decision

1-1

-1

VND

CND_1 3

P3

1

dback LLRsdback        LLRs 

Additional complexity relative to BICM-ID due to shaping decoder.

MAP shaping decoder compares against all 2ks shaping codewords.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 33 / 41

Constellation Shaping

EXIT Charts with Constellation Shaping

When shaping is used, the variable-node decoder (VND) accounts for theeffects of shaping.

Hard decision

Demodulator  +  (Shaping Decoder ) +  VNDCombined VND

APSK shaping

_ 3-1

yCND

IE,DETIE,VND

APSKdemodulator

p gdecoder VND CND

3

CND

IA,DET

IIA,VND

Figure : Model of decoder used forconstructing EXIT charts.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IA,VND, IE,CNDI E,

VN

D, I

A,C

ND

VND, DVB-S2 standard LDPC code with rate 2/3CND, all check node degree 10

Figure : EXIT chart for the shapedsystem at Eb/N0 = 4.53 dB.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 34 / 41

Constellation Shaping

Optimal Degree Distributions with Shaping

Spectral efficiency of 3 bits per channel use.

(3, 2) shaping code.

rate rc = 9/14 LDPC code.

Check regular with ρ10 = 1.

The optimized degree distributions with D = 3 are:λ2 = 0.200

λ3 = 0.469

λ14 = 0.331

The optimized degree distributions with D = 4 are:λ2 = 0.200

λ3 = 0.461

λ5 = 0.002

λ13 = 0.337

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 35 / 41

Constellation Shaping

BER with Shaping

4.4 4.6 4.8 5 5.2 5.4 5.610-6

10-5

10-4

10-3

10-2

Eb/N

0 in dB

BE

RBICM-ID UniformUniform with optimized3/5 LDPC code (D=3)Uniform with optimized3/5 LDPC code (D=4)DVB-S2 2/3 LDPC and(4,2) shaping codeoptimized 9/14 LDPC withD=3 in shaping systemoptimized 9/14 LDPC withD=4 in shaping system

BER of 32-APSK in AWGN at rate R=3 bits/symbol.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 36 / 41

Constellation Shaping Cumulative Gains

Summary of Performance Gains

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.210-6

10-5

10-4

10-3

10-2

10-1

Eb/N

0 in dB

BE

R

BICM UniformBICM-ID UniformUniform with optimized3/5 LDPC code (D=4)DVB-S2 2/3 LDPC and(4,2) shaping codeoptimized 9/14 LDPCin shaping system (D=4)

(1)

(2)

(4)

(3)

BICM-ID decoder: 0.3 dB gain.

Optimized LDPC degree distribution: 0.3 dB gain.

Constellation shaping: 0.5 dB gain.

Both code optimization and constellation shaping: 0.9 dB gain.M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 37 / 41

Conclusion

Outline

1 Introduction

2 APSK Modulation

3 LDPC Coding

4 Iterative Reception

5 LDPC Degree Optimization

6 Constellation Shaping

7 Conclusion

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 38 / 41

Conclusion

Conclusion

DVB-S2 is already a highly efficient system, thanks to

APSK modulation.Capacity-approaching irregular LDPC codes.

The performance of DVB-S2 can be improved by

BICM-ID.Constellation shaping.Optimization of LDPC degree-distribution.

The cumulative gain is 1 dB with all of these.

Future work:

Application to 64APSK, 128APSK, and beyond.Improved symbol labeling map.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 39 / 41

Conclusion

References

1 M.C. Valenti and X. Xiang, “Constellation shaping for bit-interleaved LDPC codedAPSK,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2960-2970.

2 C. Nannapaneni, M.C. Valenti, and X. Xiang, “Constellation shaping forcommunication channels with quantized outputs,” in Proc. Conf. on Info. Sci.and Sys. (CISS), (Baltimore, MD), Mar. 2011.

3 M.C. Valenti and X. Xiang, “Constellation shaping for bit-interleaved codedAPSK,” in Proc. IEEE Int. Conf. on Commun. (ICC), (Kyoto, Japan), June 2011.

4 X. Xiang and M.C. Valenti, “Improving DVB-S2 performance through constellationshaping and iterative demapping,” in Proc. IEEE Military Commun. Conf.(MILCOM), (Baltimore, MD), Nov. 2011.

5 X. Xiang and M.C. Valenti, “Closing the gap to the capacity of APSK:Constellation shaping and degree distributions,” in Proc. Int. Conf. onComputing, Networking, and Commun. (ICNC), (San Diego, CA), Jan. 2013

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 40 / 41

Conclusion

Thank You.

M.C. Valenti ( Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. )LDPC Codes Mar. 14, 2013 41 / 41


Recommended